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Abstract

In [4] & messure 5 on propositional formula was defined such that for every tautology
1 "high” value of s(ip) requires the large size of proof in the "wesk” propositional
systems. In this paper it is shown, that there is a tautology rp, the measure s(i) of
which has exponential dependence on the size of i, but its proof complexity in Frege
systems is polynomially bounded.

1 Introduction

It is well known that the investigations of the propositional proof complexity are very
important due o their tight relation to the main problem of the complexity theory: P = NP.
In particular, Cook and Reckhow proved, that NP = coNP iff there is a polynomially
bounded proof system for classical tautologies [6], therefore it is interesting to obtain "good”
lower and upper bounds of proof complexities particularly in a Frege system — the most
natural caleuli for propositional logic.

In [4] a characteristic s(ip) for every taulology ¢ was defined such that

1) for sufficiently large n and ew:ryi(l <i< [g 105,2]) there are sequences of tautologies
@} of size n such that s (¢]') = 6(n');

2) "high" measure of s(ip) requires the large size of proof in the "weak” propositional
systems (resolution, cut-free sequence, analytic tableaux) [2, 5];

3) the proof complexity of every tautology ¢ in the Frege system is no more than ¢- s(y)-
lipl, where |ip| is the size of ¢ and ¢ is a constant.

From the third statement it follows that Frege proof complexity of a formula  is poly-
nomially bounded in the case if the measure 5(ip) has polynomial dependence on the size of
.

It is interesting to investigate how long must be (can be) the size of Frege-proof, in the
case if the measure of s(i) has exponential dependence on the size of ¢ for provable Q.

In this paper we prove that each of shove mentioned formulae ¢} has polinomially
bounded Frege-proof, i.e. the "high” measure of 8(p) can be also "quickly arrived” in the
Frege system.
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2 Preliminary
In order to prove our main “’"ns' “:ll .m’nmk%), propositional formula, tautology,
generally wdmwud““ s proof complexity.
disjunctive normal form (DNF), Wﬁr Mtﬂmﬂ"d"w‘ el b e
mwwdw dsmdmwmmclhuumm
nmmfcrmmﬁd“‘m“-mw : (i > 1, 2 1), logical synbols
wmmmwhbbn(rzliﬂdt’“m('— w32 Liv REor St
& v, > and parenthesis ( )- wammthmmbewﬁd generally
" erminology we call variables and negated variables literals; the con-
-umidf:fb:md simply as a set of literals and is called & d{me {no clause contains
meh a variable and the negation of that yariable). A formula in DNF can be expressed as
Ki,Kg.eeen K¢}
; ﬁr: Z:::Jwr:n:e (e—rule]]. infers K' u:f:l from clauses K' U {p} and K*U{arp}, where
~# are clauses and p is a propositi
K :i::w]s;e“h to say t!:t the conjunct K is deduced from the DNF P if there is o finite
sequence of such clauses, mntm-claummuthomdthechmapgg
infa-mdﬁnmurﬁﬂclamlntlwmmh_\'s—mle.mdthem clause is K.

If the empty conjunct (A) can be deduced from D, then DNF D is called full (tautology).

Theﬂnimnlnumhuolthcmgmof:-nﬁcinthededucﬁonof:\fmmfullDNFi)h
called complexity of D and denoted by S(D)-

Let  be a propositional formula and the set of its distinct variables be {pi.pay. .- Pl
In [4] the following notions were introduced.

Definition 1. For some 0 = (01,02y.++,0m) € E™ (1 € m < n) the conjunct
K= { ", Pl } i called o-determinative if the assignment of values 0, to each
P (1 € m < n) induces the value of , without taking into consideration the values of the
rest varinbles.

Let ¢ be a minimal tautology, i.e. ¢ is not an instance of a shorter tautology.

Definition 2.The full DNF D is called -determinative if every conjunct of D is o
determinative.

Definition 3. Any y-determinative DNF D, having the minimal complexity, is called
minimal determinative DNF for ¢ and is denoted by DZ*™".

Definition 4. The measure S (‘D:,“"P is called determinative complexity of ¢ for any
minimal tautology v and is denoted by s(y).

If & is not minimal tautology, then s(ip) is defined to be the minimal value s(¢") for Such
minimal tautology ¢, that ¢ is an instance of ¢'.

Definition 5. If for o tautology ¢ there is a polynom p() such that s(p) < plle]), then
. is ealled easy, otherwise the tantology is hard.

The following statements about D" are proved in [4] and [5):

1) If every g-determinative conjunct contains at least m literals for any tautology , then
s(Dp=) 2.

2) For every tautology ¢ of sizen S (‘D:“") o

and notations. We shall use |
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- ) For sufficiently large n and every i (1< i < [3log,3]) there are sequences of such
tautologies o', that [2]| = 6(n) and 5 () = O(n*);

4) The proof complexity of formulae 7 from mentioned sequence in some "weak” systems,
like resolution system and cut-free sequence system, is 8(n').

The statements of the points 3) and 4) are proved, using the sequence of the following
T formulae:

m n
TR V & V (21, 1<sm<2-y).
(1O )EB*  jm] =1

Itis not difficult to notice that for every fixed n > 1 andm (1<m< 2"~ 1) the formula
Pnm I8 tautology.

The above mentioned tautologies ¢} are accordingly @, n«. It is not difficult to notice also

that |ignm| = 0(2" - m - n), the formulae ¥n2e-1 are minimal tautologies and every Pnan-1-
 determinative conjunct must contain 2" — 1 literals, therefore 8(Puany) = 2V Wmanail)
and hence the tautologies i, 5+ are hard.

In this paper we investigate the relationship between the measure of (i) and the proof
complexity of ¢ in the Frege system.

We shall use the generally accepted concepts of Frege systems. Without loss of gener-
ality we assume, that the system F is a Frege system, the language of which contains the
connectives =, &, V, O perhaps together with the other connectives and Modus ponens is

" one of the deduction rules for it.

We use the well known notion of proof complexity.

We define for Frege proof (F-proof) t-complezity to be its length (= the total number
of lines) and £-complezity to be its size (= the total number of symbols). The minimal
n such that the formula y has a proof of length < n (of size < n) is called t-complexity
(¢-complexity) of s formula  in the system F and is denoted by t ().

We would like to say that tautology ¢ has t-polynomially bounded (£-polynomially

| bounded) F-proof if there is a polynomial p() such, that t < p (Iel) (& < p(lul)).

It is obvious that the proof of A from D™ for every minimal tautology ¢ can be trans-
formed into a Frege proof using Kalmar's proof of deducibility of tautologies in classical
' propositional calculus (7).

In [4] it was shown, that t7 < c- s(p)|y| and €& < c- 3(p)|pl? for every tautology ¢,

where s(p) is the above defined determinative complexity of @, || is the size of ¢ and ¢
is a constant, therefore every easy tautology has t-polynomially (£-polynomially) bounded
F-proof.

3 Main results

Here it will be proved that the measure 8(p) is insufficient to prove super-polynomial
lower bounds for the Frege proof.
Theorem 1. Forcx‘erynz land 1 <m < 2" —1 the tautology
n

Cam= & \/ 74 has t-polynomially (£-polynomially) bounded F-proof.

(@1y.om JE EP j=1 i=1
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prove i =] dmmbe‘wmm X
thi m.;twmbemm_:hy}'pnd  nm €an be "polyn

udI;d'wf»:mu!ofPHP.-the-dl-w mmhkm#.whﬂ,mm‘n |
has (-polynomially (hemce t-polynomially) bounded F-proof (sce -

Wi also the following statement :

L::::-:..Fuammmun.d.mo..,k.aq.ﬁqmdthemm“h

1. avara

2 adaVvid

3. {03313((33‘113(0131})
1. (30a)2(@ad5)
5. oy 2D (.-2 (= > ayleagke...&ay).. ) (K22)

6. nVﬁm3Slv...vﬁ.\suv,-s...v...vﬁ.,.vmv,&,,ﬂv...v.-j,,,.“

(k2nr2Lt21)
* - kA m
7.-(1/ &o.,): & V aray (21, m>1)
1 =l =l J=

8. &(&.V&)D-(‘}Z(&‘kﬂa)) (k21)

=l

has t-polynomially (£&-polynomially) bounded F-proof.
Proof. Proof of this Lemma is obvious.
mehﬁxednandlsmsr-lmupandedfwmofmermuhp._,in

-,.,“=(p,.vpnv...Vp.,}&(mvmv...vp.,]&...&(p...Vp,..v...vn...}v
V(pu VpnV...vn.,)&(puvmv...vm}&..‘&:(p,...vp,..v...vg.,,)v

v(ﬁ.,vp,.v...vp..,)&:(h,vmv...vm)&...&{m.vhv...Vﬂ...}
Let gy =PIy VPIR V... VPoy for 1 S i< 2 and 1 <€ j € m, where gy, 0, .., 0w I8

the binary notation of the integer 2% — i.
Using the notation g;; we obtain

o = Qi &qak .. &qmV
Ve &qak ... &qanV

Vgm  &gprak ... &g .
Let Yinm be the following subformula of @nm

Vnm = qa&qa& ... & mV
v?-llk(hgk e &mv

Vms11 & mera & .. Egmirm -
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+1m
Using point 7. of Lemma 1, we obtain that the formula &r¢,, ,, > & V &rg,; has t- (¢

f=] J=I
polynomially bounded F-proof (1).
The formula, which presents the well-known " Pigeonhole Principle”, is the following

+1l n
PiR.= & Vo> V.V Gykm.
=1 i=1 ISickgn+] 1<i<n

In [1] it is proved, that PHPF, has ¢-polynomially bounded (hence also t-polynomially
bounded) F-proof,

Let PHE, = V argy> V (Grg;&arg;). It is obvious,

i=] 1<j<m I€i<kZm+1 1<i<m

that the formula PHP,,, which is corresponding instance of the PHP,, also has t- (¢-)
polynomially bounded F-proof (2). .

Lt A= \/ \ (@rg;&aérgs ), then using (1), (2) and point 3. of Lemma 1,

1<igkSm41 1S3%n :

we obtain that ffm roxmlf @rYnm 3 A has t- (&) polynomially bounded F-proof ().

Now we shall show, that the formula &rA also has - (£-) polynomially bounded F-proof.

Lemma 2. For every fixed j (1< j <m) mdi,k(1£i<k52")theformu]aqu\.rqh,
has t- (£-) polynomially bounded F-proof.

Proof. Proof follows from the fact of the existence of such ¢ (1 £t < mn), that g
contains py; and g, ; contains arpy, and from points 1. and 6. of Lemma 1.

From Lemma 2 and point 5. of Lemma 1 we obtain, that the formula

B= & & (%5 V axj)
mLi<kEm+]l 1<jij<m
has ¢- (£-) polynomially bounded F-proof, and from point 8. of Lemma 1 it follows that the
formula —A has t- (£-) polynomially bounded F-proof (4). From (3), (4) and point 4. of
Lemmal we obtain that t,, has t- (¢-) polynomially bounded F-proof and, finally, from
point 2. of Lemma 1 follows the proof of Theorem.

Conclusion. There is a hard tautology, which has polynomially bounded F-proof.
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