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Abstract

An interval edge (¢, h)—coloring lhezq.)dnyaphchnwnpamloﬁnsa*‘f
«luuolGu-ithwhil.!.....tawhthnuhamdsedchmmbr h
i=1,2 .tmdlhemkl!dednlw'ilhuchmvnthfythemulllm

......

dg(v) =1 < maxS(v,a) - minS (v,0) Sdg(v) +h -1

where do(v) is the degree of a vertex v and S(v,a) is the set of colors of
edges incident with v.lnthkpuperwinmipumcpmpaﬁuofinlervdedgr
(¢, h)—colorings.

1. Introduction.

The graph coloring problems play a crucial role in Discrete Mathematics, The reason
for that are the fact of existence of many problems in Discrete Mathematics which can be
formulated as graph coloring problems (factorization problems, problems of Ramsey theory,
etc.) and the tight relationship between graph coloring problems and scheduling of various
{imetables. One of the aspects of the problems of scheduling theory is the construction of
timetables without “gaps". For studying the coloring problems corresponding to ones of
constructing a timetable without a “gap”, a definition of interval edge coloring of 8 graph
was introduced [1]. But in real problems the requirement of absence of “gaps”, usually, is
replaced by a more weak condition, that is one of existence of no more than one or wo
"gaps”. Therefore, it is expedient to consider not only the interval edge colorings but also
the colorings which are “close” to them.

The goal of this investigation is the study of a generalization of interval edge colorings of
graphs, corresponding to the problems of existence and construction of tunetabies with no
more than h “gaps* (h € Z4).

All graphs considered in this paper are undirected and have no loops or multiple edges.
Let V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively. The
degree of a vertex v € V(G) is denoted by dg(v), the maximum degree of o vertex ol G - by
A€}, and the chromatic index of G - by X/(G). If a is a proper edge coloring of the graph
G, then ale) denotes the color of an edge ¢ € E(G) in the coloring a. For a proper edge
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coloring o of the graph G and for any v € V(G) we denote by S(v,a) the set of colors of
edges incident with v.

Let R S VIG), h € Z..An interval edge (R, t, h)—coloring of a graph G is a proper
m]a;jngaofedgmotc'withwlorsl.z,....tmchthna:lemtoneedgenfciswloredby
a,.=1,2,....tkndthemlorxofadguinddmtwithenchmueﬂuﬂsfytheoonditian

dg(v) — 1 < max S (v,a) — min § (v,a) < do(v) +h - 1.
An interval edge (t, h)—coloring of G is an intervel edge (V(G),t, h)—coloring of G.

For h € Z, and t 2 1 let A" denote the set of graphs which have an interval edge
(t, h)—coloring, and assume: A =}le:\? (M =N [2]). Note that \° CNTCN3C ...,

ForngathEN"thehanmdmmnaoft.forwhﬂGEN}'.mdenomdby
w(G,h) and W(G, h), respectively (w(G,0) = w(G), W(G,0) = W(G) [2)).
Non-defined conceptions and notations can be found in [3, 4, 5].

2. Some upper bounds for W (G, h).

Theorem 1. Let G be a connected graph and G € N, where h € Z. Then
< =
W(G,h) <1+ %'EEP, (dg(v) +h—1),

where P is the set of all simple paths of G.

Proof. Consider an interval edge (W (G, h), h) —coloring a of G. Let a(e) =1, a(¢') =
W(G,h), e = (u1,u3), € = (v1,v5). Without loss of generality we may assume that a simple
path P joining e with ¢’ joins u; with v;, where

P= (zltellzziunl" <1 Ty Gy Tigely oo o l"‘hcl':zb-‘l-l} I = Uy Tl =Wy

Note that

ale;) < dg(z;) + h,
a(e)) < afe,) +dg(zs) +h—1,

...........................

...........................

W(G,h) = a(¢) = a (@1, 1)) < aler) + do(zas) +h — 1.
Adding these inequalities we obtain
W(G,h) < :)_E:da(z;] — k4 (k+1)h
From that we llmw
1
WGHST+E (Gole) +h-1 <1+ & (@ole) +h-1).

#
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proof i complete.
?W?MGRIMMMGG,\a,tthZ..m

W(G,h) < (d(G) + NAG)+h=1+1

-md(G}h!thadG. Sty
Remark 1. Nmthnthhuunddmlhmnrm[ﬁlmcw_ e
Theorem 2. mcunmmdupnmmphmaem, where h € &+

W(G.h) S d(G)A(G) +h— N+

where d(G) is the di of G. oA
Proof. {c('nmmmm edge (W(G. h), h) —coloring a of G. Let ale) = 1. _mrl.‘ 5
W(G.h), € = (u1,m), & = (v, ). Let By be the shortest path joining % with v, ¢ “;d-_'
,'el.z.wruthammmﬂ,.i-1.2.1:1.2.\\'imw-dwlg
‘we may assume that P’ joins u, with v Now consider the path Pa. "mmhuCh
isqunltothehnglhof?thenchumnddcydebuuhhhimpouibkbemm l"mn
bipartite. Consequently Py, is longer than P, Therefore the length of P’ is not greater t
d(G) - 1. Let

P 'lrhh.l‘:.qu----Ii.h.:i.n.-.-.h.chs“;}.whexe 7, = Uy, Test = N1-

Note that

a{(znzier) €1+ :_!::l(dct:,l+h~—l).i= ¥ Y
From that and k < d(G)—lwobuiu
k+l
W(G.K) = a(€) = a((zr, ) 1+ T (do(@) +h-1 < 1+ d(G)AG) +h —1).

The proof is complete.
Remark 2. Note that the bound of theorem 2 is sharp for complete bipartite graphs
Kpn.n 6] in case b = 0.

3. Exact values of w (G, 1) and W (G,1).

In the following we will determine w (G, 1) and W (G, 1) for some classes of graphs.

Lemma. Let G be a regular graph.

1)Ifhe N then G € N* and w (G, h) = X'(G).

2) fw(G,1) <t €W (G,1) then GeN}.

Proof. From the result of [4] it follows that 1) holds.

Let us prove 2).

It is clear that w(G,1) = X(G). M1t = ¥(G) +1 then interval edge
(\'(G) + 1,1) —coloring can be obtained from interval edge ('(G), 1) —coloring by recoloring
one edge of color 1 with color x/(G)+1. 1ft = \'(G)+2 then interval edge (t = 1, 1) —coloring
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ran be obtained from interval edge (t, 1) —coloring o by recoloring each edge (u,v) having
color ¢ with color min (min S (u, @), min S (v,a)) - 1.

Proposition 1. Forn > 3

1) Ca €N,

2) w(Ca, 1) = X'(Cy),

3) W(Ca,1) =n,

4) fw(Cy,1) <t < W (G, 1) then Cy € A}

Proof. 1) and 2) follow from lernma.

Let us prove 3),

It is clear that W (C,,, 1) < |E(C,)| =n.

Now we show that W (C,,, 1) > n.

Let V(Cn) = {v1, 03 .., 0n} and  E(Cp) = {(viy vis1) | 1< § < n =1} U{(y,0,)}.

Define a colori aoftheedgmof!.hegmphc,.inthefolhwingw:

1) for i=1,.., [§] a((vvir)) =2i—1;

2) for 5= (8] +1.n =1 al(vs,0541)) =2(n—j+1);

3) (v, 1)) = 2.

It is not difficult to see that « is an interval edge (n, 1)—coloring of the graph C,.

4) follows from lemma.

The proof is complete.

Proposition 2. Foranyne N

1) Kun €N,

2) w(Kpn,1) =n,

n, fn=1,
) W(Keml) = { 2n, ifn=2,
2n+1, ifn>3,

1) if w(Knp,1) St < W (Kpp, 1) then K, , ENL

Proof. 1) and 2) follow from lemma.

Let us prove 3).

Clearly, 3) is true for the case n < 2.

Assume that n > 3.

Since d (Ky,») = 2 and A(K,,,) = n then from theorem 2 we have W (Knpn 1) <2n+1.

Now we show that for n > 3 W (K, ,,1) > 2n + 1.

Let V(Kn.n} — {“11 U2y veey Un,y Vg, V3, mn”n} and

E(Knn) = {(uiyvy)| 1< i<, 1< j < ).

Define a coloring a of the edges of the graph K in the following way:

1) a((w,m)) =1, a((ug, ) = 2, a((uz,v)) = 3;

Ylori=1,2.,n j=1,2.,n4<i+j< -2 a((w,v;))=i+j:

3) a((u’“”’l-'l}) =2n— 1! a((u'll—]lull}) = 2“: a((“’h”’l)} =2n+1

It is not difficult to see that a is an interval edge (2n + 1, 1)—coloring of the graph K, ,..

4) follows from lemma.

The proof is complete.

Remark 3. From proposition 2 it follows that the bound of theorem 2 is sharp for
complete bipartite‘graphs K, , in case h = 1.

Proposition 3. Forn > 2

1) Ky € N,

2) w (K, 1) = X'(Kn),

*
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3 “.[Km l) =2 -3,

l]i.fwtK..H5‘.‘5“'(&..!)&015’.6.&?.

Proof. 1) and 2) follow from lemma.

Let us prove 3).

First we show that forn > 2 W (Ka.1) 220 -3, 1 bl
Let V(Ka) = {v1.v2 o ta} and B(Ka) = {(var) | w € V(Ka), €V (Ka)i ¥ :
Narndeﬁumedgemluhscn{thnmx..

Fori=12.,nand j=12..m where i # J, we set:

al(vny)) =i+ji-2

It isnotdiﬁcultmmlhﬂahmtntunlda{h—s.l)-—mbdnaoﬂhl‘ﬂ‘ph Ko
ﬁmmﬂnywhm“'(x..l) <2n-1

It is casy to see that W(K.1)<h-2

Now we show that W (Ka1) €2n-3.

Clearly. the statement is true for the case n < 4.

Assume that n 2 5.
Suppmet.hal.ahuhﬁwvulu.[w(?n-ﬂ.l]-mh‘hgdtkp&phh’..

Let 1, € V(K,,) and min§ (v, ) = 1.

Case 1: max S (v.a)=n—1

(‘lenrl_\'.withomhndgmanlisywmnymumethn

a (i 1)) < @ (Vg B)) <> <@ ((tigy ) < --- <@ ()8

where a ((ve, ) =k k=1,2,...,n~ ; 1R

It is easy to see that for k = 1,2,...,n =2 maxS(n,a) < 2n — 3.Therefore
max $ (vy,-..0) < 2n — 3 and the proof of case 1 is complete.

Case 2: max S (v, @) =n.

(i) (n—1) € {1.2,....n}\ S (v, ).

Without loss of generality we may assume that

o (s 00) < 0 (Vi ) < -+ < @ (v ) <+ < { (Vlr¥i))

where a ((tig, ) = K, k=1,2,...,n~2,and a (v th-,)) = 2
It is easy to see that for k = 1,2,...,n - 2 maxS(y,,a) £ 2n - 3. Therefore
max S (v, a) < 2n — 3 and the proof of case 2(i) is complete.

(i) (n = 1) € {1,2,...,n} \ S (vig, )
Without loss of generality we may assume that

a (Vg vy)) < <@ ((v.-..v,,,_,)) <a((Ugy)) < <a ((u,,.v.v,)).
where [ € {2,3,...,n—2} and a((vi,v)) =k, k = 1,000 = 1, a((vgvy) = k+ 1,

k=1..., n

-1,
It is easy to see that o ((1'1_;. Viny)) =2n-2unda ((w,.w__,)) =, a (gv...v...n)) 7
n - 1.Let v, be a vertex, which is t with edge of color 2, m # 0,1,n ,n, Consider

the edges (tim, Vi) and (tim Vi) Clearly, max $ (v, @) < 1+ 1.Therefore either
max S (u,—__,.u) < 2n—3 or max§ (u.._,_,.n] < 2n — 3, which is a contradiction.
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4) follows from lemma.

The proof is complete.

Figure 1.
Proposition 4. If P is the Petersen graph. Then:
1) PeN;
2)w(P1)=4;
3) W(P1) =8,

4)ifw(P,1) St <W(P,1) then P A].

Proof. 1) and 2) follow from lemma.

Let us prove 3).

From Figure 1. we have W (P,1) > 8.

Since d (P) = 2 and A(P) = 3 then from corollary we have W (P, 1) < 10.

Now we show that W (P, 1) < 8.

It is easy to see that W (P,1) < 9.

Suppose that a is an interval edge (9, 1) —coloring of the graph P.

Let V{P) = {uy, Uz, Uy, Uy, Us, V1, V2, V3, Uy, W} and

E(P) = {(w,u), (1, ug) , (us, u), (‘R-“GJ ' (ulluﬁ) (1, 8) , (v, vg) , (va, ), (va.vs),

(va, v5) , (u1,1) , (g, v9) , (us, v3) , (g, v4) , (s, v5) } .

Without loss of generality we may assume that a ((u;, u;)) = 9.

Case 1: a ((ug, vg)) = 1.

Clearly, either ﬂ'({ﬂhﬂ‘)} =1, a((uilu’b}) = 4, a((us, ug)) = 6, a((us,us)) = 3 or
a ((u,us)) = 6, a ((u, us)) = 3, a ((uz,us)) =7, & ((us, ug)) = 4.

(i) a((w1, us)) = 7, @ ((w, us)) = 4, & ((uz, us)) = 6, & ((ug, uq)) = 3.

It is not difficult to check that a((uz,v)) = 7, a((va,vs)) = 4, @ ((u1.v1)) = 6 and
a ((v;,%)) = 3.Hence we have

1) either a(("l-"ﬂ)} =4, 0‘({1‘3. US}J =5or ﬂ({f-’hﬂl}) =35, a((“ﬂruS)J =4,

2) cither a ((vg, vs)) = 5, o ((us, vs)) = 6 or a ((v3, v5)) = 6, & ((us,v5)) = 5.

From 1) and 2) we have either max S (vs, @) = 6 or min 5 (vs, &) = 4 und the proof of
case 1(i) is complete, i

(i) e ((w1, us)) = 6, & ((u4, us)) = 3, & ((uz, us)) = 7, o ((ug, wy)) = 4. -

This case is considered analogous to case 1(i).

Case 2: a((v,v5)) = 1.

Clearly, cither o ((u,us)) = 7, a((us,vs)) = 4, a((uz, 1)) = 6, a((vg,v5)) = 3 or
a ((u1,u5)) = 6, o ((us, v5)) = 3, & ((ug, 1)) =7, @ ((va, vs)) = 4. .
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(i) a (v us)) = T, af(us.s)) =4 a((uzv2) =6, a((exws)) = &

it is not dificult to check that a((uzug) = T, a((us.w)) =& al
allvy,vy)) = 3. Hence we have

1) either a((v.vd)) =4 afl(va. m}};- Sora (E:,.r‘)ln- ssu u[v;. l'.ll‘:; .:.6

2) either a ((ug,ua)) = 6 a ({1 us)) =5 or & {{us. W)} = , o ((uay usi) = >

From 1) .n{é 2) we have either max S (w,a) = 6 or minS{vs.a) = 4 and the proof of
case 2{i) is complete.

(i) @ ((uy, us)) = 6, @ ((us,vs)) =3, al{ug, o)) =T, a((vmvs)) = 4

This case is considered analogous to case 2(i).

4) follows from lemma.

The proof is complete.

(u,t)) = S and
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Uithnthnud
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