On Existence of 2-partition of a Tree, Which Obeys the Given Priority

Suren V. Balikyan[†], Rafayel R. Kamalian[‡]

† Yerevan State University e-mail: suren.balikyan@gmail.com ‡ Russian-Armenian State University e-mail: rrkamalian@yahoo.com

Abstract

A necessary and sufficient condition is obtained for the problem of such partitioning of the set of vertices of a tree G into two disjoint sets V_1 and V_2 , which, for a given function $p:V(G)\to \{-1,0,1\}$ with some special restriction, satisfies the condition $|\lambda(v)\cap V_1|-|\lambda(v)\cap V_2|=p(v)\cdot(|\{v\}\cap V_1|-|\{v\}\cap V_2|)$ for any vertex v of G, where $\lambda(v)$ is the set of all vertices of G adjacent to v.

We consider finite, undirected graphs without loops or multiple edges. Let V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively. If $v \in V(G)$ then $ex_G(v)$ denotes the eccentricity of a vertex v in a graph G. For a graph G let $\Delta(G)$ be the greatest degree of a vertex of G. Let $\rho_G(x,y)$ denote the distance between the vertices $x \in V(G)$ and $y \in V(G)$ in a graph G. For $v \in V(G)$ let's denote $\lambda(v) \equiv \{\omega \in V(G)/(\omega,v) \in E(G)\}$.

A function $f: V(G) \to \{0, 1\}$ is called 2-partition of a graph G.

A function $p:V(G)\to \{-1,0,1\}$ is called a priority in a graph G if the following condition holds: for $\forall x\in V(G)$ p(x)=0 iff $d_G(x)$ is even.

We'll say that 2-partition f of a graph G obeys the priority p iff for any vertex $v \in V(G)$

$$|\{\omega \in \lambda(v)/f(\omega) = f(v)\}| - |\{\omega \in \lambda(v)/f(\omega) = 1 - f(v)\}| = p(v).$$

Non-defined concepts can be found in [1, 2, 3, 4, 5].

For any $n \in \{0,1\}$, an arbitrary function $g: X_g \to \{0,1\}$ and any set $X \subseteq X_g$, denote:

$$P(X, g, n) \equiv |\{\nu \in X/g(\nu) = n\}| - |\{\nu \in X/g(\nu) = 1 - n\}|.$$

Obviously, the definition of 2-partition, obeying the given priority, can be rewritten in the following way.

We'll say that 2-partition f of a graph G obeys the priority p iff for any vertex $v \in V(G)$

$$P(\lambda(v), f, f(v)) = p(v).$$

Let $x \in V(G)$ be an arbitrary vertex of a tree G.

We define the subset $N_i(x)$ of the set V(G), where $0 \le i \le ex_G(x)$, as follows:

$$N_i(x) \equiv \{z \in V(G)/\rho_{\sigma}(x,z) = i\}.$$

Obviously, for any $u \in N_i(x)$, where $1 \le i \le ex_G(x)$, there exists a single vertex $u^{(-1)} \in$ $N_{i-1}(x)$ satisfying the condition $(u, u^{(-1)}) \in E(G)$.

Let's assume we have some partitioning of the set $V(G)\setminus\{x\}$ into sets A(x), B(x), which

satisfies the following conditions:

$$V(G)\backslash\{x\}=A(x)\cup B(x),\quad A(x)\cap B(x)=\emptyset.$$

For $\forall u \in V(G) \backslash N_{ex_G(x)}(x)$ define:

$$\begin{array}{l} a(u)\equiv |N_{\varphi_G(x,u)+1}(x)\cap\lambda(u)\cap A(x)|,\\ b(u)\equiv |N_{\varphi_G(x,u)+1}(x)\cap\lambda(u)\cap B(x)|. \end{array}$$

Note 1. From the definitions of functions a, b it follows that if for $\forall i, 1 \leq i \leq ex_G(x)$ for all $u \in N_i(x)$ it is already determined whether $u \in A(x)$ or $u \in B(x)$, then for an arbitrary $u \in N_{i-1}(x)$ the values a(u) and b(u) are unambiguously calculated.

Note 2. $a(x)+b(x)=d_G(x)$; for $\forall u \in V(G)\setminus (N_{ex_G(x)}(x) \cup \{x\})$ the equality a(u)+b(u)+1=0da(u) holds.

Now assume that p is a priority in the tree G. Let's inductively define sets A(x) and B(x)as follows:

$$\begin{split} N_{ex_G(z)}(x) \cap A(x) &\equiv \{v \in N_{ex_G(z)}(x)/p(v) = 1\}, \\ N_{ex_G(z)}(x) \cap B(x) &\equiv \{v \in N_{ex_G(z)}(x)/p(v) = -1\}. \end{split}$$

Let's assume that for $i, 2 \le i \le ex_G(x)$, the partitioning of $N_i(x)$ is already defined:

$$N_i(x) = (N_i(x) \cap A(x)) \cup (N_i(x) \cap B(x)).$$

It follows from the note 1 that for each $u \in N_{i-1}(x)$ the values of functions a, b can be calculated. Let's define the partitioning of $N_{i-1}(x)$ as follows: for $\forall u \in N_{i-1}(x)$

$$u \in \left\{ \begin{array}{ll} A(x), & \text{if } a(u) - b(u) - p(u) < 0, \\ B(x), & \text{if } a(u) - b(u) - p(u) > 0. \end{array} \right.$$

(Note that for any $u \in V(G)$ $a(u) - b(u) - p(u) \neq 0$).

Obviously, under the given definition the following condition is true

$$(N_{i-1}(x)\cap A(x))\cap (N_{i-1}(x)\cap B(x))=\emptyset.$$

It is easy to see that the sets A(x) and B(x) are unambiguously defined and, moreover,

$$V(G)\setminus\{x\}=A(x)\cup B(x),\quad A(x)\cap B(x)=\emptyset.$$

Note that we have also defined the following functions

$$a: (V(G)\backslash N_{ex_G(x)}(x)) \to Z_+, \quad b: (V(G)\backslash N_{ex_G(x)}(x)) \to Z_+.$$

Further we shall assume, that consideration of any tree G with an arbitrary priority pautomatically implies the choice of a vertex $x \in V(G)$, the realization of the partitioning of the set $V(G)\setminus\{x\}$ into sets A(x), B(x) mentioned above and the definition of functions a, bon the set $V(G)\backslash N_{ex_G(x)}(x)$.

Lemma 1. If G is a tree and f - it's 2-partition, obeying the priority p, then for $\forall u \in$ $V(G)\setminus\{x\}$ following properties hold

$$u \in A(x) \Rightarrow f(u^{(-1)}) = f(u), \quad u \in B(x) \Rightarrow f(u^{(-1)}) = 1 - f(u).$$

Proof by the reverse induction on $\rho_G(x,u)$. First of all let's prove the lemma for vertices of the set $N_{\exp(x)}(x)$. Let $u \in N_{\exp(x)}(x)$ be an arbitrary vertex. Obviously, $d_G(u) = 1$. Case 1. $u \in A(x)$.

It is clear that p(u) = 1. Since f is a 2-partition of a tree G, obeying the priority p and $d_G(u) = 1$, then $f(u^{(-1)}) = f(u)$, which is the statement of the lemma. Case 2. $u \in B(x)$.

It is clear that p(u) = -1. Since f is a 2-partition of the tree G, obeying the priority n and $d_G(u) = 1$, then $f(u^{(-1)}) = 1 - f(u)$, which is the statement of the lemma. Assume that the lemma holds for all vertices of the set $N_i(x)$, where $2 \le i \le ex_G(x)$. Let's prove the lemma for vertices of the set $N_{i-1}(x)$.

Let $u \in N_{i-1}(x)$ be an arbitrary vertex.

From the inductive assumption it follows that

$$P(\lambda(u) \cap N_i(x), f, f(u)) = a(u) - b(u).$$

Consequently, since f is a 2-partition of the tree G, obeying the priority p, then we obtain

$$p(u) = P(\lambda(u), f, f(u)) = P(\lambda(u) \cap N_i(x), f, f(u)) + P(\lambda(u) \setminus N_i(x), f, f(u)) = a(u) - b(u) + P(\lambda(u) \setminus N_i(x), f, f(u)).$$

$$(1)$$

Case 1_{ind} . $u \in A(x)$.

In this case a(u) - b(u) - p(u) < 0. Consequently, taking into account the equality (1), we obtain

$$a(u) - b(u) + P(\lambda(u) \setminus N_i(x), f, f(u)) = p(u) > a(u) - b(u).$$

As a result, $P(\lambda(u) \setminus N_i(x), f, f(u)) > 0$. The obtained inequality, taking into account that $\lambda(u)\backslash N_i(x)=\{u^{(-1)}\}\$ and $|P(\lambda(u)\backslash N_i(x),f,f(u))|=1$, implies $f(u^{(-1)})=f(u)$, which is the statement of the lemma.

Case 2_{ind} . $u \in B(x)$.

In this case a(u) - b(u) - p(u) > 0.

Consequently, taking into account the equality (1), we obtain

$$a(u) - b(u) + P(\lambda(u) \setminus N_i(x), f, f(u)) = p(u) < a(u) - b(u).$$

As a result, $P(\lambda(u)\backslash N_i(x), f, f(u)) < 0$. The obtained inequality, taking into account that $\lambda(u)\backslash N_i(x) = \{u^{(-1)}\}\$ and $|P(\lambda(u)\backslash N_i(x), f, f(u))| = 1$, implies $f(u^{(-1)}) = 1 - f(u)$, which is the statement of the lemma.

Lemma is proved.

The proof of the lemma implies the following

Corollary 1. If G is a tree and f - it's 2-partition, obeying the priority p, then for any vertex $u \in V(G) \backslash N_{ex_G(x)}(x)$ the following equality holds

$$p(u) = a(u) - b(u) + P(\lambda(u) \setminus N_{\rho_G(x,u)+1}(x), f, f(u)).$$

Theorem 1. For a given tree G there exists a 2-partition, obeying the priority p. iff for $\forall u \in V(G) \backslash N_{ex_G(z)}(x)$

$$|a(u) - b(u) - p(u)| = d_G(u) - a(u) - b(u).$$

Proof.

Necessity. Suppose f is a 2-partition, obeying the priority p.

Let $u \in V(G) \backslash N_{ex_G(x)}(x)$ be an arbitrary vertex. It follows from the corollary 1 and the note 2 that

$$\begin{array}{l} |a(u)-b(u)-p(u)|=\\ =|a(u)-b(u)-(a(u)-b(u)+P(\lambda(u)\backslash N_{\rho_G(x,u)+1}(x),f,f(u)))|=\\ =|P(\lambda(u)\backslash N_{\rho_G(x,u)+1}(x),f,f(u))|=d_G(u)-a(u)-b(u). \end{array}$$

Sufficiency. Suppose that for any $u \in V(G) \setminus N_{ex_G(x)}(x)$ $|a(u) - b(u) - p(u)| = d_G(u) - d_G(u)$

a(u) - b(u).

Let's inductively define a function $f:V(G)\to\{0,1\}$. Let's set $f(x)\equiv 1$. Let's assume that for all vertices of the set $N_i(x)$, where $0 \le i \le ex_G(x) - 1$, the function f is already defined. Let's define the function f for vertices of the set $N_{i+1}(x)$. For each vertex $u \in$ $N_i(x)$ let's define the function f for vertices of the set $N_{i+1}(x) \cap \lambda(u)$. First of all let's define the function f on vertices of the set $N_{i+1}(x) \cap \lambda(u) \cap A(x)$ by the following way: for $\forall z \in N_{i+1}(x) \cap \lambda(u) \cap A(x) \text{ set } f(z) \equiv f(u).$

Now let's define the function f on vertices of the set $N_{i+1}(x) \cap \lambda(u) \cap B(x)$ by the following way: for $\forall z \in N_{i+1}(x) \cap \lambda(u) \cap B(x)$ set $f(z) \equiv 1 - f(u)$. So we have defined the function fon all vertices of the set $N_{i+1}(x)$. Therefore, the function f is defined on whole V(G). Let's

check that 2-partition f of the tree G, defined above, obeys the priority p, indeed.

Let $u \in V(G)$ be an arbitrary vertex.

Case 1. u = x.

The condition of the theorem and the note 2 imply |a(x) - b(x) - p(x)| = 0.

Consequently, from the equality $\lambda(x) = \lambda(x) \cap N_1(x)$ and from the definition of f we obtain

$$P(\lambda(x), f, f(x)) = P(\lambda(x) \cap N_1(x), f, f(x)) = a(x) - b(x) = p(x).$$

Case 2. $u \neq x$. The condition of the theorem and the note 2 imply |a(u) - b(u) - p(u)| =1. Consequently, from the definition of f we obtain

$$P(\lambda(u), f, f(u)) = P(\lambda(u) \cap N_{\rho_{G}(x,u)+1}(u), f, f(u)) + +P(\lambda(u) \setminus N_{\rho_{G}(x,u)+1}(u), f, f(u)) = = a(u) - b(u) + P(\lambda(u) \setminus N_{\rho_{G}(x,u)+1}(u), f, f(u)).$$
(2)

Case 2a). $u \in A(x)$. In this case from the definitions of A(x) and f it follows that a(u) b(u) - p(u) < 0 and $P(\lambda(u) \setminus N_{\rho_G(x,u)+1}(u), f, f(u)) = 1$, respectively. Consequently, taking into account |a(u)-b(u)-p(u)|=1, we obtain a(u)-b(u)-p(u)=-1. The obtained equality, taking into account the equality (2) and the equality $P(\lambda(u) \setminus N_{\rho_{G}(x,u)+1}(u), f, f(u)) = 1$, implies

$$P(\lambda(u), f, f(u)) = a(u) - b(u) + P(\lambda(u) \setminus N_{\rho_G(x,u)+1}(u), f, f(u)) = a(u) - b(u) + 1 = p(u).$$

Case 2b). $u \in B(x)$.

In this case from the definitions of B(x) and f it follows that a(u)-b(u)-p(u)>0 and $P(\lambda(u)\setminus N_{\rho_G(x,u)+1}(u),f,f(u))=-1$, respectively. Consequently, taking into account |a(u)-b(u)-p(u)|=1, we obtain a(u)-b(u)-p(u)=1. The obtained equality, taking into account the equality (2) and the equality $P(\lambda(u)\setminus N_{\rho_G(x,u)+1}(u),f,f(u))=-1$, implies

$$\begin{array}{l} P(\lambda(u),f,f(u))=a(u)-b(u)+P(\lambda(u)\backslash N_{\rho_G(x,u)+1}(u),f,f(u))=\\ =a(u)-b(u)-1=p(u). \end{array}$$

Theorem is proved.

References

- [1] S. V. Balikyan, R. R. Kamalian, "On NP-completeness of the problem of existence of locally-balanced 2-partition for bipartite graphs G with $\Delta(G)=3$ ", Reports of NAS RA, Applied Mathematics, vol. 105, num. 1, pp. 21–27, 2005.
- [2] S. V. Balikyan, R. R. Kamalian, "On NP-completeness of the problem of existence of locally-balanced 2-partition for bipartite graphs G with Δ(G) = 4 under the extended definition of the neighbourhood of a vertex", Reports of NAS RA, Applied Mathematics, vol. 106, num. 3, pp. 218–226, 2006.
- [3] S. V. Balikyan, "On locally-balanced 2-partitions of some bipartite graphs", Abstracts of papers of 15th International Conference "MATHEMATICS. COMPUTING. EDUCA-TION.", vol. 15, p. 7, Dubna, Russia, January 28 - February 02 2008.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [5] C. Berge, Graphs and Hypergraphs, Elsevier Science Ltd, 1985.

Ծառի այնպիսի 2-տրոհման գոյության մասին, որը ենթարկվում է տրված նախապատվությանը

Մ. Քալիկյան, Ռ. Քամալյան

Ամփոփում

Մտացված է անհրաժեշտ և բավարար պայման G ծառի գագաթների բազմության V_1 և V_2 չհատվող ենթաբազմությունների այնպիսի տրոհման գոյությունը պարզելու համար, որ տրված հատուկ սահմանափակումներով ֆունկցիայի համար բավարարվի հետևյալ պայմանը $p:V(G) \to \{-1,0,1\}$ ծառի յուրաբանչյուր v գագաթի համար $|\lambda(v) \cap V_1| - |\lambda(v) \cap V_2| = p(v) \cdot (|\{v\} \cap V_1| - |\{v\} \cap V_2|)$, որտեղ $\lambda(v)$ -ով նշանակված է v-ին կից գագաթների բազմությունը: