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A dielectric m&mmmmdmpdmmmuahumtm@
as a 3D disordered spin system. For investigation of statistical properties of this
system on scales of space-time pdo&dmwm wave a microscopic
npprmchhubendathped. Uﬂn;LheBhpluwdkhypothuhthelniﬂnlSD
spin problem is reduced to two conditionally separate 1D pmblemsm:-xlr.mal
electromagnetic field The first problem describes a quantum dynamics of
disordered N-particies system with relaxation, while the second one describes statistical
properties of steric disordered spin chain system. Based on developed in both problems
constructions, the coefficient of polarizability related to collective orientational effects
was calculated. The Clausius-Mossotti equation for dielectric constant was generalized
on the micrometer space and nanosecond time scales,

1 Formulation of the problem

Let us consider the fundamental problem of applied physics, space-time modulation of di-
electric constant in some types of amorphous materials.

In this subsection we shall give a mathematical formulation for the dielectric constant,
where the generation of collective orientation effects is possible in the presence of standing
low electromagnetic field. A particular attention will be devoted to an investigation of
dispersion properties of dielectric permittivity function.

The starting point in our discussion will be the Clausius-Mossotti relation for dielectric
constant. It is known that in isotropic media (as well as in crystals of cubic symmet ry) the
dielectric constant is well described by the Clausius-Mossotti equat jon [1, 2, 3}

G 1 -t i'!_ 0
e+l 8 X Nuom, )
where N9 is the concentration of particles (electrons, atoms, ions, molecules) with given m
types of polarizability and aj), correspondingly are polarizability coefficients. [t follows from
this formula that the static dielectric constant €, depends on the polarizability properties
of particles as well as on their topological order. In the external field the homogeneity and
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isutropy of the medium is often lost. Then, it is expected that formula (1) will be applicable
after slight generalization.

The object of our investigation is solid state dielectrics of the amorphous silicon dioxide
a — 5i0; type. According to numerical ab initio simulations 4], the structure of this type
compound is well described by 3D random network FIG. 1.

FIG 1. Thestmﬁmofmarphomcﬂlmdhadde(a—&’iﬂzjhdmibed
by 3D random network with covalent bonds.
Every silicon vertex (gold spham)hudedgumdeurymgenmux{mdsphem) has 2 edges.

The red and brown lattice points in this figure correspond to different atoms, while
the links between them correspond to covalent bonds. The redistribution of charges in outer
electronic shells takes place because of the asymmetry of the bound atoms. Asa result, some
atoms acquire positive charge, while the others - the negative ones, Thus, a compounds of
this type may be considered as a disordered 3D system of rigid dipoles (hereinafter termed
as 31 disordered spin system, FIG. 2).
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FIG 2. The amorphous silicon dioxide (see FIG. 1.) may be represented as a 3D lattice
where by ane rigid dipole (spin) is randomly put in every lattice sell.

For description of amorphous media 3D Iattice with the lattice constant dy(T) =
{mo/po(T)}'* is used, where my is the molecule mass, py is the density and T is the tem-
perature. The lattice contains one random spin per elementary cell. Note that inside the
cell it has random direction as well as random location.

Supposc now that with the help of external electromagnetic filed a standing wave is
[ormed in the medium:

E(zi Eﬂl nl Allr '|°D} e E(:l.'; 8} = 2ED sin{tpu}oas(kz], Yo = mﬂ; (2}

where @y and fo are respectively the initial phase and time, 0 is the wave frequency,
¢ = 2m/A, and A, is the wavelength, the symbol g shows the parameters of standing wave
(controlling parameters) (Eo, 2, A,, @p). ;
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ﬁ(ﬂdo‘n) - Zi{r- = zlzn-a-(f— ﬂEh:U-" ﬂl. rﬁ ’u;. j;.':)‘ {3}
r il

where ['is 3D lattice vector, 7 is respectively the dipole moment of molecule. The second
equation in (3) contributes to the value of dipole moment (spin). Note, that th:. number of
:mcmmagimmmmqpem-ndmmmuhn_ ~ (do(T))~2, 0w being
polarizability of corresponding types with due regard for external field
and Bi. is the local field, i.e. the effective field that induces the polarization at the site
of an individual molecule. The contribution of each effect to the net dipole moment per
molecule is linear, that is actually verified by experiments. Under the action of external field
the polarization of different types arise in media. However, simple analysis shows that the
values of polarizability coefficients due to arientation effects essentially exceed the others.

Note that the coefficient of elastic orientational polarizability in amorphous media agp(l=
7) is a random function of cell location. 'I'hiifactilduejormdomoricmntlon of local field
strengths Ercll — 7 with respect to the external field E(z; g). Thercfore, all terms in the
right side of (1) are basically known and well studied in literature (see, e.g.. [1. 2. 3]) except
from those connected with the orientation effects.

The orientation effects have a collective nature and are characterized by average value of
random sum T agp(l — 7) (sum of random coefficients of orientational polarizability).

Multiplying both sides of the external field relation (3), we have:

P(7.8)E(z.8) = ~0U(F\8) = 3 nim [}; (= A Biac(= 7] E (i), g

where —3U(F,g) describes the potential energy of amorphous matter in the external field.
The statistical properties of medium in the direction of wave propagation will be considered
later.

Taking into account formula (4), one can obtain the following expression for the part of
potential cnergy of 3D spin system that is related with orientation eflects in the external

field:
8V, 8) = 3 Q= ) BT~ N E(; ). (5)
r
Let us separate a layer with volume V = L, x Ly x L, in the infinite crystal lattice,

where Lz ~ (A,) 3 do(T) and (Ly, Ls) = (20,00). It is casy to see that this volume is filled
with infinite number of L,-site random 1D steric spin chains FIG. 3.
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FIG 3. The steric 1D random spin chain system.

An important problem is now to calculate the mean value of the interaction potential
between the spin layer and the external field.
Formally the following expression may be written for that:

~8Uy, (LI, 8) = %:%{r -NEu(l-ME(zg), [ =0(..1) (6)

where —4U,,, (I, |, g) is the interaction potential between the 1D steric spin chain and ex-
ternal field. First, we take the mean value of the potential —4U/y (7, g) on (y, z) plane:

1 e | = 1=
olim,, 5 [ Va8 a8, = lim = [ 280 (L) S, = (BUr. (z:g):.

where Sy = Ly, x L, and (...); is the averaging over all possible stable steric 1D spin chain
configurations.

Taking into account the fact that the distribution of spins in (y,2) plane is random but
isutropic (see FIG. 4), it is simple to prove that in the limit of 5§, — oo it passes into the
full self-averaging of the spin system.
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FIG 4. The projection of 3D disordered spin system on the plane (,2).

[t means that we can use Birgoff ergodic hypothesis [5] and in the expression (6UL, (z,8))1
may change the integration by (y, z) plane on the integration by spin chain’s energy distri-

bution: 128Uz, (]2, £) 2(s; 2)de
(0UL,(z, &)1 = (UL, (e]z, g))e = == [ Z(;; g)de P

where —6UL, (e|z, g) shows the interaction potential energy between some 1D steric spin
chain with energy of £ and external field (2), and Z(e;g) denotes the energy distribution
function (partition function) of 1D steric spin chain configurations. The definition of distri-
bution function will be given in section III. Note that in (7) only the negative values of =
were taken into account, because only for these values the spin chains might be stable.
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' — g=*N-! is the concentration of 1D steric spin chains. As it follows from (10,
;h:::::haﬁabe field strength is small the orfentation correction vanishes. lu tfthw_mrda.
on wavelength scale (2) the external field creates alternating inhomogeneities with different
dielectric constants. These layers are stable on nanosecond scale At ~ lﬂ"‘“sccf 0.1ns.

Using (10) we can generalize the Clausius-Mossotti equation on the space-time scale of
standing wave taking into account the orientation effects:

(U, (. S_ML . (11)

ulg) =1 = 5 [Z ARk -
# =A(g), where AlR)=-g [,Z_:”:"" BN(E (% 8))s

() +2
Note that ¢, is the label of stationary dielectric constant.

9 The average interaction potential between 1D steric spin chain and ex-
ternal field

Considering the fact that the external field is low i.e. | B(te =) € |Broclle = 2)| = | Eimlle -
)|, we can expand the dipole angular momentum in a Taylor series:

Pl - 2) ~ 7% - 2) +0p(l— ), ()~ E(z:8), (‘12]

where [67z)| € [5°(2)], as well as B9 (z — ;) and 7%(z — i) are respectively the field
strength and dipole angular momentum of the molecule, located in the L-th cell i the
absence of the external field. When the coordinate x is outside of I-th cell, the field vanishes,
Their values inside the cell are constant. Based on the above discussion with due regard for
(6) for interaction potential ~8Up, (|z,g)) one can write the following relation:

Ls

Ll
~8U1, (elz,8)) = 3 7' — ) E(ig) + '2 8l - 2)E(z:8). (13)
#=0

ll-n
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. As in the absence of external field the spin system is not polarized, we conclude that the
first sum in (13) vanishes. In other words, the interaction potential has the following form:

U (elz.8) = 3 670 — 2Bz ). (19
=0
Nowtumtotbeemmionofmﬂmforahelbstwlcapincha.inwit.hmlnxationinsﬂ
spin Jattice in the external field. Remember that the interaction potential —8U;_(e|z,g)
(see (7) and (14) ) between 1D disordered spin chain and external field does not allow for
the relaxation with environmental spin chains. The allowance for the relaxation effects is
possible only after solution of the dynamical problem. The resulting interaction potential in
this case will becmnplmqthaimaginnyputofwbiahchnnctsﬂmthemlmﬁonpm
in the 3D lattice,
Taking into account the above considerations one can describe the quantum motion in
1D disordered spin chain by the stochastic Schrdinger equation (see for example [5]):

A 6UL, (elz,8) = Ae + ¥~ (d,) ¥, (15)

where
t=z/dy, A=2p/(Wdf), p=me/NV¥D, (d)?=d/dp,
# is & spin chain effective mass, N, is the number of particles (molecules) in the chain, 1
denote the natural parameter of evolution along the spin chain. In the cquation (15) the
interaction potential —4Up, (g|z, g) is a random complex function. Its detailed description
is given in what follows.
Substituting
u() = oxp( [ 2(¢)at), (16)

into (16) we obtain the following nonlinear complex stochastic differential equation (SDE)
(Langevin equation) [6, 7]:

S +E 4+ Me-V)+ M) =0, E(t) = 6(t) + id(t), =, =d=/dt, (17)
where
Ls Ls 4
> 7(l:— 2)E (z;8) = Y 65l — 2)E(z:8) = V + f(1). (18)
Le=0 1s=0

In formulas (17) and (18) we denoted by V' the mean value of the sum, and by f(t) its
complex random part. Based on an analysis of different polarization mechanisms in the spin
glass medium, it is concluded that under the influence of external field (2) with frequency
€1 ~ 10°/{z the main contribution is made by the elastic dipole orientation effect. Recall
that in this case the thermal polerization of dipole is not essential due to the large relaxation
time 7 ~ 10~* + 10~"sec [1], [8]. Note that the coefficient of elastic dipole polarization at
low external fields is determined by [9]:

agiplls — z) = A'l(po sin[A(l, — z]])’ = %ﬂ-dn’[ﬂ{l, - z)],

6p(le — 1) = adip(lz — z}g{z; g : (19}



where dil; — %) is the angle ¥
Seids, Alle) = P (la)Beulla) tﬂmmmmmwwmm

rwwmwmmw(m;mmmmmumgm
: aaplls — z) . Pein’[Ba — )| o
&hux"x]’ (l--l'n'l') E E...(l-lfh‘) 3 {

where 7 isthespingd-ntlmﬁminthe;ln lthvuymnllinlhtabommdhrm

10~ = 10 sec (see, eg., [1D- 7 i

i equation ith generalized mcﬁdwldelmrdlpolepotuha ity (19)

dui:‘b:h:hmlhnssl};:mdmmw&hhmmwﬂthmm
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‘hfofff;uﬁm the properties of random function f(t}. From relations {19) and

(20) it is easy to find the random strength:

inr Fﬁ'E" Ls
: —
i) = ____._11 :(mv ¢ ), &) = (1+cos(2ket) 3: cos 28(1 — 1),

3 -0)=B80—2), k= A\fapk, k= n}\2p. (22)

lftbephmﬂkhnmneomlydinﬁbuudintheinmﬂ [0.:rllorthemwdomfunctbu
E.wmwﬁwihelouawlngmnmmmdwmmﬂuion function:

E@) =0,  (EWER) =48(t - 1), (23)

For real and imaginary components of complex random function f (1) the following auto-
correlation functions [10] may be written:

(O = %[ﬁt‘—‘};ﬁ]’(—%’%f{m}e(m —apree-1), (@29
.p"Eg

(i) = %[l—-;%ﬁ]’(%}?:)’(ﬂmu'n = 2D'§(t - 1'), (25)

where f7(t) = Re/(t) and ['(t) = Imf(t). .
For further investigation, it is convenient to represent the complex equation (17) as a
system of two real equations:

400 =0+ Me—= V" + (1)) =0, (26)
04+ 200 + M=V + f(1)) =0, (27)

where f = dif, 0 = d;d, V" = ReV and V' = ImV.
Now the problem is to find the evolution equation for the conditional probability:

Q0. 9,110, B, to) = (5(0(0) = O(ta)AO(O) = 9(t0)))] g, _gp sty (28)
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. describing the probability that the trajectory (6 = 0(¢),9 = 9(z)) starting at the initial
moment of natural parameter ¢y from the point (6, 75), will be at an arbitrary moment ¢ in
the vicinity of point (6,7). Subject to SDE system (26), (27) the Fokker-Plank equation is
easily found (?] (see also [6]):

& &
R PR+ DT P - ViiS2 + oo — w22 g, (a9)
where @ = Q(z16,9;1).

Note, that the solution of equation (29) must satisfy the initial condition:

Q(elb, 9;1)|,_, = 6(6 — Go)5(9 — B), (30)

where initial phases f; and ¥y are equal to zero. More interesting for us from here on will
be the stationary limit of solution (29) clearly followed for values ¢ » At — 0O(1), that
is equivalent to condition £ — oo. In this case Eq. (29) is transformed to the following
slationary form:

7 , P
{rae+ D5
where @, = Q,(¢]6,9) = limy—o. Q(6,9,t) and ty, = N;.

The (31) is an elliptic differential equation, for which there are no real characteristics.
The solution of equation (31) must satisfy the boundary conditions:

= 0+ e V|2 4 290 - WV + wja.=0, (@

Ug=T2=0,  nj=@+0)", (32)

where n is the normal to curve S.

Now we can calculate the mean value of interaction potential between 1D spin chain with
energy ¢ and external field taking into account its relaxation in the 3D lattice.

Since in the stationary limit the interaction potential has a form;

5U ez, g)|M — 8U(£]8, ) = Ae + 6* — 9 — 269, (33)
(see (15) and (17)), we can find the mean value of interaction potential after averaging (33)
over the stationary distribution Q,(¢|6, 9):

+00 400
(0UL. (]2, 8))= = % f f [(%e + 62 — %) — 1260] Q. (e]6, 9) do a9, (34)

where R = [ [*22Q),(¢]6,9)d8d? denotes the normalization constant.

3 Statistical mechanics of the steric 1D random spin chain

Prior to turning to the calculation of effective stationary dielectric constant, two important
problems have to be solved. The first one is the calculation of partition function Z (e:g) fora
steric 1.D random spin chain with energy €, whereas the second one consists in determination
of the thickness of layers on the scale of this chain (i.e., the fragmentation of media on lavers
with different dielectric constants). :

4
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Ns Na = 3
H(Nag) = -3 Jiro) S8 + ’°$ ES, S=35 (35)
]

s is the distance between 1D spins S, and S (classical unit length
vectors), T s ils 1 part, subject to Gaussian distribution with zero mean \u!!.\e and
unit variance, Ji; is the nearest-neighbor interaction constant that depends on the distance
between spins. nwbepoduveormmmemmdﬁdu‘. being defined by means
of formulas (2).

Qur purpose now is to construct the energy distribution function of spin chains Z(5:g).
However, thedi!ﬁnﬂtyhueisthntheﬁmemleonwh!chthemﬁﬂiml study of system is
made. is very short (10~9sec = 0, Insec), while the characteristic thermal relaxation time
in amorphous media [1] is of the order Q7' ~ 107* + 10-%sec, where {1y is the frequency
of therma! Huctuations. This means that in our problem the temperature and related ther-
modynamical constructions become meaningless. Neverthcless, some structural similarity
between the gas and amorphous media is evident. In this case the steric 1D spin chain will
correspond to an atom in gas. Since in the equilibrium state the average value of energy per
atom in the gas is 3kT, the corresponding value in this case will be the energy of chain in
the equilibrium state (the energy of chain without the external field). However, the system
under study has a specific feature. The point is that the equilibrium state in gas is charac-
terized by one temperature, whereas the spin system in the equilibrium state can be at any
negative energy. These energies coincide with local minima of the non-perturbed Hamilto-
nian (12, 13]. In other words, in this case the phase space may be decomposed uniquely into
micro-canonical states associated with different thermodynamic equilibrium states [14].

The Hamiltonian (35) in the absence of external field can be rewritten in spherical coor-
dinate system as follows:

where ry, = li—Jjldo(T) +

Ns [
Hy(do(T), Nx) = 12 Jij(!‘u)(tﬂ%m Y, cos(¢ — @;) + sinyysin ), (36)
{ig)=1, ids

For détermination of loca! minimums onc has to solve the following algebraic equations:
oH X ’
0(8) = G- = 2 Julrig) (—sin vy cos vy con(@ — ¢5) + cosysin ¥) =0,
1 I=1

o

9, (0) = Ty

Ny
= - ; J.j(l‘u}ﬁﬂ“ m!%sin(éi - é.l) =0,



A. S. Gevorkyan, Ar. A. Gevorkyan 45

aH
if

where 6, = (v, ¢,) are angles of i-th spin (i is the polar and ¢; azimuthal angles), © =
(61,92....84, ) respectively describe the angular part of spin configuration. Nuw suppose
that the non-perturbed Hamiltonian for fixed averaged distance between spins dy(T") has n
local minima of function £;(dy(T’)), each of which corresponds the M; spin configurations
{©"}, where i = 0,1...M;. The number of all configurations that relates to the local
equilibrium states My = 3)L; M;. Accordingly, the weight of every equilibrium state may
be defined by formulas:

Nl
®,,(0) = =E %{mw cus ;5 cos(gy — ;) +sin¢‘m\nw,) =0, (37)

N
Py(e5:do(T)) = My /My, EP;{Q; do(T)) = 1. (38)

Thus, we propose o use the following statistical weight instead of the canonical distri-
bution at multi-equilibrium state:

W;(H;g) = Py(esdo(1)) m{—% : s

where £; is the energy of spin chain in the absence of external field. Remember, that the
multicanonical ensemble was introduced in the [15] as an approach to simulate a strong
first-order phase transitions. :

Now, taking into account (36)-(39), the expression for energy distribution function for
N; spin system (this expression can be explained es & local partition function in the afore-
mentioned multicanonical thermodynamics) is written as

Z(£;8,9) = P(e; do(T)) f % se %’:— m{—%‘-})—} (40)

where q describes the set of random distances 7;; and random angles ;, accordingly df), is
an element of solid angle {); containing the unit vector 5.

The energy distribution function of spin chain may be essentially simplified on assumption
that in Hamiltonian (35) only Lhe nearest-neighboring spins interact, i.e. Jiy = 0if|j—i] > 2.
In this case the multidimensional integral can be taken exactly as follows. The integration
starts from the end of the chain, When integrating over df); we take the direction of the
vector (Jii—1yS; + 7°E;) es a polar axis. Then it is easy to obtain the following expression:

Ns 1 ' y Na sinh K.
Z(e;g,d) = P(E,dq(ﬂ);[-ll[ij;w(p{ﬁ’j cos 1} siny M] = P(g;dp(T)) U _Kf f
K= %[J?-'—:)r + 20" By Jy-1ys cos By + (PO)QE?]' (4)

where f3; is the random angle between the vectors S, and E. Assuming that the distribution
of spin S, around field F; direction s isotropic, one can perform an integration over the angle
Bi. After simple integration with the help of formula [16]:

0 (nayk
Ri(a:):j?—d::lnlzl+£%2—, a#0,
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In |1
Hamiltonian of the type (35), where spins are ouwtk!wdmdmuhrlﬂlke, but the
disorder is introduced by means of suitable distribution W (Jg-1) of exchange bonds. A

standard choice is the Gaussian Edwards-Anderson model [17):
1 { U]i—ni - Jo]’}

W (Jg-1) = m‘”"’ T 2(AS-1n)?

Jo= Ut (A1) = (Jicandaw = {183 (43)

Remembuzha![onhhmodelhandﬁl‘pmmindepeﬁdmtmmemmdmkd
with spin number N as:

(=13 ew = Jo X N L AJpay Ny R, (44)
to ensure a sensible thermodynamic limit. Eq.s (43) and (44) ()4 describe the averaging

procedure. Now the averaging of function (42) over the distribution (43) is made to find the
partition function at some equilibrium energy & of disordered spin chain:

NI
Zte:g) = Pledo(T)(Z(e. J: @)y (2(6,i8))s = I1 f AW (S )G e, Ji B
=l

Gle, Jig) = h—f—‘[[sf(a.- +a)) — Ei(=b — a)} - {Ei(b; — @) — Fi(=bi + a)}|-
(45)
When an allowance is made for the facts that on the scale of half-wavelength N, 3 1 and

(=, J;; g) is an analytical function for computation of integrals in partial partition function
(43), the Laplace asymptotic method [18] may be used:

N.
2(e,8) = Pledo) I é[{seu{ + ) — Bi(=#0 — )} - {Bi} - o)
—mi-g )], d=laRd, #=([Br0E] @0

Zlz,g) — Ple:do(T)) takes place.
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In mdogymwmmﬁmdthamodymmim,theﬂebnholt:typeﬁumwfwamic
ledmspinchﬂnmmwbespuﬂﬁdathehulequiﬁhimauhwithmm'e.
In this case the free energy per one spin in the equilibrium state is defined as:

F(e;g) =-Nl. InZ(z;g). (47)

Allmmplcthumodymmlcpmpwﬂuo!m1bmndmapinnhninmaybeob-
tained by means of free energy derivatives. Simple examination of the expression for free
energy shows thatfmlowﬁaldsE;NlfN.theﬁueenmofspinaymiuessemiauy
changed. Moreover the multicanonical thermodynamic allows first-order phase transitions
in the 10 disordered spin-glass model for low external field which is very important.

Particularly, the order parameter for a disordered spin-glass medium is described by
Z:pf and in the absence of external field on the scale of standing wave period it is equal
I‘.ozem,whmp{hthemjecﬁmofspinonthedimcthnofutanﬂﬁeldpmm&ﬁon. It
becomes non-zero for a weak external field E; ~ |EZ| due to the symmetry breaking. In this
case the nanoparticles (spin chains) with the super spins (macropolarizations) are generated
on the microscale space and nanoscale time.

4 Dielectric constant of neighboring layers

Now we will examine the question of dividing the dielectric medium into regions with ex-
tremely different polarizations. Remember that in the absence of external field the polarized
medium has zero macroscopic polarization on the space scale 104 + 10~5cm.

When the external field in the medium (on the wavelength scale of standing electric
field) is turned on the orientation effects are amplified and, as a result, the initiation of
macroscopic polarization proves possible. Assuming that the collective orientation effects
induced in regions of media, where the voltage of external field E is of the order of critical
value E, we can divide the wavelength scale of external field into four regions. In the first
and third regions the macroscopic polarization of medium is zero, whereas in the second and
forth regions it is different from zero (see FIG. 5). Note that the height of these layers may
be computed with the help of numerical experiments.

FIG 5. The regions with different polarizations and corresponding
different dielectric constants on the single wavelength A, scale,

Now we may calculate the stationary dielectric constant at the half-wavelength scale of
external electromagnetic field in time intervals At < 21/, -

A
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Using (11), we ob 1+2A(g) s

=8 = T A

he contribution from the elastic dipole
Rmbﬂ’.thubaeuhawummwmtt - e

ion only. hhw,\‘toseﬂhntbemuﬂml“d (48) has nc mhnm

i of the potential increment (34). The important

of didu-u'l: constants in the neighboring layers. Taking into

3A(®)
Seu() = €alg) — ul0) = (1 = &) + s (49)

Mmummmmdmmmdmmm (49) is near to the
critical vale of external field E,whunheﬁraudupummn which can have extremely
highpmﬁhuhlphceinthuyﬂm

5 Concluding remarks

In the present article a new microscopic approach has been developed for studying the
stationary dielectric constant on a micrometer space and nanosecond time

electromagnetic field is modelled as a 3D spin glass system under the influence of external
feld. Note that all general changes of properties of media take place in the wavelength scale
of external ficld. This aim in view we have investigated in detail the layer of medium that
consisted of disordered 1D spin chains with the length of the order of wavelength. Taking
into account the fact that in infinite (z,y) plane the distribution of spin chains is isotropic
we can use the Birgofll ergodic hypothesis (see (6)-(7)) and conditionally reduce the initial
3D spin glass problem to 10+ 1D problem. It means that it becomes possible to investigate
two 1D problems separately, only in this case the parameters of the first 1D problem ought
to be taken into account during the solution of the second 1 problem.

In this work we adduced all formal definitions made with a view to allow for the contri-
bution of orientation effects in calculation of stationary and frequency-depending dielectric
constants.

The first 1 problem is related to one-dimensional disordered N-particle quantum system
with relaxation. The investigation of motion in this system takes place in the framework
of complex Langevin-Schrodinger type SDE (15) or (17), which can be transformed to 21
system of nonlinear Langevin type SDE (26)-(27).

For probability distribution of interaction potential in 1D spin chain with definite energies
+ and external standing electromagnetic wave the Fokker-Plank equation (29) is obtained
using the white noise model for stochastic forces and the system of SDE (26)-(27). In
the long-range distance limit [ — 20, the probability distribution Q(e]0,9: 1) tends to its
stationary limit Q,(¢/6, /) that satisfies the elliptic differential equation (31).

The second 10 problem includes the ealenlation of 10 random spin chain system energy
distribution Z{z, g) in an external field.

To do this, the classical spin-glass Heisenberg type Hamiltonian is investigated (35).
At the first step, the non-perturbed Hamiltonian (36) is used and the system of algebraic
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equations (37) is found for computation of sll possible stable spin configurations on the
spin chain scale. Then, the statistic weight Py(24;do(T)) for certain energies £; of stable
non-perturbed spin chain is found simply by means of formula (38). Using formulse (38)-
(43), the partition function Z(s;g), that gives the energy distribution in the spin chain
system after introduction of external field, is defined (44). The Helmhoitz free energy (47)
'mr:onslrucl.edandit'mahawnthnthelﬂmdmnspinchninsynemhmbjecwdtoamk
external field E; and the order E.* ~ 1/N, can be drastically changed (see FIG. 6), and
morrsowrnﬁrsto:derphuemnsttianmaminthaayatunatthmmndjﬁons.

The mean value of complex interaction potential (8UL,(z,g))=1 between steric 1D spin
chain and external field is found from formula (7) taking into account expressions (38) and
(47). An sveraging potential is used for computation of polarizability coefficients related
with the orientation effects (9) and correspondingly for generalization of Clausius- Mossotti
equation (11). Remember that Eq. (11) makes sense only on the microscale space and
nancscale time. I is eagy to see that the value of stationary dielectric constant strongly
depends on initial electrostatic dielectric constant €s of media. In particular, it may be
shown that in the spin glass media with static dielectric constants €; < 4 under Lhe exlernal
field the value of stationary dielectric constant can be changed no more than 3-4 times. The
analysis in case of ¢, > 4 shows that the value of Re(A(g)) — 1 and correspondingly the
stationary dielectric constant can be a complex function €:(g) depending on parameters of
external field g. Moreover, for a set of some parameters of weak external field one can assert
that ¢,,(g) has a large imaginary part (see (49)).

Obviously, in the vicinity of this value critical effects take: place. In this case owing
to Lheauowanoeforrelmtionpmminthelammthew«nbecomesordemdandis
characterized by the macroscopic classical polarization.

Finally, it is important to note that in this work an original mathematical approach for
reducing the problem of dynamical 3D disordered spin system in Lhe external field to the two
conditionally separate 1D problems is developed. This scheme may be used for elaboration of
new highly effective parallel algorithms that is very important for systematic investigations
of the above problem by means of numerical simulation method.

6 Acknowledgments

This work was partially supported by Armenian and Taiwan Science Research Councils. AG
is also thankful for ISTC grant N-655 and INTAS grant N 03-51-4000 for partial support.

References
(1] Ch. Kittel, Introduction to Solid State Physics, J. Wiley and sons, Inc., New York,
London, Sydney, Toronto, 1962.
[2] D. J. Griffith, Introduction to Electrodynamics, Prentic Hall, New Jersy, 192 (1989),
[3] R. Becker, Elgctmmngnetic Fields and Interactions, Dover, New York, 95 ( 1972).
[4] Y. Tu, J. Tersoff and G. Grinstein, Phys. Rev. Lett., 81, 4899 (1998).

[5] I. M. Lifshits, S. A. Gredeskul, L. A. Pastur, Introduction to the theory of disordered
systems, Moscow, Nauka, (in Russian) 1982, :

#



=0 \,ewawmwmmsmmvmwmmd External Field

. AS Gevorkyan and A. G. Grigoryan, AMS/ 1P Studies in Adv. Math-

A s, 13, 81 (1999). e s
; 3 G jn-Kun Hu, t . on vais,
A :@ﬁﬂmﬁﬁ?a Barsegian et al, 164 (2004).
1§ L. Berthier and A. P. Young, Time and length scales in spin glass, arXivicond-
" aat/0310721 ¥1 30 Oct 2008.
9] P.V. Paviov, A. F. Khokhlo,
(in Russian} 2000.

1o G. A. Kom and T. M. Korn, Mathematical Handbook, for scientist and engineers,

" \cGraw-Hill Book Company, New York, 1968.

1] W. H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932).

(12! K. Binder and A.P. Young, Rev. Mod. Physics, 58, 4, 801 (1986).

[13] Ch. Dasgurta, Shang-keng Ma, and Chin-Kun Hu, Phys. Rev. B 20, 3837 (1979).

{14] J. L. van Hemmen, In Proceedings of the Heidelberg Coloquium on Spin Glasses, ed. by
1. L van Hemmen and L. Morgenstern, Lecture Notes in Physics 192, (Spinger, Berlin,
1983).

(15] B. A. Berg and T. Neuhaus,, Phys. Rev. Lett. 68, 9 (1992).

[16] M. Abramowitz and 1. Stegun, Handbook of mathematical functions, Nat. Bureau of
standards Applied Mathematics Series-55, 1964.

[17] 8. F. Edwards and P. W. Anderson, J. Phys. F 9, 965 (1975).

(18] M. V. Fedoryuk, Method of saddle-point, Moscow, Nauka, (in Russian) 1977.

Solid State Physics, High School Book Company, Moscow,

Lop fwpbiwwnhyuiul dnunbkignui squpquynpud iD
uhGwjhG hwdwijupgh hudwp wpwnwphl quwh wqhignipyul wwl:
Yuumghniu-Unumnph hunjwupiwl plnhwGpugnuip

(L U. Qlnpguui LW L QLnpgpul
Wiithndunnd

Unpin plbnwgiwip dnjbynyibp wwpaudwynn nhtiElunphl dhewdwyptipp Guptuwgyoud
t apubu sywpquiapdwd 3D wwhwhl hwdwhupg: Qupgugdud b Shypnulinughly
wjwmnlbmugmd pubgmi tlhumpnﬂmqﬂpuml]mﬁ wihph mmpmbw-dmﬁmﬁml;nu[ﬂi -
plipnipjwl pw win hwdwlwpgh YhGwiugpuiwi hwnlmpyniltpp nunudtwohplm
hwdwp:  Oquuugnpdywd t - Ahpandbh tpqnnhly  hhwoptiqp L ulgpiwhwd "D
ughliughG fulnhpp, wpunuphl tlhllmpnllmqﬂbumhmﬁ quznp wwpwddwi nunpunip
6uuqmm4m? t bpynt wwjdwlwlwinpbi wilpo 1D fubnhpGuph: UWmughtl utinhpp
djwpugpmd L jupgugupwd N-dwuljlpulh hwdadupgh ulnhpg hwzlh wnbbm)
dhpwiguyph abpuluwghwl, wd ntwpmd bpp pypap Gywmugpnud L uupwdwljud
uhliwght npwijh YpSwlpugpuljul hwwnynupymditpp: Anitytipn] bplyne JulinhpGpmd
qupquigywd GuongqwdpGbph qpu hwpwd L Judpuhi nupoppdwdngpwi tplaygpnyg
wuydwwynpdud pltinugudnipjub gnpdwihgp: Upumghno-Unuunumnph hunjiuupnuip
gﬂtgphﬁ;::gl;q:mumwmmﬁh hwdwp pinhwlipogud b wnwpudw-dwiuiwljwhi (iwlindwu-
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