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Abstract

We study the channel with two-sided state information, a discrete memoryless chan
el with Enite luput and output alphabets and random state sequence. Partial informe
tion about the state sequence is available to the encoder and decoder. Applications of
this study include watermarking, data hiding, communication in presence of partially
known interferers. The capacity of this model was obtained by Cover and Chiang in [1]
In this paper the random coding bound of E-capacity is derived for considered maodel
whick can be called also generalized channel with state informiation, as it incindes four
possible situations of the channel with random parameter.

1 Introduction
The problem of coding for the channel with random parsmeter, where the random state

of the channel is observed by the encoder but not by the decoder was studied ir [2, 3).
Applications of this model include computer memories with defects [4], writing on dirty

paper [5], information hiding and watermarking [6].

The generalization of the channel with state information, where the sender and the
receiver have correlated but different state information (Figure 1), was studied in |1} and
the capacity of this channel was obtained. It was proved that capacities of the channel with
random parameter in four possible situations are special cases of this capacity.
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Figure 1. Channel with two-sided state information

In [7] the capacity formulas and random-coding exponents are derived for the model,
where partial information about the state sequence is available to the encoder, adversary

28



M. Heroutunian snd A. Muradyan 29

and decoder. The investigation of such models is motivared by data-hiding applications in
. which the decoder has partial or no knowledge of the cover signal.

We investigate the E-capacity, which was first introduced by E. Harvutunian [8, 9] and
developed for various channels [10, 11, 12, 13]. This approach is equivalent to studying of
error exponents but somctimes is more cxpedient.

In this paper the random coding bound of E-capacity is derived [or the channel with two-
sided state information. When E — 0, the limit of this bound coincides with the capacity
of the channel. obtained in [1]. We also show, that the lower bounds of E-capacity for four
possible situations of the channel with random parameter [9] are special cases of the bound,
obtained in this paper.

The paper is organized as follows. In Section II some notations and definitions are given.
The notion of E-capacity, its random coding bound with special cases are stated in Section
[11. The proof of Lhe theorem is presented in Section IV. The proof of Packing lemma, which
is used in proof of the theorem, is given in the Appendix.

2 Notations and Definitions

Following conventions are applied within the paper. Capital letters are used for random
variables (RV) 5y, 53, U, X, Y taking values in the finite sets Sy, Sy, U, X, Y, correspondingly,
and lower case letters s,, 53, u, 7,y for their realizations. Small bold letters are used for N-
length vectors x = (zy,..,Zy) € X¥. The cardinality of the set X we denote by |X|. The
notation |a|* will be used for max(a,0). :

The channel with two-sided state information is presented in Figure 1. It is defined by
a transition probability matrix W(y|z, s;,8;), where z € X,y € V.8, € 8,5, € S;. X
is the finite input alphabet, ) is the output alphabet. The state information is described
by the pair of RVs (8;, S3) with given joint probability distribution (PD) @* = Q{0 Q3 =
{Q"(51,53) = Qi (51)Q5(52]51), 81 € 8,52 € 8;}. N-length sequences s, are available to the

encoder and s, - to the decoder.
The considered channel is memoryless, it means that for input word x € X¥, output

word y € YV and state sequences s; € SV, s; € S
N
Wﬂ{y]x, 31!32) = H W(ynlzn; S1ny ’!ﬂ)-
n=]
It is assumed that; &
Q.N(sll "3} = H Q.(slm ’2!\)‘
n=]
We shall use the following PDs:

Q = Q10Q = {Q(s1, 82/, 7) = Qi (81)Qa(s3lu, ,5:),5 € S),80 € S,u €U,z € X},

P = Pyo Py = {P(u,z|s;) = Py(uls;) Pi(z|u,5),5 € S,,u€lU,z € X,},
V= {V(ylnz,5,8),8 €S, € S,ucl,zc X,y eV},
Qo PoV = {Q(sy, salu, ) P(u, z|8,)V (y|u, z, 51, 82) =
= Q1(s1)Po(uls1) Pi(zlu, 51), Qa(salu, z, 1)V (ylu, z, 81, 52),
51ES,:mES uel,z e X,y EJ«’},
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the information-theoretic quantities, such as entropy Higy(S:), mwtus 2" e 16)
IQ;JF:{E'AS:). divergence D{Q11/@;) and for the notion of type we refer to [9, 14, 5% i
The following properties (14, 15 are used in prooks:
D(QeoPoViQ oPoW)= DIQ:QN) + D(@: = V)@ s WA P i
for 5 E Tg(Sﬂ.
Q¥ (o) = exp{=N(Hay(S) + DIQ:I0): 3
for x € T p(X1s.), (v.82) € Topy (Y. Salx. 1),
0¥ W (ymax ) = p{~N (Horv (¥, SalX, ) + D(Qs o ViIIQ: e WIQ1. P)): (3)
(N + 1) exp{N g, (S1)} S IT3(S))] S exp{ N g, (S:)}. %
(N + 1) XS5 oxp( N Ho pw (Y. SalU, X. $1)} S
< T 5w (Y. Salu, . 81)| < exp{N Hory (Y, S2lU. X. S}, )
Hopy (Y. $U.X, &) £ Hopy (Y, 521X, 51). i

All Iopﬂthuuandupommlnthepupermorthebawz

Let M be the message set. The N-length code is a pair of mappings (fx,9n), where
fx: M x S¥ — XN is the encoding function and gy : Y¥ x 8F — M is the decoding
function. The nonnegative number R =  log | M| is called code rate.

The probabiiity of erroneous transmission of the message m € M by the chaunel for the
code (fx.gn) is:

e(m) = ‘UN.QN' “"'Q'- m) - z Q;N(.l) > Q;N ° “!N{yh‘ x 35\.\g§‘(tn]1!t_:rl.a| )& )

nesy

where gy'(m) = {(y,82) : gn(y,52) = m}.
The maximal error probability of the code equals:

&= euﬁogﬂ'l “’!Q.) - Elaac(m]

3;1 }Lhe average error probability of the code is (the messages are supposed to be equiprob-
L H

2= #fy, 00 W, @) = i 3 e(m).
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3 Formulation of Results
We investigate the E-capacity function which is defined as:
CIE.Q", W) = T — log M(E. Q" W.N).
N [
where
M(E,Q",W,N)= Jwp {IM| : e < exp(—NE)}.

It is the generalization of the capacity, as it reduces to the latter when £ — (. We
denote by C(E, Q*, W) the E-capacity for the average error probability. In this paper the
lower bound of E-capacity for maximal and average error probabilities is constructed.

To formulate the lower bound of the E-capacity let us denote:

RE,Q \W,Q,PV)=Igpv(UAS,Y)—Ign(UAS)+D(@QoPoV|@cPoW)-E.

Re(B,Q\W)=mginmgx o o cd B ez [AE T W.QPV)| M
Theorem. For the channel with two-sided state information W with given Q°, for all

E>0
R.(E,Q",\W) < C(E,Q",W) <T(E, Q"W).

The proof of the theorem is given in Section IV.

Corollary. When E — 0 we derive the lower bound of channel capacity, which coincides
with the capacity obtained in [1].

We shall show, that the random coding bounds of E-capacity for the four possible situa-
tions of the channel with random parameter [9] corresponds to the special cases of Theorem.

Case 1: No state information at the encoder and decoder: S; =0, 5; = 0.

MBS 1 A Wiz, 0,00 ] o Ml_.

This channel is equivalent to a DMC with

W(ylz) = Ea): g W (y|z, 51,52)Q" (51, 82)-

Here (55,Y) = Y, Igun(UAS) =0, U —.X — ¥ forms a Markov chain, hence
mAXpraz [(U/ A V) < maxpes I(X AY) with equality il U = X. Then
+
RAEQW)=pax  min |Ip,v{U AY)+ D(PoV||PoW") - El 2

+

= H V g . )
I}’l{gV:D[VmI}w}sglIﬂV{xny) + D( [|W*|P) E|

Case 2: State information on both sides is the same: S, = S; = S.
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Hee U =X =Y ﬁxmsﬁuhwchinmndi:imed?nq ;
maxpi s HU AY1S) € maxpi, IX AY]S) with equality iff U

RAE,Q.W)=mjn max oo BB pwrcE

1+
+D(QoPaV|j@Q o PoW) - ;:| =

. hence
= X. Then

Ifq,grtl' ASY) = lontU A 8+

i i (UAYIS)+D(QoPoV|Q e PeW)~F =
‘%’rﬁiit'zimw%mmsn!b‘” {UAYS)+D(Qe PoVIIQ *

- i ' ' VIIQ® o PoW) - E| .
'”J‘?Ee'a‘-‘:‘-mq.nﬂ?.%‘-.p.nm|’°ﬂi (XAYIS)+DQoPoV|Q o Pe

Case 3: State information at the encoder: S, = § 8, = 9. This is the chanrel with
random parameter with informed encoder, considered by Gelfand and Pinsker [2].

sN

Here (S5, Y) =Y and the E-capacity lower bound becomes

R(E.Q" W)= uﬂ“ﬂﬁlt’ﬂmﬁﬁ%‘:ﬂmsa|IQ'P'"{U AY) = Iqp(SAU)+

+D(Qe PoVIQePo W)~ B[,

which coincides with the bound derived in {10].
Case 4: State information at the decoder: S; = 0,5; = 8.

SV

l

MBS B Wl s) Y g —%M
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Now Iga(U A 5;) =0and U — X — (8,Y) forms a Markov chain, hence inequality
1naxprus I(U A S,Y) < maxpiy I(X A 8,Y) with equality if U = X. Then
erErQ" W} =

" |y T . B . P o v - i*
= ‘ U ¥ ™ rwe = "': =
HMHJ Q.V.BE&&WQ‘MHOSB! . PviUAS T+ D(QuPuVi@ ureW) £

=B oion e appys 1PV X NS Y) + DQa PoVI@ o Pow) B[ .

In the same way from the theorem we can derive the results for the special cases of the
information-hiding system [12},{13], i.e. when the channel is independent of state informa-

tion.

&Y — (s, 8f) — &}

M2 P waln P oo PR M!

L

Figure 2. Information-hiding system

4 Proof of Theorem

To prove the theorem we must show the existence of a code with R satisfying (3) and max-
imal error probability not greater than exp{—N(E —¢)} forany 0 < < E.

We will construct encoding and decoding and compute errors caused by each. We use
random bin coding technique [2] for encoding and minimum divergence method [8] for de-
coding,

Denote Q(Q5, E) = {Q; : D(Q4]|Q5) < E} and

s8)= U 1S
hEQ(Q],.E)

We will construct the code only for s, € 7gf z(51), because for sufficiently large N, the
probability of s, ¢ T3 3(.5'1) is exponentially small:

M U e} T eMmis)) <
1¢Q(Q;.B) @1¢Q(Q;.E)
< Y exp{-ND@lIQ)} < (N +1)*'exp{~NE} < exp{~N(E-e1)}, (8)
Q1¢Q(Q; .E)
where ¢, is positive and small enough.

Encoding. For small § > 0, any type @, € Q(@Q}, E), for fixed P = Pyc P, and E we
choose randomly |[M]| collections J(m), m € M of vectors u;(m),j = I.J from ‘Td‘ a0).
‘where J = exp{N (/q, (5 AU) +4/2)}.



é'ﬁﬁ."

Then for each &, € T (5;) we choose such u,({m) from J(m}, that u, ()

Denote this vector by ul(m, ;). 2 (el
| for some s; € T3 (S:) there is no such u,(m) in J(m), we randomly thb‘t"‘-“:’:ﬁﬁl -

from 73 (U'ls)- Denote by Bo,.n(m. ) this event. Its probability can be est
e folium iss, Way- -

J
Pr(Bo.n(m e} = Pr{ N wim) € Balin)} <

- N i 1T aUls:) ) o

5,1:.1. (1 - Pr{uj(m) € ?a,.n.wm}) < (1 W) —

< (1-exp{-Nilg (S AU)+ 84}y N e A3 < exp{ - exp{Véz4}}- @)

The last inequality is true because for any n and ¢ € (0,1) we have (1 - ty° < exp{-nth

The codeword x is constructed in the following way. For each m € M and & € T3 (51
we randomly choose X(m.8) € T8 pXjuim,. 1), %)

Denote by eg(m) the encoding error probability for given m & M. Tuaking Into account

(5) and (9) we can estimate it in the following way:

esm)= Y QV®)Pr{Boamm)l+ X s S

mefq’:_‘(ﬁsi o.l?‘;?% #1850
< 0 Q;"{Té‘;(s;)}ﬁp{—exp{l\’ﬁjal]} +exp{=N(E - 21)}.
QeR(Q:.8)

As the number of types Q, € Q(Q;, E) does not exceed (N + 1)

ep(m) € (N +1)5 exp{— exp{N5/4}} + exp{-N(E - ©1)} <
< exp{—exp{Nd/4} + e2} + exp{=N(E - £.)}, (10)
for N large enough.

Decoding. For brevity the pair of vectors u(m,s;), x(m,s,} we denote by u, x(rm.8;)
According to minimum divergence method each y and s; are decoded to such m for which:
(y.82) € Ty (Y, S2lu,x(m,8), %) and Q,P.V are such that D(Qo Pe V||Qr o PolV) is
minimal -

The decoder g can make an error, when m € M is trapsmitted in the case ol state
information s; € ‘T&(S;). but there exists m' # m, vector s}, types @', P!, V" such that

(v,82) € Ty (Y. Salu,x(m, 8,),8,) (VT v (V. Salu’ X' (', 81), 80)

and
D@ P oV|Q o P eW)SDQoPoV|Q o PoW). (11)

Denote by D = {Q, P, V. @', P',V" : (11) is valid} and by ep(m) the decoding ervor probability
for given m € M, then
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wm s 3 Gie) @ e WH{ UTn (Y, Siiux(ms1) 5

l:‘.fq &5

U TV, Sill X ). )| x(m, ).} <
m'fm g eTS (51)

< ¥ TR siuxims)s)n

.,erﬂ (5) D

NU U Tpwlt.Siv,xm,s),)x
mgmyed (5:)
#Qi"(s1) # Q3" o W¥(y, s3|x(m, 5),5,).
The last inequality is true, because for fixed Lypes of x,s;,83,¥ the probabilities ae
constant.
Packing Lemma. For given W,Q", for any E > é > 0, types Q; € Q(Q;.E) and P
there ezists a code with

M| > axp{N R(E,Q".W,Q,P,V) —6i+} (12)

such that

1. for each 8; € TJ!(S)) vector puirs u, z(m, 8;) are distinct for different m € M.

2. for sufficiently large N the following inequality holds for any @) € Q(Q;. E). conditional
types P',Qz0V,Qy 0V’ and for allm € M and 8, € TJ/(S)) the following inequality holds

['-’Ea”pv{YSziu,x{m.nnl.sa)ﬂ#g“ U Ta'.f".w(y-sniu'.x'(m"ln-s’ll|S
e:r" (51)

min
Qa,V:D(QoPoV||Q oPsW)<E

< |%“fnv(1’- Szlu.x(m.81).81J| exp{ — NIE —D(@ P oV'||Q o P'o W}r}- (13)

Proof of the Lemma is given in the appendix.
Taking into account (1), (2), (3), (5), (6), (11) and (13) we can upper estimate the
decoding error probability:

eom< 3 X [Ty lY, Salux(m.s), )| exp {~N(E-D(@oPoV[QroPo11)) |«
I|ETQ'";.‘(3|) D
XQi (1) # @ o WX (y, salx(m, 51),81) <

< Y exp{NHg,(8)} Y exp{NHqry(Y,5|U. X. 5)}x
QiEQ(Q],E) D

x exp{~N(E - D(Q o P'o V'||Q" o P' o W))} x
x exp{~N(Ig, (S1) + D(Q:||Q}) + Hopv (Y, X, 5:) + D(Qa o VI|Q3 e WIQ1, P))} <

SN+ 57 exp{—N(E + Hopy(Y, SiX, $1) — Ho,pv(Y, S2lU. X, 51))} <
QPV.@ PV
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)
<N+ YT exp{-NE} Sexp{-N(E-=)} (
i QENG IV
The error i dmwmeMue(m)se;{chplm)-
mmmummdul)wm
: 7 e axnl=N{F=%)
elm) < exp{—exp{Né/4} + 52} sexp{-N(E-£;)) +exp{=N(E-3)} = & A }
Considering the continuity of all expressions, when N — oo, arbitzary probability distri-
butions can be considered instead of types.
The theorem is proved.
Appendix. Proof of the Packing Lemma ' "~
We can see that if some code satisfies (13) for any Q{, P, Qe V. Q0 V" then I\m::‘\[

the lemma is true. To prove that, it is enough to choose @y = Q1. P = P,roV =6

and D(Q@ e P e VIQ e W) < E. o V@0
Now to prove the lemma first suppose that V7, P, Q' are such that D@QoF eV 38
P*oW) > E. Then exp{=N|E - D(@ o P'o V'[|Q 0 P'o W){*} = 1 and (13) is valid for

M. L
m!inmwmmmunq-(mmq'. P V" such that D(QaPaV']jQoPelt’) <
For any code let us denote

AnlQa, V.Q P\ V) = exp {Nts-ntaforo‘—"uo'af’om = Hopy (Y, S:lU. X, S) } &

f o

x %l :Té‘fﬂv(}’--”'ﬂﬂc!{m-lﬂ-'l)n U U TrpYiSu.xim's ‘.'-‘-.‘!
" (51) "’*"l‘.i'fo'?tsﬂ
and

An = (N + ulﬂml:ﬁ;&ll’:‘ z E AnlQaV.Q. P, V4.
QaaV QP VD@ oP oV Qe oW ) E

It is clear that if A,. <1 for all m € M, then the point 2 of lemma is true. So to prove the
lemma it is enough to prove that A, <1 for all m € M.
Now notice that if for some code the following inequality holds

1 1 .
Tr”mEZMA- < Et “")

then A, < | for at least |[M|/2 indices m. Furthermore, il we denote such indices by m7,
then Ane € An < 1 for every m®. Therefore the lemma will be proved if we find code
satisfving (15) with

Zeap{N REQ W@ NV) = 8"} & M) <

i
Qa V' DIQol eV |j@ o PsW)SE
> : T g
SexpN o+ oiger e epoyce B @ W Q. P V) = 8/21). (16)
To prove that (15) holds for some code it suffices to show that for random code

EAm<;, meM. (17)

B3| —
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To this end we observe that

E[T (V.50 . 205N U U Ten.5U" 25 5) <
i ¢ €T3 (51) '

< ¥ Pr{lnm) e TS 2", SN

(7.82)E¥% 25§/
NU U Brpsu’.x"e)}<
m‘l"'u;e‘l"é‘,:(-?:)
<L X Pr{om) e Brvsiut. 2t s}
m'#m (y 5 )ePN 55
xPr{vme U Tpunll. 50" 2% )},
l;ﬁfgifsﬂ

as the events in the brackets are independent.

Note that the first probability is different from zero iff (y.s;) € T3'py (Y. S2). In this
case for N large enough

[T (U, X, Sily,s2)|
Pr{fy 8) € L'y (Y, SalUU™, 2" 3-”)} i?‘i? LOXE

<(N+ I)MIXIIS:I exp{—NIgpyv(Y,S2 AU.X. 5)}.
The second probability can be estimated in the following way:

Pr {(Y- sme U Tpwl.Sau".x".s) }
'4574":'(31}

ser{wmel U TepSs)<

3 METY py(Baluy(m)

<2Pr{(y 82) € T2 pr (Y, Salu (o’ |78y (Uly.52)|
182) € Tg1 prye(Y, Saluy(m'))} < J O <

< (N + 1) exp{~N(Igpv(Y, 52 AU) = Igy 5(S1 AU) = §/2)}.
At last we get:

BT (VSN 2SN U U T Y. Sil™, 2 80)| <
m'pm e €TH (5)

< (N + )MIORISED (M| — 1) T (Y, Sa) |
X exp { & N(fq_p.v{Y, SaAU,X,8) + Igypoy(Y, Sy AU) = Iy ps(S1 A U) - 6;‘2) }
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It follows from (16) thiat for say Q. P.V*

- - E~4/2
|M]-1 < exp {-"'(’o.prwh& ¥)—lg; m(UAS) + DIQ =PV iqrefo) )}
and we can writ®

. ROOXDSESXISED
EA. (¥4 1D O‘;‘O‘"O'Fl" DIQePaVigrar =it 1<

m{ }rrp{.\'u._: prlY. Sa)}x

» an - E=§ {
x exp{.’\’(fo'?.l"il’ A SY) = IanUAS)+ DIQ e P oVIQeFe W) )}"
Aln=-8 .‘\‘} =

NE-D@cPoVQecP W)= Hary(Y: S:I0.X S

(!q.p.;'ﬂ'.S:AE’..\'. §) + Igpy(Y.SaAU) = Ig, n(S

<(N+ ;)mmusuwvmum z Z &P{_;\'.lij‘z}
Q¥ Q. PV

wﬁdxﬂorNhrgemmn;kpm(lT)mdhmthelmm

xup{-.\'
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GplylnniwGh JhawllGbpny plnhwin wpwlg hhpnnnipjwl Juwwnnm
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