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1 Introduction

This paper presents the investigation of oscillations and nonlinear dynamics of models of
ceological systems with spatial heterogeneity. Understanding the abundance of natural pop-
ulations is the central task confronting the quantitative ecology. Many conceptual and
theoretical models of how predators influence lower levels have been developed to explain
the observed structure of food webs (1] Ecologists have hypothesized that regional recov-
ery from large disturbance should occur more rapidly in species with widespread dispersal
than in species with more limited dispersal [2]. Ecological theory predicts that any mecha-
nisms that reduce isolation among patches with uniform distribution assist to evolution of
organisms. Modeling results can prove that spatial variability in the abundance of species
will change little over time organisms with restricted d will become more uniformly
distributed over time. Orbit structure of dynamical system is applied to stable structures
Jefinition in generalized models of population dynamics.

The application of non-linear dynamics analysis methods allows to gain model expla-
nation of some effects observed in natural ecosystems. The orbit structure of a dynamical
system is applied to spatio-temporal evolution of the model expressed in the from of ordinary
differentiul equations. It is so-called Lagrange stability that serves as a formal analogy of eco-
logical stability defined in terms of conservation of species number in biological community.
The dynamics of coupled oscillators is proved to be relevant in the study of pattern gener-
ation of & biological system. Patterns of Hopf bifurcation started with Turing model have
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been an active subject of research recent years [3]. Dynamics of nets of coupled oscillators
is applied to definition of oscillations in spatially extended systems.

Global bifurcation phenomena associated with networks of identical oscillators are re-
viewed in [4]. As an application global bifurcation of phase locked oscillators is applied to
migratory effects investigation in specially-discrete models of trophic chains.

2 Lagrange Stability and Method of its Definition

*...It is precisely astronomy that showed us
what general appearances of natursl phenomena are”.
H. Pouncare. "Revue de Metaphysique et de Morale”.

WMdthmdmlnlemwmhmulm
teristic of its stability. Tbeudogiulﬂblﬁtyhammptwhi&mqlﬂrunﬂnfthemin the
community to be preserved for a sufficlently long time, i.e. the population size of any species should
not tend to zero or take close to zero values.

Themuﬁdm@damymmwhawmafwwwm.
The ecological system can be regarded es stable, when model equalions possess periodic solutions
even if the equilibrium is unstable. Let us suppose that model equations has several equilibrium
states. Thamnwptdhmnpmhiﬁtyhlmdamdwlththebmmdmnfmluﬁminthephase
space,

Let’s suppose that dynamies of a biological community is described by the following system of
ordinary differential equations:

%=ﬂ(ﬂh---nNn)a i=Tn M

with initial conditions Ny(0) = Ny(0) — Ny(t) is the number of i-th population.
Two closed finite domains 2 and Q" are defined in phase space P™. The formal expression for
the region of ecostability is given by notation:

YN® € QF 30"(0F) C IntP™ : ¥t >0 N(t) € 0,
where
N°={N},...,N%} e 03,
N(t) = {Mi(t),...,Na(t)} € Q"

The method for Lagrange's stability investigation, based on the reduction of the initial problem
to the problem concerning the stability of trivial solution of a certain subsystem of equations
al permanent perturbations has been advanced by D. O. Logofet, Yu. M. Svirezhev [5}. By
substitution & = 1n(g|: ) i=T,n in (1) the original model is brought to the system.

%‘=¢f(€ls---'§q§N{’,---NgL i=Tn, (2)
with initial conditions £(0) = 0. Further transformation is defined to bring the system of equations
(1) to the form

B V€ 60, N + By, i=Trm, @)

where

\*i=ﬁ(fl---ufniN?.---.N,‘.’)—tb,-{O....,D;Ng,....NE),
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by the following system:
‘ Nj =Q — Vo(No)N, i=Tn

N} = kViea (NN - Vi(NQN; — miNi €)]

where. the sign "F" is denotation for the first derivative by time i.e. variable ¢, variables Ny are
mwwummdmm@mﬂuwmmm‘m. The external
mwwinaowhdmibedbyﬂuunthcwm1dmemmm. The speed @ of an external
mmhmmdmmwithummﬂetonprd% linearly dependent on the external
energy Input. mmlmhmmwwhmmdwmﬁthmmmm

of Lotka-Volterra. The length of chain in ecological systems is usually 4 — 5, though the existence
of chains with length 7 was observed |1}, Tropic chains are rather well-studied objects in ecology.
Several types of nonlinear functions for the functional response were proposed. We will outline the
presentation of trophic chain in the form of a generalized oscillator [6].

Trophic chains naturally are ecosystem structures with hierarchically coupled " prey-predator”
systems. By application of Lagrange stability investigation method the system (1) is transformed
1o the following:

% . [ﬁ?x _ %] + N9 [un(0,89) — (6o, NI

dff:; = kN, [W—I(&-I'Nlu-lk"-' — wy-1(0, Ni"_,)] + (5)

+Ny [0 N) - wi(€)et=1] + By,
Here € = In(Ni/NP), N%-initial conditions of the system (4):
I(ND
Ny AREE),

Bo = -,?9 — w0 (0, NONY.
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By = kgy1(0, Ni-1) = w0, N)NE .
The function w(€;, N;) is called a specific trophic function further.
Liet. us denote wi(£o, Vi) a4 & = 0 af and derivatives of specific trophic function by a®, where
i-is the arder of derivative,
Hopf bifureation for two spices describes the bifurcation of time-periodic solutions with param-
oter a = u/(0, NT') where o = 8w(€;, Nf)/B6; are evaluated at & = 0. For & multidimensional case
we must require following conditions: Q

3 = ~Mao

o — Car, |l >6e>0,i=T;n (6)

where o me i8 the value of a specific trophic function in the point of maximum, i.e. w’ = 0.

Them]ulimndthewhnhmoddmdthemnumdin;dymjahthandgbhorhwdof
the saturation point for all species of the chain can be described as almost periodic with the
number of basic frequencies n/2. The bebavior of a system of coupled oscillators is classified by
commensurability of the relationships among these frequencies. If the difference between two of
them can become equal or close to some integer m, this number is called the order of resonance.
Resonances up to the forth order are important in dynamics invostigation. The case of even n
requires special consideration.

Equation (2) describe predator’s effect on lower trophic levels through direct consumption. The
speed of external resource @ is assumed to be sufficient. In this model we can define the values of
Q in term of parameters of trophic chains. The other restrictions for parameter values are defined
from the condition of smallness on B;. The explicit expressions are given in [6].

Forcing oscillations in an ccological system is restricted due the spatio-temporal distribution
and delay in population increase in response to environmental condition improvement. A single
population must possess the ability to increase biomass or density to respond excess resource
availability. It is well-known that only species with small body size can demonstrate such festure.
The interpretation of two phenomena is based on the application of dynamics of coupled oscillators.
The first is the question of energy limitation and length of trophic chein. The amount of resource
for the chains of the same length depends on features of species in it . Let suppose that the speed
of external resource input is limiled only by producers an the first level. After some uceumulation
of biomass the increase of fluctuations can cause additional production.

The variation of parameters can return the system to equilibrium, but increese in biomass
during such process intensification can make worse the conditions of habitats. After dumping of
oscillations the extinction of one of the species in the community is possible. Even it could be
stable but it is the other structure with some different relationships.

As in general, when a system has come to a transient state no prediction of further transition
to one of a few possible transient states is valid. The sensitivity points of a food chain can be
defined us such structure is hierarchical and in a bounded system the compensation cffect of spatial
distribution on the stabilization is not taken into account.

4 Rings of coupled oscillators as models of spatially discrete communities
with circular placement of habitats

Migration is one of ,the mechanisms recognized by ecologists as a stabilizing factor of community
with spatisl heterogeneity. The model of a trophic chain based on the assumption that effects of
predutors occur through direct consumption of prey. Trophic chains are considered as ecosystem
slructures with a " predator-prey” type of species interaction, dead biomass transfer not being taken
into account, :

J
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nigration stability of » with the same set of p species was
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aN} _ Nt N+ T (Nmi® - Nimi*),
=l
i=Lp ks=Tn ™
where me* amwmdthwmwdthll-lhsp«hm:kmum
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J. C. Alexander and G. Auchmuty (8. =
wv.‘(t]huhedeuitydi-thpopdninmrlhuvplﬁtdﬂn-
lf:hupuddmipﬂhnbl{mnhemuphdsymobm
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em1<j<Nanduwl=ul ul= N+1 for all i, where dynamics of components
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Hers each 11, is an m-vector and sach De. k= 0,41 is a diagonal m x m matrix with entries dig on
the diagonal (8) will be writlen as

%’7‘ = Dv+ Fvin) {10)

whmpisawcwrwithm}\'mmponmumdﬂhlhcmh'xmh' matrix in (9).
Equations (8) do not require the couplings forward and backward to be equal. if they are, then

Dy =D,y
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One often mmhtmhmdmphwmdm&mmwydum
the transport mechanism. this Implies
Dy=Dy+D_;
When (10) holds , then a steady state of the coupled system (8) is
Mo = (8 Uy - oy 1)
In general, if there is a steady state for (8) which has the same concentration, u, in every place,

then u, must obey
(Do — Dy — D_y)u = f(u; )
and thus the coupling will change the steady state in each habitat whenever (10) does not hoid.
Oscillators in (8) are sssumed identical and functions f are written without indices,
Suppose the system (8) has a periodic solution of the form

ui(t) = p(t) (11)
ui(t)=plt-=z;T), 2<ji<N
Here p(t) is & non-trivial, vector-valued periodic function of least period T > 0. Such & solution is
called o phase locked solution of (8). Essentially the oscillation in each cell of ring is described by
the function p. Adjacent cells, however, may be out of phase by the phase difference z; = x;+1 —x;.
and we assume yo = 0. thhdmdmﬁﬂnmmwhmaﬂtheudﬂam:minphm
Let us consider the equation of an oscillators for a pair of predator-prey, obtained from (5)

when n =2
£= -ﬂuﬂ'm- 30}5 1 WW(U- :b}ﬂ . M’F {1 2’
7= kaxpw(0, zg) + w(0, z0)J¢
where £, are densities of prey and predator in transformed system, Zg, Yo are initial values of
population sizes. The solution £* = 5* = 0 is asymptotically stable under condition w'(0,zg) > 0,
w/(0,zg) = dw(E, zg)/dE evalusted £ = 0.
Let us denote p = w/(0,z — 0). In dimensionless variables defined by division on

a = y/kzoluf(0, 20) + w(0, z0)}yw (0, z0)
the system (12) can be brought to a Van der Pol oscillator, which in variables u; is written as

d_fu|_| u 0 0

a“[w]‘[—m —n(u%—nua] 5
where uy = 5, up = €. The limits for variation of parameter p are given by the inequality
|’(0,z0)| < w(0, o). We will consider a coupled ring of n = 4M van der Pol oscillators with

dp 0
0 dy

Suppose that 0 < d; <05,0< x < 1.

By applying the theorem of phase locked solutions bifurcation of n = 4M Van der Pol oscillators
we will cbtain, thal there is = branch of solutions of form (13) bifurcating from (0, j1g. Vo) with
po = 2(dy +da), Vo = «l-d.df.

The conditions that required by global bifurcation theorem for phase-locked solutions are
siraight-forward Lo werify for particular example. But the question of which branches bifurcate
firit and which ones are stable depends on the details of coupling and dynamics of isolated system.
To study a system of trophic chains it is necessary to require limit cycle bifurcation of component.

D:=D—1=[ da 2 0,d; 2 0,Dp = 2D;.
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populati of their kind.
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6 Conclusion
TMnﬁydmﬂmWMWMﬁnhMthwfwm
generalizations of undohThoblainthenndehbmdmmmlulkhypothm
about natural system behavior it is possible to lean upon well-known mathematical concepts. A
Wmmmmmmm-mlmmhnhmaoﬂhnmph
of such generalizations. The application of the ecological stability concept allows gaining model
explanations of some ohservation and effects that did not have interpretation in the frame of existing
mathematical theory. Models of spatially heterogencous syslem can be interpreted by net of trophic
chains, Interconnected by migration flows. Oscillations in a joint system are applied to ccosystem
dynamics investigations.
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