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Abstract

numbers is established that allows construct a formula that enables generation of all
March tests detecting certain faults. Asan example, the method is applied for construc-
tion of new minimal March tests for detection of several subclasses of three-operation
dynamic faults. The method can be generalized for detection/diagnosis of any subset
of static or dynamic [aults. %

1 Introduction

The problem of development of minimal March test algorithms for fault detection or diagnosis
in Random Access Memories (RAM) (see [1]) is of prime importance in connection with the
increasing density of embedded memories and their dominating portion in system-on-chips
(SOC). The memory test algorithms should apply efficient procedures for effective detection,
diagnosis and location of defective cells. Recently, several methodologies have been developed
lo automatically generate March tests for detection and diagnosis of functional fault models
(FFMs).

The March test generation method presented in [2] is based on the notion of a transition
tree where each path from the root to a leaf corresponds to a certain March test. A March
test that covers a sclected subset of FFMs is searched in the generated tree. If there is a
solution it can be found, but, however, this approach has some disadvantages. The transition
tree is unbounded and the search process is of exponential complexity, in general. Besides
searching for the shortest path in the transition tree leads to an exhaustive search. In
(3], an improvement. of [2] is proposed. It restricts the search process to the parts of the
tree where a solution exists. Thus, this method allows finding the solution more efficiently.
However, fault modeling by means of transition matrices is complex and creates difficulties
when extending this approach to more complex problems like fault diagnosis, In [4], another
method of March test generation using the notion of Finite State Machines (FSM) is proposed
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fault detection. was proposed in [5]. However, this approach was very sensitive to generation
of necessary and sufficient eonditions  Dha ta fact development of the technelogy, new
FFMs and defects appear in the production and having a simple concept of fault detection

. is a principal challenge. mmdmmmemm:mfumm-
FFMs (see [6]) is complicated since the sensitization of cmdilic_)m for l!:e new faults is
rather more complex. Thus, the proposed approach has some principal disadvantages, In
i7). the authors developed a simulation-based March test generation method. Based on
this approach, several known March tests of different lengths are generated and their fanlt
coverage is calculated by means of RAMSES [6]. Thus, March tests covering different selected
sets of FFMs can be generated. However, since exhaustive search is used to find the March
tests for detection or diagnosis of a certain set of FFMs, it becomes very essential to reduce
drastically the amount of algorithms being considered because the number of March tests
grows exponentially depending on the length of March tests. The authors developed some
techniques that help reduce the number of tests being considered, but most of them are
not so much efficient than they could be and, applying proposed heuristic reductions leads
to the loss of guaranties for generation of tests of minimum length. However the proposed
approach is flexible enough to adapt easily to new FFMs.

In [8), a method was proposed for generation of efficient March tests for detection or
diagnosis of larger classes of unlinked static memory faults. The fault simulation technique
was exploited to calculate fault coverage of the generated March tests and a number of
restrictions were developed that are used during March test generation. This approach
brought to significant reduction of the number of the considered tests during the search
process. These restrictions bring to prevention of generating redundant March tests and
are proven to not affect on the capability of generation of efficient March tests. Note that
generation of March tests for diagnosis is considered as well. Anyhow, the proposed approach
is still of exponential complexity and did not allow obtaining minimal tests since some
branches in the search tree were not considered at all.

In [9], the authors propose a new approach to automatically generate March tests tar-
geting both static and dynamic memory faults. The main drawback is the complexity (NP-
completeness) that reduces the number of total faults that can be included in the fault list.
However, it should be noted that, although the authors claim they obtained minimal March
tests by this method, it is not true (see, e.g., [10]).

In [11], the authors have shown that the action of single or multiple read immediately
after a write operation may cause the inversion of the value stored in the cell. Consequently g
in order to sensitize this fault it is necessary that the test algorithm has sequences with
multiple read operations like wOr0n and wirln. In [12] the authors have demonstrated that
a cell can undergo a stress equivalent to a read operation (Read Equivalent Stress, RES)
when a read/write operation is performed on other cells of the same word line.

In this paper, we propose another, principally new, approach for generation of March
tests for detection or diagnosis of certain classes of FFMs. The essence of the approach
is in that we do not generate all possible March tests of certain lengths during the search
process, but our search is an oriented search. We generate only those March tests of certain
lengths that satisfy several necessary conditions for fault detection or diagnosis. Only for
those tests we do fault simulation to find tests of minimum length that detect or dingnose
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certain classes of FFMs. Mmpredady.wpmintowrrupondeneeweuch!\-lurhma
certain integer, Gmmﬁmdmdmhrﬁumdmmﬁmdawofnumm
in a certain range. Aamﬂy,theuqumnfmtedMaruhteuhmbadescﬁbedhya
formula. Acnordingtothisfmmh.wemgenm:aaseqmuoﬂnm Each integer
ean he interpreted (decoded) ss & March(-Jiks) test sotisfying some neoceocory conditions
for detection or diagnosis of a certain cless of FFMs. Instead of generating all possible
March-like sequences(MLS) we generate those ones, which satisfy the necessary conditions
and can be described by an integer according to a certain formula. According to the formula
we generate all March-like sequences satisfying the necessary (in general, necessary or/and
sufficient) conditions. Then from each March-like sequence we generate all March tests
that satisfy those necessary (necessary or/and sufficient conditions) by adding the address
directions. Then we simulate the currently obtained March test to check if it detects (or
dingnoses) all FFMs under consideration. If the test detects all FFMs then we have found
the minimal test, otherwise we pass to generation of the next March test and repeat the
procedure. In Figure 1 you can see March test generation flow.

| Minimal Marchtest |

Figure 1: March Tests Generation Flow

It is very important to note that the step of fault simulation can be skipped if the
conditions under consideration were sufficient too. Thus for sufficient conditions, the time
reduction for generation of minimal tests is relatively higher. This approach reduces dras-
tically the complexity of the process for generation of March tests of minimum length. We
have to do fault simulation only for those tests obtained by decoding of certain integers that
satisfy the necessary conditions for fauit detection or diagnosis. This allows us to reduce
drastically the complexity of the generation process. And the experimental results done for
several subclasses of three-operation dynamic [aults show that we can generate the minimal
March tests for certain FFMs in several seconds.
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Table 1: The subset of three-operation dynamic disturb coupling faults

2 Main notations

All necessary definitions on March test algorithms, FPs and FFMs, can be found in
1},{131,{14).

Hl:\.sllnridlm M is a test algorithm with a finite number of March elements M =
{My, Ma, .... Mi} where each March element M; consists of an addressing direction ¥, ’an_‘l
a finite number of Read / Write operations M; = Vi{O:(D). .... On(D)}, 05 € {R.W }is
a R (Read) or W (Writc) operation, ¥; € {#,$,.$h% (respectively, §) is the ascending
ldmndiu)addmadu.ﬁhmubimaddmmﬂﬂ, D e {0.1}.

A sequence {O}x = Oy, 0y, .., Oy, of Write and / or Read operations of given length k,
will be called a March-like sequence (see [15]) of length k, if O, = Wx,x € {0, 1}, and for
each j, 1 < j < k— 1, the following conditions arc satisfied:

(i) If 0; = Rx or Wx then Oj4; # R £, where ¥ denotes negation of x;

(i) If O; = Rx or W then O;.1 # Rx.

Obviously, from each March test M we can obtain a corresponding March-like sequence
{M} uniquely. Note that, in general, for any March-like sequence {L}, we can construct
many March tests by partitioning the March-like sequence into a finite numbers of sub-
sequences Ly, Ly, ..., L, in different ways and for each L;,1 < i < &, constructing a March
element M, = {V,Z;} by inserting an address direction V; € {1, 4.} arbitrarily.

For CF's the FPs are described as < S,; S,/F/ R >pasy; (see [16]), where S, (respectively,
S,) describes the sequence of operations applied to the aggressor (victim) cell "a” (¥ v') or
its state. "$” denotes relation "<" or ">" between the aggressor cell and the victim cell.
The faulty behavior F is the observed memory behavior that deviates from the expected one,
and R € {0,1,-} is the result of the Read operation of S applied to the faulty cell in case
S ends with operation Read. A *-" in R means the output data is not applicable.

Table 1 describes the subset of "three-operation dynamie disturb” coupling faults (CF).
All these faults have the common feature that the third operation of the sensitizing sequence
is a Read operation. In Table 1, we denote x,y € {0,1}. Note that, in particular, the so-
called Hammer test can be considered as a threc-operation dynamic Read disturb CF with
three Read operations applied consecutively. Certain defects (sce for example, [11],[12])
manifest themselves os dynamic faults and can be detected by consecutive Read operations
applied after a Write operation.

3 Main algorithm

Our general method has been applied to construct new minimal March tests for three
operation dynamic disturb CFs. In [15], we have deseribed a method for March test gen-
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FFM March test March test description Length
| dCFdspzn | March RER $(W0); #{RO,RO.RO,W1,R1,RLRL); | 16N

#(R1,R1,R1,W0,R0,R0,R0); $(R0)
dCFdspwr | March RWR $(W0); 4(R0,W0,R0,W1,R1); 22N

i . -
#{R1,W1,R1,W0R0): $/RO WO RO W LRl

J(R1,W1,R1,W0,R0); (RO
dCFdsypre | Merch WRR | $(W0); (RO, WO,R( .m,Ro"L.le.m'L_‘_.nu; “30N |

ﬂ (R'l |w 1 !Rl,RI .WU.RO,RU};
4(R0,W0,R0,R0,W1,R1,R1);

$(R1,W1,R1,R1,WO,R0,R0); $(RO0,
| dCFdswwy | March WWR | §{W0); 1(R0,W0,W0,R0,W1,W1,R1,W0,WLRL, | 54N
W1,W0,R0,W1,W0,R0,W0,W1,R1,W1,W1,RI,

WO0,W0,R0); $(RD); $(W1); #(R1,W1,W1RI,
WO0,W0,R0,W1,W0,R0,W0,W1,R1,W0,W1, R1,
W1,W0,R0,W0,W0,R0,W1,W1,R1); $(R1)
dCFdsoor | March OOR | §(WO); (R0, WO,R0, W0,W0,R0,W1, W1,
R1,R1,W0,W1,R1,W1,W0,R0,R0,R0,
W1,R1); #(R1,W1,R1,W1,W1,R1,W0,WO0,
RO,R0,W1,W0,R0,W0,W1,R1,R1,R1,WO0,
RO); $(RO,W0,R0,W0,WO0,R0,W1,W1,R1,
R1,W0,W1,R1,W1,W0,R0,R0,R0,W1,R1);
$(R1,W1,R1,W1,W1,R1,W0,W0,R0,R0,
W1,W0,R0,W0,W1,R1,R1,R1,W0,RD); $(R0)

Table 2: Minimal March tests

™

82N

cration. We developed conditions for March-like sequences and for March tests. And using
those conditions we do limited steps of search. But for larger length of March tests the search
time is too long. So, that is why, we developed a more efficient method which constructs
formulas for generation of March tests using those conditions. As all minimal March tests
for detection of static faults are already known we applied our method for the subset of
three-operation dynamic CFs to show that our method is not only for static faults but also
for dynamic faults Note that the method proposed in this paper can be used efficiently not
only for fault detection but also for diagnosis too. We have brought experimental results
showing how much is the reduction of generated tests for an example of a subclass of three-
operation dynamic faults. In Table 2, new minimal March tests for detection of dCFdsppp,
dCFdspwg, dCFdswrp, dCFdsywg are described. Also a minimal test March OOR is
obtained for detection of all FFMs from dCFdsggp, dCFdspwr, dCFdswrpr, dCFdswwr.

Our method takes certain conditions as inputs and constructs a formula describing all
March-like sequences satisfying the given conditions. We describe the March-like sequences
satisfying the conditions by formulas and not another way (for example by "regular ex-
pressions”) since during March test generation process we need to compare two March-like
sequences and it is casier to do that for two integers than the same for two sequences or
regular expressions. The other reason is that we define an operation *** for those formulas
and via that operation we can obtain new formulas from the two formulas, For example, if
we have faults F1 and F2 and, their formulas, respectively, Formula 1 and Formula 2, are
already known for them, then for the set of faults F1 U F2 we do not need to construct a
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new formula by our method. Wemwwﬁm’".nﬂohdnnm'muhbﬁ this
mmm.r«ms-mhwwm. o

Let us encode WO by 0, W1 by 1 and the Read operation by 2, respectively. Uf Il—m-I
thmnshoulddmcdﬂhei-l.hupuﬂimbyﬂﬂ.iflhhﬁmm!m. with index lower t.. h
i non enual to 2. was i and atherades by R1 if that mewmber wae 1, Thus, we oan gt &
unique sequence of numbers 0, 1, 2 into correspandence to each March-like sequence. Let us
mmhmuhncmwmm-lmﬁhmsmmpmmdmmm

Denote by (T1. T2, ... Ta)n the representation of a sequence of numbers in the n-ary systom
of numbers. Then each sequence of numbers from the set {0, l,2}cmbenprmmledu:m
integer in the ternary system of numbers {0, 1, 2). For example, March-like sequence {wao,
W1 R1. W0, W0, RO} corresponds to (012002} in the ternary system, which is Entmﬁ
137, Le. Code{WOWIRIWOWORD) = 137. The function inverse to Code, function Code
takes an integer and the length of March-like scquence as inputs and returns the March-like
sequence. For example, Code™'(1388, §) = {Wo, W1, R, R1, W0, W1, W0, R0}

Tet £ = { W0, R0, W1, R, . }, and we shall denote by E* the set of all words

constructed in alphabet X.

Definition 1 Let us define condition for March-like sequences recursively.
1. T* is a condition.
2. If C is a condition then (C) is a condition too.
3. If O and C; are conditions then Cy VC; and C, 8C; are conditions.
4. There are no other conditions.

Definition 2 A condition is basic if it does not contain 'V' and '&" symbols. For example
"...W0 W0 RO..." is a basic condition.

Definition 3 A condition is simple if it does not contain & symbols.
For example (...W0 RO0...)V(...W1 R1...) is a simple condition.

Definition 4 A condition is in disjunctive normal form (DNF) or simply a condition is
normalized if it is a finite disjunction of finite conjunctions of a basic conditions.

-

Now we shall give the description of the algorithm which generates formula having nee-
essary and sufficient or only necessary conditions for detection/dingnosis of faults. The
algorithm is divided into 4 parts:

1. Normalization of a condition
2. Simplification of a condition
3. Parameterization of a condition

4. Formula construction
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Now we shall describe each part separately,

1. Normalization of condition. In this step we perform al] possible following
formations of condition < trans-

s R1L(R2VR3) = (R1&R2) V (R1&R3)
o (RIVR2)&R3 = (R1&R3) V (R2&R3)
Where R1, R2, R3 are any parts of conditions.

Proposition 1 Any condition can be transformed to disjuncti oo ] ”
number of several transformations: form applying fini

o RI8(REVRS) = (R18R2) V (R1&RS)
o (R1VR%)BRS = (R18RS3) V.(R2BRS3)

2. Simplification of normalized condition. Let R be a condition, L(R) be all march
like sequences satisfying condition R, R = R1 & R2, where R1, R2 are basic conditions. We
propose # method for constructing basic condition R3, L(R3) = L(R1 )NL(R2). This method
is divided into 3 parts.

1. Construction of deterministic finite automata (DFA) corresponding to conditions
2. Performing operation on DFA-s
3. Get the condition corresponding to the resulted automaton

Example: (... WOR0... ) & (.. W1R1...)

Let M1 = (Q1, E, deltal, q1, F1), M2 = (Q2, I, delta2, q2, F2), where M1 and M2 are
finite automata( see [17] ).

Ql ={q0, q1, g2 }, X = {W0, W1, R } deltal, ql=q0, F1 = {q2}

Q2 = {p0, p1, P2 }, £ = {W0, W1, R }, delta2, q2=p0, F2 = {p2}

In Table 3 transition functions deltal, delta2 are described.

The construction of & DFA, M3, such that L(M3) = L(M1)N L(M2) is given as follows.

Let 51 x 52 be the cross product of sets S1 and S2, all ordered pairs. Then M3 — (Q1
x Q2, I, delta3, [q1,92], F1 x F2) where [q1,q2] is an ordered pair from Q1 x Q2, delta3 is
constructed from delta3([x1,x2],a) = [deltal(x1,a), delta2(x2,a)] for all a in ¥ and all [x1,x2]
in Q1 x Q2. You can find the table description of delta3 in Table 4.

Proposition 2 L(M3) = L(M1) L(M2)

In the third step we construct a regular expression corresponding to the result automaton.
The construction algorithm is presented in [17). And we take as a condition this regular
expression.

As a result, we get (...W0 R0..W1 R1...) V (...W1 RL...W0 RO...)

Here is the example of simplification.

(-.. WORORORO... WORORORO...V ... WORORORORORORO...) &

(..WIR1RIRL..WIRIRIRI ... V ..WIRIRIRIRIRIR1..) =

(... WORORORO... WORORORO...W1RIRIR1.. W1R1RIR]... )V

(...WORDRDRO...WIRlRlRl...W(JRDRDRB...WIB.IRIRL..) \'4

(...WORDHDRI}...WIRIRIRL..WlB,]RIRL..WIJRIJRORO...) \'%



[Geltal | WO | W1 | R | delta? Wi R
g0 lql qo|qof po |polol P
Mol 1l |40 q2) pl (polplipa]
(a7 {2 oo (2] p2 [p2 90 Ip2)

Table 3: Transition functions deltal and delta2

dellad WO W1] It |
q10 | qO1 | q00 |
ql0 | q10 | g0l | g20
Q01 | qi0 | q01 | q02 |
q20
q20
2l
Q22

220 | 920 | q21
Q02 | q2l | q02
Q21 | q20 | q21
qI2_|ql2 | q02

| 922 [g22]q22 q22 |

Table 4: Transition function deltad

(..W1RIRIR1..WIRIRIR1...WORORORO... WORORORO... ) V
(..WIRIR1R1..WORORORO...W1RIRIR1...WORORORO... ) V
(..WIRIRIR1...WORORORO0...WORORORD...W1R1R1R1... )V
(...WORORORORORORO...WIRIRIR1..WIRIRIRL...) V

(... WIRIRIRI...WORORORORORORO0..WIRIRIRIL...) V

{ .. WIRIRIRL... WIRIRIRI ... WORORORORORORO... ) V

(.. WIRIRIRIRIRIRI... WORORORO.. WORORORO.. ) V

(.. WO RO RO RO ... WIRIRIRIRIRIRIl... WORORORO.. ) V

(.. WO RORORO ... WO RO RO RO ... WIRIRIRIRIRIRL.. ) V

(... WO RO RO RO RO RO RO ... W1RIRIRIR1RIRL... ) V

(... WIRIRIRIRIRIR] ... WORORORORORORD ... )

3. Parameterization.

Let R be a normalized condition. R = A;VA,...VAy, where 4;, 1 <1 < N are basic condi-
tions and A; = (Ci,, ... G, ), where Cj is a '..." symbol or is a Opy; € {W (dyy), R(d,;)}. dy; €
(0,1},1<ig N 1<j<k

Now we shall define the parameterization step which gets the normalized conditions and*
returns a fully parameterized normalized condition.

Suppose we have A; and A;,i # j,k = k;. We say that we can parameterize these
conditions if ¥p,1 < p < k; for both conditions p-th symbols are '.." or are the same
operations with the same arguments or with different arguments, If they are with the same
arguments we get a variable instead of the argument, otherwise the negation of the variable.

For example, if the conditions are ( ... W1 WO RO ... ) and ( ... WO WI R1 ... ) the
parameterized condition would be (.. WxWZzRz...), x € {0, 1}.

Definition 5 Condition R is fully parameterized if for any pair (A;, A;) of basic conditions,
1 14,7 < N,i#j, we can not perform the parameterization step.
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Note that after finite number of parameterization steps we would get a fully parameterized
condition.
Alter parameterization of our example we would get:
(.. WyRyRyRy..WyRyRyRy..W gRGRGR].. W GRIRGRY...)V
(. WeByRyRy. WiRGRGRG.. Wy Ry Ry Ry.. W yRFRIRG...,V
(..WyRyRyRy..WijRgRjRy..WjRJRGRY..WyRyRyRy...)V
(..WyRyRyRyRyRyRy..WiRjRjRy..WiRjRjRy...)V
(..WyRyRjRyj...WyRyRyRyRyRyRy.. WiRJRjRj...)\V
(..WijRjRjRY..WiRjRjRj..WyRyRyRyRyRyRy...)V
(..WyRyRyRyRyRyRy..WiRjRjRjRIRIRY...)
4. Formula Construction. In this stege we construct a formula from the parameterized
simple condition.
First, let us define the following functions, which are the basic blocs for construction of

the formula. o e
: , ifi=n , ifz>
R“"*‘:{n, ififn } “’}={o, if 2 =0 }

3=1 =1
= S k+1 ¥ k
Fk(ﬂl Au §| Y, PJ = Zyj ):’P"""' +Zﬂ:3”+r§l»+‘,,
J=1 =1

= 35 ypsy +
¥r € {0,...37 '}, 1 5r£k+1,%%>1

a, € {0,..,3% '} 1<e<k,

A= (01.62.-..,G§],§ — (3li32|°": ‘k)!? - (thl ---:]ﬂ-!-l)lp - (phpls---upiﬂ)

lel R = A| v Az VeV, A,. be a mndit.ion, where Ai = ...Cu...Cﬂ, ...,Cu'...,l <i <n
and Cj; is a sequence of operations. For example, R can be (..., W0, R0, e W, Bl SV
(..,W1,R1,.., W0, RO,...).

Here is the formula which gives the codes of all March-like sequences satisfying the
condition R.

Ky
Fln,2,Y, P) = 3 (Bi)in - 31Cal + 1)
=] =]

th{n, Cm(cil)s ey Cade(cihja |Cil!| ey |Clh|| Yits -oy Yike+1, Pits ---.Pu:.+1)]

In the formula, n is the length of March-like sequences, z €{0,1}. y;; and pi; are variables
with ranges that are specified in the definition of functions F}. Putting in the formula all
the allowed values from those ranges, we get all the March-like sequences of length n. Y and
P are the sels of variables y;; and py; respectively.

We will explain the details by means of an example of constructing it for a certain subclass
of three-operation dynamic faults, Also, we described in Table 2 five new minimal March
tests obtained by us by using the new method of March test generation.

Let us consider the class of three-operation dynamic faults denoted by us as dCFdsggrp.

Here are the propositions for detection of dC'Fdsgpp.

Proposition 3 In order that a March test detect dCFdsppp it is necessary that the corre-
sponding March-like sequence to contain at least two disjoint entries of each of the sequences
RO, RO, RO and R1, R1, R1. [z]* denoles expression "z” is present or missing.’
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Proposition 4 For detection of < ReRzRe: x / % / = Zaces it is necessary and sufficient
Mﬁzﬂmmxmmmﬁvmmamemu:

B {."&v ---OWJ' Rx, Rz, R k.

2 (- Bx B RE s 5 $(Rs; )
Proposition 5 For detection of <RZRIRz; 3/3/->ace, H 1 necSIary and sufficient for the
March test to contain the entries from one of the following cases:

1. ... #(R{2). ..., Rz, Rz, Rs, ...); -
8 ... (.., Rz. Rz, Rx...., Op(E)); $(R(Z). .. )i

jon 6 For detection of <RzRIRr: £/F/->a, it 1s necessary and sufficient for the
March test to contain the entries from one of the following cases:

L ... $(/Rz, ...Opz,]* Rs, Rz, Rz, );
2 .. ¢ (o Rz, Rz, Rz ..., Opz]*): $(Rx, );

Proposition 7 For detection of <RIRIRz; I/1/->a>y, it ts necessary and sufficient for the
March test to contain the entries from one of the following cases:

L ... $(R(E), ..., Rz, Rz, Rx, ...); ...
e .. (... Rz, Rz, Rx,..., Op(z)); $(RE)... ).

As an illustration of our method, we shall show how we obtained the minimal March test
March RRR for dCFdsgrp.

We have constructed a formula describing all March-like sequences satisfying Proposition
3. After it, from those March-like sequences, we constructed all March tests satislying the
formula taking into account conditions in Propesitions 4-7. For n = 14, the corresponding
formula is: F(x)=T20%+728+2187(729(2)+728)=1504323(%) + 720x+ 1592864, where x € {0,
1}. F(0)=3187187=(12222220222222),, Code™"(3187187, 14)=W1, R1, Rl, RI, R1, RI,
R1, WO, RO, RO, RO, RO, RO, RO. F(1)=1593503=(02222221222222);, Code ™' (1593593,
14)=W0. R0, RO, RO, RO, RO, RO, W1, R1, R1, R1, R1, R, R1.

Actually, we have obtained two March-like sequences satisfying the formula. Constructing
all March tests from those two March-like sequences, we obtain that none of them satisfies
all conditions in Propositions 4-7. Thus, we can assure that the minimal March test for,
dC'Fdspag is longer than 14. We have got the same result for n=15, So, it means that
any March test detecting dC'Fdsggp has at least 16 operations. We have constructed all
March-like sequences of length 16 and have generated from them many March tosts satisfving
Propositions 4-7. Note that they are minimal as we mentioned above that there is no any
March test of length 15N or low detecting dCFdsgprp. For example, when n=16, let us
consider one of the integers obtained by means of the corresponding formula: 14171597 =
(0222122222202222)4, which corresponds to March-like sequence {W0, RO, RO, RO, W1, R1,
R1, R1, R1, R1, R1, W0, RO, RO, RO, R0} and we obtained March RRR from it by ndding
the addressing directions at the corresponding positions.

In Table 5, there are some experimental results. We see that the number of all March-
like sequences is significantly larger than those obtained by the approach based on formulas



G. Harutunyan, D. Melkumyan, H. Elchyan, V. Vardanien 15

| All March-like sequences March-like sequences Length |
Bty e obtained by the formula for dCF dsprp
[ 3158646 2 14
r GRAGGIR 1 18 15
28697814 162 16
86093442 1170 17
258280326 6430 18
774840978 32886 19
2324522934 156492 20
6973568802 708588 21

Table 5: Experimental results for dCFdsppp

and proposed in this paper. For example, for length N=14, there are 3188646 March-like
sequences to be considered for generation of all March tests from those March-like sequences
exhaustively. Meanwhile, our new method allows construction of a formula that generates
only two March-like sequences to be used for generation of all March tests detecting all FFMs
from the subclass dC'Fdsprp. Thus, a great number of March-like sequences should not be
considered at all when constructing the minimal March test for detection of all FFMs from
dCFdsppp.

4 Conclusions

A new approach for generation of March tests for detection or diagnosis of certain classes
of static or dynamic FFMs is proposed. The essence of the approach is in that we do not
generate all possible March tests of certain lengths during the search process, but our search
i5 an oriented search. This allows us to reduce drastically the complexity of the generation
process. The experimental results show that we can generate the minimal March tests for
certain FF'Ms in several seconds. An example is brought for a subclass of 3-operation dynamic
[aults, namely dC'Fdsppp. As a result of applying the new method, we have generated a
few minimal March tests for detection of several subclasses of dynamic faults. Note that
relatively small amount of March tests generated based on the corresponding formula should
be simulated to assure that the generated test covers all FFMs from the considered subclass.

In the future, we are going to apply the new method to generation of minimal March
Lests for detection or diagnosis of the classes of static and dynamic FFMs that have not had
minimal March tests so far.
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Pulwélbph dhengny dwny whunbph JunmgiwG wprymGubn dibpnn
Q. Qwpmpymbywd, 4. Ubpnudjul, £. Ejswe, o Jwpqmipui

Udihmhnud

Vlpupuwgpijue | bfpdan wwppbpndd wnmunnply fud gpGudpl whuwmppnipm GGbpp
Yurdusyulpl blGpwpwqdnipin G hupnbwpbpnn i whnnnpnzon dpGpduy twpz wnbuinbpp
ywnmgdwl dbpnp:  Unwgwppud Jhpnpnuf luwnmgymd &6 npnywih wihhpwdtzn
wuydwllbpll punjupwpnn pompp dwpp obunbpp: Ulupp wnbwnbph L pGuwlws pybph
dpol wpjty b wpnwepunhbpmd, npp hGwpujapnipml ¢ wmwipu lwongl; pubGwdl:
Puludbfy dhgngny wnwgdmd kG prmpp wil dupy wlimnbpp, npnlp huwpnGwpbpmd fwd
wfunnpnynid 60 upgwo. wivwppoipynlpp: Ubpnnp ppuaydty E bplp qnponnmpunp
nhludply wiuwppnipimGGbph nprzwlh EGpunuup hupmuplipnn dhGfdwy duwps wbunbp
wnwwim hudwp: Ulpngp hGwpwynpnipim F owyfiu Gunmighy unhupulul wnunnpl b
nfilwdfly wimuppnypmGOEp hupmwpbpng fud wifmnnpnznn dhGhdwy dwpy inbunbp:

m:-mr.,- o~



