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. Introduction
We describe possible quadratic transformations over the field

2
form P(x) = (d® +rx+h)° @l +Br+C) o e ring K [x], allowing to construct explicit’
\&* +rx+h '

ireducible polynomiais of higher degree from a suitably chosen irreducible monic polynomial
1

P(x)=Y_a,x" with at least one coeflicient @, =0,(0 s:‘sEJ}.

Proposition 1 ull.mz)qukmwpwpm. P(x) = x be an irreducible pa

degree n2 | over F,, and ax® +bx+c and di’ +rx+h be relatively prime polynomials from F[x).

where (a.d) # (0.0) and r’ = 4dh. Suppose
taﬁf«-(cdl‘+m‘+b’dh—bcdr—abhr—zacdh=.s’, N

for some & # 0 from 7. Then the polynomial

F, . where ¢ is an odd prime power, af the

slymomial of

3
F(x) = (H(a.d) " (& +rx+ )" E;EE:'-E),
de" +rx+h
is irreducible aver F, if and only if the element
: o { br=2(cd +ah~8)\ f br = 2cd + ah+8)
* —4dh -
o e 7 v - adh ] -
(denate expression (2) by Aj is a non-square in F,. where
l a".if(d=10)
H(ﬂ.d,= .’{ﬂ'] .
A*P L Lif(d = 0)
| \dJ

In this paper we investigate r” # 4 case. The methods of construction of irreducible polynomials
proposed here do not require condition (1) (ah)® +(ed)’ +acr’ + b*dh - bedr — abhr - 2acdh w be
square in ¥, and (A) to be non-square. The new restrictions imposed are: (r® =4dh)(b* ~4ac) # 0 and

16
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5 -4&]
4dh-r* )
polynomial of the element @* in F, for a root & of the initial polynomial P(x) which, in case of our
rostrictions on Plx), can ba found svnlicitly (see Pronngitinn ) There is nn restriction on the deores af

the initial irreducible polynomial P(x), unlike the methods in [3].

hr = 2(cd + ah), and B-f‘dﬁ-—r’j'g( is non-square in F_, where g,(x) is the minimal

2. Definitions and preliminary resuits

Let F, be the Galois field of order ¢ = p*, where p is an odd prime and s is a natural number, with
multiplicative group F' . Let, further, I'(g) denote the algebraic closure of F,. For

P(x)=3, ax eF|x] ad ael(g), wedefine P(x)oa=) " aa’ = .40 @),

where o(u) =a" denotes the Frobenius automorphism of F, . This makes the additive group of I'(g)
into a module over F,[x]. For a € I'(g), we see that aeF’, if and only if (x™ —1)ea=0. The
additive order of & is defined as the unique monic polynomial Ord, () € F,[x], which generates the

annihilator of c¢ as an ideal.
An element @ €I(g) is called normal in F‘. over £, if and only if the set of conjugates

{a.a'....a'-df constitutes a basis of F_. as a vector space overF,. This is exactly the case if
Ord, (@)= x" ~1, which means that the F,[x]—submodule of I'(g) generated by & equals F,
We have an obvious test for an element to have maximal order: aEF'_ is normal over F, if and

only if xh{ ")1 a e # 0 for all monic irreducible factors h(x) of x™ —1.
x

If for each factor r of n the conjugates of & over F', from F'.-vecmnplcebuesof F‘..lhcn
¢ is said lo be a completely normal element of F( over F,.

A monic irreducible polynomial F(x)e€ F,[x] is called normal or N-polynomial if its roots are
lincarly independent overF,. The minimal polynomial of an element in a normal basis
N= L,a'...,a" 'J is m(x) = Iﬁ(x—a"J € F, [x], which is imreducible over F, . The elements in
a normal basis are exactly the roots of some N-polynomial. Hence, an N-polynomial is just another way of

describing = normal basis. It is well known that such a basis always exists and any element of ¥ is a

generator of N,
We need the following propositions.
Proposition 2 ([5], Theorem 3.7). Let P(x) e F,[x]be an irreducible polynomial of degree n and

f(x) and h(x) be relatively prime polynomials JfromF,[x]. Then F(x):ch'(x)}{%} is
irreducible over F, if and only if f(x)—ah(x) is irreducible over F'. Jor some root aeF'. of

Aah SR ENhRENR;
Define the polynomial g, (x) by AT ENRREART
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= 4

@@= 0 ae

=]

if Px)= E ,a.x € F,[x]-

Pig) = e p v a Flel boow rvetacthls m'ln.wt-'..h' of decret
A e W, FL .

Wz:ﬁ;mn&.—e :

n > |, with at least ome cocfficient @, * 0.(0555[;-1) and has the order ¢. Then the
¢

polynomicl gy(x} of degree 1 is irreducible over F, and has the order e
the minimal palynomial of the element @ if @ is aroot of P(x).

Aarnmvr, @ (X1H

3. Irreducibility of a composition of polynomials

omial 0!

In this paper we consider oaly monic polynomials. Let P(x) be an imeducible polyn
depuumﬂ.saﬂ:r adeF,

a”,if(d =0)
H(a.d}-{d.l,(%}md‘m.
Theorem 1. Let ¢ be an odd prime power and P(x)=Y " a,x* be an irreducible polynoaiial of
degree n>1 overF,. with at least one coefficient @y, ‘“‘OS'SI_EP' Let ax’ +bx+c and
dx* + rx + h be relatively prime polynomials from F,[x], with (a.d) = (0.0). Suppose

(r* = 4dn)(b* —4ac) = 0 and br = 2(cd + ah). Q)

Then the polynomial
. L of ax® b+

F(x)=(H(a,d)" (& +rx+h) m]_

is monic and irreducible over F, if and only if the element B
s b® - dac
B= -r)" g
(4dh-r") M_r,] (4

is a non-square in F,.
Proof. Since P(x) is irreducible over F,, then it can be represented in F;.aa
] £

Px)=[[x-a"), 3)
el

ax’ +bx +¢
fora € F .. Substituting —————-
! Ve P

(dx” +rx + h)" , we obtain the polynomial F,(x) as

for x into (5) and multiplying both sides of the relation by
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[
Fi(x)=(dc’ +rx+h)" P{%TJ =[]ta-da* )x* +(-ra” )z +(c—ha")).
wnl

By Propositon 2, Fi(x) is irreducible over F, if and only if the polynomial
la da)x’ +(b=rajx+(c—ha) is irmducible over F_ This ic equivalent t the condition that the
element Diaz) = (r* —4hd)a® —2(br —2dc — 2ah)x + b* — 4ac is & non-square in F, . By (3), we
obtain

5 -dac )

shd-r* ")

Die)=(4hd —r {

The element D(x) is a non-square in F,, if and only if (D(a)) 2 =], which is the case if and only
if B defined in (4) is a non-square in F, . Indeed,

i< |

(i)
(o i)
=[(4M-r’]'(:;;f:‘jn? =-1.

The penultimate equation holds since, by Proposition 3, g,(x) is the minimal polynomial of &”.
Observe that since @ — da is a non-zero elementinF'. , we oblain

-t b —haY
ﬂ(x)=1“1(a-daf){x’+(:_;‘;] JH{:-;:’:J ]
=H(ad)H P +(” '“]"”(c-hﬂr = H(a,d)F(x),

% -da a-da A

s 1 2 (b-m')r (c__&gjf
wheie F(L)—H[x 1kg—d¢ x4 a_daJ -
Thus

F(x) = H(a,d)™ F,(x) = H(a,d)™ (&® + rx+ h)"

ax’ +bx+c]
dc’ +rx+h)’
is ireducible over F, , which completes the proof.

Theorem | gives us the following corollary.
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Corollary L Let g aond the palynomicl PUx) satish the Inposhests of Theorem !
= k s " {___-_ﬂ'"f‘. Ty cibie ovet {
(hifaceF,  phen the polymoesial Fix) = H(a,0)" (2ax) PL =) imredus

A A r T
of aredd omiy If i eigmend =1} ‘,k:}umu_wu4'-

n -1 e 2ax ) & il 0T
@y ifhdeF,  then the polymomial Fix)=H(0,d) (x® = h) ’!\Ttr’-rh.: is e

F, if awsd only if the element (M)'g,(i:-) is mot a square in F_.

An clement @ € F," is a proper element of F.” ifa e F," forany proper divisor v of»

Lemma 1. Ler g be an odd prime power and P(x) € F[x] be an irreducible jx
degreen>1. Let ax” +bx+c ond de* +rx+h be relatively prime pohmomials from F[X] with
(a.d) =(0,0) and (b.r) = (0,0). f the polyromial

2
; AIAET ey -i-h-ﬂ-] &)
F(x) = Hia,d) (ds" +rx = H) t___dt’+rx+h - L

2 2y ol
Wamsiomiadl

F

is irreducible over F,, then the polynomial F(x) has at least one non-zero coefficient @, (01 <M

Proof. Assume the contrary, mb.mwumﬁmhmuﬂnmnithodddcmc in the
polynomial F(x) are equal to zero, ie. F(x)=f(x") for some f(x)& F_[x]. Since the polynomial
F(x) is irreducible then f(x) is also irreducible over £, . Let a,f and ¥ be roots of P(x), F(¥)
and f(x), respectively. Since P(x) and F(x) are imeducible polynomials of degree » over F,, then
ayel, and are proper clements of F . . Also, since F(x) is an imeducible polynomial of degree n

over F,, then f is a proper element of F ., . Since is a zero of F(x), then :1::*; is & zero of
P(x). Hence by (6) we may assume, without loss of generality, that
af’ +bf+c iy o

dp’ +rp+h
and, by F(x)=f(x) we may assume that A'=y. So. by (7) we obtain
(m-b)ﬂw(n—da)y+c-ka. But since b or r are non-zero elements of F, and @ is a propel

element in F ., then ra —b # 0. Hence we have B=[la-da)y+c- ha]/(ra~hb) and we may
mludedmﬂeﬂ,.whichi:imposibl:.ﬂnl«nmiswowd. >

4. Recurrent methods

Before beginning the study of methods of construction of sequences of irreducible polynomials we
set up some notation and preliminary calculations, which we will use for their description throughout the
paper.
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Let g be an odd prime power and F,(x) = E " _a,x" be an imeducible polynomial of degree 7> |
|
overF,, with st least one coefficient a,,,, ﬂﬂ,(OSISJL%JI).Im ax’ +bx+c and dx’ +rx~h be

celatively prime polynomiale fram F.[‘-'l» with (4,4} (00) and (h r) = (00) Snpnnse

(r? —4dh)(b* —4ac)# 0 and br = 2(cd + ah), (8)
] bl_m .
and the element Au(%-#; g(-idk— 1} is & non-square in F'. Then, by Theorem 1, the
polynomial !

F,(x)=(H(a,d))" (ds* +rx+k)"i{“z +bx+ cJ

de’ +rx+h

=l 2
= (H(a,d))" (& e ax +bx+c_ o
(a,d))” (dx* +rx+h) Ll(-———! Tiag @

where & is a root of F,(x), is irreducible over F,. Hence by Lemma 1, at least one term of odd degree
in the polynomial F,(x) has a non-zero coefficient. By (9) we have that

-l 2
F(~x) = (H(a,d))" (d* -H+k)'H(H-a"J. (10)
wel} a

(9)

From expressions (9) and (10) we obtain the relation

8 (x") =(=1)" F,(x)F,(-x) = (-1)* (H(a,d)) > (dx* + h)* - r’x*)"
[ (@ +¢)’ ~b’x*  2(adx’ ~(ah+cd)x+ch) o (11
(dx® + h)? —rix? rix—(dx+h)?

Note that if @, is a root of F(x), then g, (x) is the minimal polynomial of @,’, (see [3, pp.55-56]),
i-e-! gl (x) ! g}; (x) .

4.1. Method 1

This method gives an iterative technique for construction of irreducible polynomials over T
without imposing any restriction on the degree of the initial irreducible polynomial F;(x).
Let a,d,c,heF,". It is easy to see that the equation adx’ —(cd+ah)x+ch=0 has non-zero
solutions x, = ca™ and x, = hd™".

4dh—r?
- (gr-l-.c)! —hiz
rlz—(dz+h)*
together with (11) imply
=l
&(2)=HO.d)*(dz+h) -r'2)"[[(z-a™),
w=l
or by Proposition 3
g5 (2)=(H(a,d))? (dz+h)’ -r'2)" g, (2). _ (13)

The clement z = is non-zero in F, by (8). Note that the relations

for i=lor2, (12)

z=x,
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!-'ol'lu.ﬁ:m«.b.r.dl'.b-k&il:).‘l‘hlwhwlhwwius,\ihma-‘ﬂﬂ’"‘“
b —dac ¢
i d-r @ (14)
;i Qe 3 1 et
2 _ae AL en] -2E|=
e J A\ o / - -
“ -
| b -dac _h
! -hﬂl';l" d (s
H 2 .
f[n- (2] Y- <2
l‘-\ 7 (&)X d) d

where the elements a. ¢, d and A are non-zero, and (r® —4dh)b* ~ 4ac) = 0 and br = 2dc +ah). The

th(ld)hnamﬂnluﬁmfw
l.b-ﬂ.c-ahd".r-zautﬂea’ =hd,
2 p=-2h, c=ahd”, r==2a where a® # hd .

. 4d’h
i Pkl T
Notethat —=——— = s =-E.Tbnﬁm.llutymus)hulhemmmdmiulh‘“
a adh-r 4dh -

Hmﬁx:--g.by(lnnhl\t
h 2 4h by h
o (8- {3t 5]

Theorem 2. Let g and the pobmomial F(x) satisfy the hypothesis of Theorem [ Let
&’ +2hx+ahd” and ds’ +2ax+h be relatively prime, where a.d.h € F, and a# hd. Suppess

the element (hd ™'Y is @ non-zero square in F, and the element (hd - a’ )“g&(g} is noR-zero Square

in F,. Define

5 3 S0k 5
F(x) = H, (a.d)" (d* +rx+ ) ﬂ*[%iﬁ%_]

for k21, where H, (a,d) 'd"“ﬂ_.(-s). and 1, is the degree of Fi(x). Then F(x) is an
irreducible polynomial over F, of degree 1, =n2" forevery k2 1. 5
Proof. Obviously the degree of F,(x), k 20, is £, =n2". Now, let

Fm=Ya, x k20
il

We show by induction that the polynomial F, (x) is irreducible over F,, forevery k 21 and has at least
one non-zero coeflicient @, 5.+ (0 S i S1,) . Also, we show that for every kz1

h Sin h
8!...[?] = fmr(hd"ﬂ') 8,.;(}').

for some ¢,, € F,.
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By sssumption Fy(x)=) @y, x" is imeducible over F,, with ar least one coefficient
wel
|n = 3
gz # 0.00 SISI-EJ). Then by Proposition 3, the polynomial g (x) is irreducible over F,. Since

-~ h H
the element (hd - a’) g"[?} is assumed to be & non-square in F,, then by Theorem 1, the

pdynomial

L : "\
Fi(x)=Y 0y, =(H,(a,d))" (de +2ax + )’ R[Eﬁ'{ﬂ |
wnl

dc* +2ax+h )

is irreducible over F, . Moreover, from Lemma 1 follows that the polynomial F(x) has at least one non-
zero coefficient @, ,,,;, #0,(0 i <n). Hence, by Proposition 3, the polynomial 8, (x) is irreducible
over F, and g, (x) is the minimal polynomial of @, if a, is & root of F;(x). We have the following

( J =(H,(a d)J"( (et - a]} G}
Simhel«mﬂl(%)Wmmpﬁmismmqmmf;'m

8;,(:] ¢," (ha - 0')’3,.( Jforsome ¢ eF,.

Hence gﬂ(:J is a non-square in F, if (M al}lgﬂ'[d) is so0.
Next assume that, for some k 2 2, the polynomial F,_,(x) is irreducible over F,, and has at least one
non-zero coefficient dy,_, 5, #0,(0<7 <1, ). Also assume that

h
3,'“(;]=c,_, (ha —a')‘g,.[dJ forsome ¢, € F,. (17
From the first assumption it follows, by Proposition 3, that the polynomial g, _ (x) is irreducible over
F, and g, (x) is the minimal polynomial of a,_,,’ if o, is a root of F,_(x). From the second

assumption it follows that g,m(%) is a non-square in F, if (hd—airgr_(%) is so. Applying
Theorem 1, we obtain that Fj (x) is irreducible. Further, by Lemma I, F,(x) has at least one non-zero
coefficient @y, ,,,, #0,(0<i<t, ). Hence, by Proposition 3 the polynomial &j, (x) is imeducible

over F, and is the minimal polynomial of a". where @, is aroot of F, (x). One can show that

o) () 52

Using (17), we obtain g,'(decl (}ld ’)'g ( ] for some ¢, € F,, which completes the proof.
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H 3 and
oy .:.ceF,' Mb.r.ﬁ!ﬂ-h““"'q'“‘"“h“ nd —dac)®0 &

Let d=0
te  Mek Thom ohs lemapt -_-',l__ it mongern IF for the rlemem  the reiative®
b e L = r-:
Pr-(@*el _. 4 ahe=ch bl e fom an we e
W -rz 4
g, (2)=(H(a0) (K ~r*2)'TI(z-a*") erby Proposition 3
! et
g ()= (H@0) (W =r'2)" 85 (2). (%
m.umm-:.b.c.hndrbehmofdnfdhumofqumx
hr = 2ak_
biz-(am+e) _.
| w-ris i)
ahz=ch
3 b -dac _ . s
where the clements @ ¢ rare non-zero, and b° # dac and T = -7 It is easy to see that this
=
s;smhulmmuﬂuﬁmwlyfw
(19

p=h=0;r=%2a;aceF,.

3 i )
In case of (19) :=§.md by (18) we have g,\(%J- [H(u,ﬂ))"(-alac)”g,‘[-:”‘
Using these preliminary computations, one can prove the following theorem in a manner similo
Theorem 2.
Theorem 3. Let g and the polynomial Fy(x) satisfy the hypothesis of Theorem 1. Suppose a,¢ € £,

and (ac)" is asquare in F, and the element (-l)‘g&(i] is @ non-square in F,. Define

r o

2
F,(x):(zx)""ﬂ-,[nzd:c}k 21,
where 1, is the degree of F,(x). Then F,(x) is an irreducible polynomial over F_ of degree 1, = n2
Jor every k2 1.
In particular, when ¢ = 3(mod4), Fy(x)=x* +2x+c and @ =1, Theorem 3 is in agreement
with McNay's theorem in [4). Theorem 3 as Theorem 6 from [3], gives a recurrent method fot
constructing irreducible polynomials of degree n2*, for arbitrary integers 7,k =1, over any field of odd

charactenstic.
Ihe case @ = ¢ =1 of Theorem 3 was proved by Colien in (2] under the additional assumption

that n is even when g = 3(mod 4).
In the following theorem we construct completely normal elements in F,, ¢ = I(mod4) . In the

proof we use Chapman’s method 10 prove the normality and complete normality of elements in F . over
F,,see[1].
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Theorem 4. Lerg = 1(mod4) be a prime power. and F,(x)=x" +bx+¢ be u quadratic polvmomial
over F,. where b Is non-zero, and ¢ Is a non-zero square and b* —4c is a non-square in F,.

Define F, (x).k 2 2. recursively by

.00

2 )

Then F, (x).k 2 1. is an N-polynomial of degree 1, =2" over F,. Further, if @, is u zero of F,(x).
then @, is a complerely normal el 'cJF'_‘ over . k22,

e
Filx)=(2x)""F, l

Proof. First note that F{(x) = x* +bx +c is imeducible over F,, since b —4c is a non-square in F-,.
Then by Proposition 3 g, (x)=x" +(2c-b")x+¢* and (-1)°g,, (c)=c(4c - ). Hence g, (c) is
& non-square in F,, because ¢ is & non-zero square in F, and 4c—A? is non-square in £, . Therefore,
according to Theorem 3, the polynomial F, (x), k£ 2 2. is irreducible over F,.

Our first task is to show that @, is a normal element of F;.- over F, . If & is a zero of polynomial

= forall k22. Now

ek
F,(x) then & =yic is a zero of F}_,(x), so we may assume that &, , =
sz ]
"
let 7, ----ﬂ-j.: forkzl. whuebylhelermfwemnal'acdsqummuf’rmsnda}-" Then
ylal *+2Jea, +¢ _2a,a,,+ .J_a,_
f —2J_a,+c Zaaf“-"-»/-al
@’ +20ea, +¢  —ba, +2Jca —b+2J_
Also, et = =t : L L= Note  that
i Il I T T S TR R T i
,=%¥.Comiduﬂl=a.—a,_, for k22.

- P Jely, +1) J_{;:. +1) "J—r.
71 -1 nl-1
We show by induction on k that Ord,(a,)=x" —1.1f k=1, then @, ¢F,. therefore.
(x=1)oa, #0 and (x+1)oa, =—a=#0. It follows that Onl‘(a,]=x’—l as required. Now let
k >1. By the inductive hypothesis we may assume that Ord, (e, ,)=x" ~1. It will suffice to show

that Ord,(f,)=x""+1, since x* —1 and x*" +1 are coprime and @, =, , + /3, . We need the

factorization of v* ' +1 aver F,.
4.3. Method 3

Let a=0, d.he F,‘. and c.b,r € F,. In this case, by (8), we have b(r* —4dh)# 0 and br =2dc.

2

b
4dh—r-

Then the element = = — is non-zero.
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p2-¢ we have
- - *:-ﬂntﬁck!wu.uﬁmun
Ihﬂ:m.ﬁem( e

< 120)
g.l2)= HO.d) "= A —r’:)‘ﬁ{:-a- ).
-l
Let the element A ¢ & kﬂrthﬁdem-

| br =2dc

L=t

(‘thb):—r".-' T
cik=ch

s 5 :
Mmmhduﬂinmﬂ r‘pﬂmﬂ:-m = -lllﬂ'l*}"l“""“""“h's

5 . _ K 20\
mm;mmmw-fucsrao.b-ﬂh.d.hcﬂ .Hm--;f.mﬂb}l—‘ e

have .
(h L
— | = (H(0.d)) "(4k7) '—].
s,_u) (HO.d) "L H.'.'.u

mmmmwmmmmmm
Theorem 2.

Theorem 5. Let g and the pohuomial F,(x) satisfiy the hypothesis of Theorem 1. Suppose

in o manner similar 10

hde k'

and (dh)" s asquare in F, and the elemeit g, (i] Is @ non-sguaare in k. Define

d
Fx)= H,(0.d) " (de® + ) ﬂ_.[ﬁ%}k 21,

where H, (0.d)=d" " F,_(0) and 1, demates the degree of F,(x). Tien F,(x) is an frredic

polvnomial aver F,, of degree I, =n2' forevery K2 1.
For d = h =1, Theorem 5 gives the following corollary.

e

Corollary 2. Let ¢ and the polynontial F(x) satishy the nipothesis of Theorem 1. Suppose the element
g, (1) is a non-square in ¥, . Define

2h

.

ﬁm=t*l.ﬂl))"i-\'! +1l'*'.[—.2x—~]
X+l
9

F(x)=(x" +1)" 'ﬂ..[—';zf'-}l 22
x*+1

where 1, =n2" denotes the degree of F,(X). Then for every & 21, F(x) is an irredic ihle

polynomial of degree n2 over 2
The sequence of functions (21), constructed in the above corollary, is shown to be irreducible in [3]
under the restrictions: F,(1)£,(=1) is a non-square in / and the degree of the initial polyniomial

F,(x) is even ifg = J(mod4d).
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