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On Cyclically Continuous Edge Colorings of Trees

Abstract

A cyclically continuous edge coloring of a graph is defined. For an arbitrary uw_!hﬂf
Md&kdﬁuhpmedudnﬂpadhkmmhmch!nsuhnﬂunw

are found.

We consider finite, undirected graphs without loops or multiple edges [1]. Let V(G and
E(G) denote the sets of vertices and edges of a graph G, respectively. If v € V(G) then let
de:{r) denote the degree of a vertex v in a graph G. For a graph G let A(G) be the greatest
degree of a vertex of G, Y'(G) be the chromatic index of G |2} The set of edges of G incident
to a vertex T € V(G) is denoted by Jo.(z). The set of vertices of G adjacent to a vertex
£ € VIG) is denoted by Ja(%)-

Let plz,y) denote the distance between the vertices = € V(G) and y € V(G). Fora
vertex o € V(G) and 15 C V(G) set:

plzo, Vo) = min p(zo. ).

Non-defined terms and concepts can be found in [1, 3].

The set of positive integers is denoted by N, the cardinality of an arbitrary finite set A
is denoted by |Al. If D is a finite non-empty subset of N then let I(D) and L(D) denote
the least and the greatest element of D, respectively. A non-empty finite subset [ of N is
referred as interval if (D) < t < L(D), t € N implies that t € D. An interval D is called
h-interval if |D| = h. An interval D is denoted by Int(g,h) if 1(D) = q,|D]| = h.

For ¥t € N and arbitrary iy, iz satisfying the conditions 1 €y <, 1 S =1, define the
sets inteyes ((iy, i), 1), inteyey (i, 12, ], inteyea((iy, 2), 1), inteyea|(ir, i), t], and the number
dif((is,ia), 1) as follows:

inteyey|(iy, i2), 1] = Int(min(iy, i), max(iy, ia) - min(iy, ia) + 1),
inteyey (i1, i2). 1) = inteyes[(iy, d2), N({11 } U {821
inteyea((iv, i2),t) = Int(1, t)\inteyar[(ir, i), 1}
inteyea|(iy, i2), 1] = Int(1, O\inteyer (i, 12), 1),
dif({ir, i), t) = min(lenteye[(ir, i2), 1]l [inteyes|(iy,ia), t)]) — 1.

A non-empty set M C N is called t-cyclic interval if there are iy, iz, Jo, ! withl <4 <1,
1 < ig <1, jo € {1,2}, such that M = inteyeg|(ir, da), ).
A function ¢ : E(G) — Int(1,1) is referred as a proper edge t-coloring of a graph ¢/ il
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1) for any adjacent edges e; € E(G),e; € E(C) ple;) # wles),

2}bruchi,Isist.thmiseeE(G)mchthntp(s)=i.

If ¢ Is & proper edge t-coloring of a graph G and Ey C E(G) then pg, = {p(e)/e € E;}.

A proper edge Lcoloring  of & graph G is called interval t-coloring of G [4] if for
vz € V(G) the set @y, (2 is & dg(z)-interval, Let N, ¢ dencte the set of graphs, for which
there js an interval (-coloring, and assume:

Ny = ‘léll-*\ﬁ;.c-

For G € N, let w,,(G) and Wj,(G) be the least and the greatest possible value of f.
respectively, for which G € Nj, ;.

Apropa‘edget-mlmingqaofathismlhdcycﬁeaﬂyemﬁnmbmhﬂngofa
graph G if for ¥z € V(G) the set gy, () is a tcyclic interval. Let AV}, denote the set of

graphs, for which therelsncydkallymnﬁnunuﬂ-wlm-ing,andume.
NME}ZJJJVMJ.

For G € Nj,let w),(G) and W,(G) be the least and the greatest possible value of ¢
respectively, for which G € N, ;.

[tinclenrthn.tnnintervult—mlnﬂngofamphciaacyc]lcdlyconﬁmoust-coloﬁngof
a graph G. This implies that for ¥t € N N, € Ny, and Ny, C Nj,. It is also clear that
for ¥G € N, the following inequalities are true: ;

A(G) £ X(G) < sy (G) < 1, (G) < Wy, (G) < Wi, (G) < |E(G)].

For a tree D, with V(D) = {by, ..., b,}, p = 1, let P(b;, bs) be the simple path connecting
the vertices b; and by, V.P(by, b;) and EP (b, b;) be the sets of vertices and edges of this path,
respectively, 1 €i < p, 1< j < p. Define:

indV P(by, bj) = V.P(b, by)\({b:} U {b5});
P(by,by) = VP(b, bs) U {mvti'»( e Jou(2));

Ji j : i

EP(b‘.b,) if‘l'anP(bi,bj) =
1<i<p l<j<p

Assume:

M(D TP(by, by)).
(D)= 1?;-”.&;,‘ (B3, by)]

it

1<j<yp
Theorem 1 [5]. Let D be a tree. Then 4!
DEN, * " A Ll &)
2) wy,(G) = A(G), {' . - . .
3) Wy, (G) = M(D), \, S ,4;-'-;{'

1) if wy(G)<t< WAI{G)I then D EM\;.!- "f'?'hf.,f. . 2 =
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P uu;.m.u.tnzmuu-mﬁcmﬂdb"i"5’*""

.U,ﬁ.ﬂ,.;#!.thﬂ! UlH.hu-qnﬂtu-nL
Mmhﬁgmwmum ~ ond R =
Lemma 2 laohnmmt@hﬂd;m’ G, e

(20,61, 31, -+ a1+ €asTa) be & simple path connecting & vertex 2 € V(G) 08

:..et’lG}.kg?.‘I‘hmmﬁ. ’hu-cychcm

Proof. uhzmm"mummmmummﬂwh wn:i"m
t-coloring. Now assume that k 2> 3. It is clear that thesets g, (n) ees Qg o (ma et} BFE -cyclic
intervals, with

st N Qg inpon # 0 for =1y k=2,

afess1) € (g tap N Qstasen)) 08 = 1y k = 2

umm-m;ﬂimhna.ﬁ. is a t-cyclic interval. mmormmaummvidd‘
Jo.alz)
Lemma 3. Let @ be  cyclically continuous t-coloring of a graph G, and Po =
(o, €1, T1. -wes Th=1, €y Th) DE B simple path connecting a vertex %o € V(G) to a veriex
net’(G],klentmmdmeMthm

1) inteye; ((ale). alea))t) € mD'Ja :

A=)

2) inteyea((aler) alex)),t) © ﬂ:t .
U Jo.elai)

Proof. Without loss of generality, we may assume that dif((a(ex),a(es)),t) 2 2
Let mmmelhalmedtheualmenhdl)mdﬂhm. Then there are 71, T
such that

7 € inteyer ((aler),a(en) ), 7 § auas '
U Jalzd)

.

2 € inteyor((afer), alew) 1), ™ ¢ n.‘l'J ;

%) Ja (=)
therefore {71, 72} N Qw1 =0.
y‘ Ja.ol=)
Lemma 2 implies that as-, is a t-cyclic interval, with i
}_{ Jg.alz)

{aler), alea)} C Ay
L%

)
It is not hard to see that the relations

{a(er),alex)} S a:l;l:-h e and {r;, n} nasoa =0

2 A Joulni)
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are incompatible. The proof of lemma 3 is completed.

Lemma 4. If a is a cyclically continuous t-coloring of a tree D, V(D) = {61, -y b5},
P 2 1, then there are vertices i € V(D), b; € V(D) such that Int(1,t) = OTP(h ;)

Proof. Assume the contrary. Suppose that for an arbitrary b € V(D), b; € V(D)
orpuy) © Int(l,t). Set: : m s |°muu;| = mg. It is clear that my < ¢.

1<j<p

Without loss of generality, we may assume that mg > 2. Consider the simple path
Fo = (20,61, 21, .., T4—1, €k, 2k) With lorp| = mo. Clearly, without loss of generality, we
may assume that k > 2.

Lemma 2 implies that there are #,#",7 with 1 < # < ¢, 1 < <t 7 e {1,2)
such that cnu...Jr : = inteyey((¥,i"),t]. As mp < t, there Is 7y € Ini(1,t) such that

D.al®y
1=l

7o § inteyey|(¥, 1), ).

Consider the edge ¢' € E(D) for which a(e!) = 73, and assume that e' = (g, uy).
Clearly, e' ¢ T Py(zg, zx). - g

Without loss of generality, we may assume that pp(uy, V Py(o, 1)) < pp(ug, V Po(z0, 72)).
Let zy € VPy(zo, z) be a vertex with pp(us, 20) = pp(uy, V Py(zo,2s)). It is not hard to
see that z5 € V Po(zg, 24)\intV Py(zo, zx) and for V2’ € V Py(zq, ze)\intV Py(zo, 7¢), 2’ # 7
polu,z0) < pp(u, 7).

Case 1. 2z = 7. Clearly, |arprugs,)| = mo + 1, which contradicts the choice of Py,

Case 2. z = z;. This case is considered analogous to case 1.

Case 3. zy # zo, 20 # Zp.

Clearly, there is % € intV Fy(zo, ;) such that 29 € Jg,.(Z). Suppose that a((z, 7)) = 7.
Clearly, i # ",

Case 3a. 7/ =1,

Lemma 3, the equalities a(e') = 7, a((, Z)) = ¥ and the definition of the path P(ug, 7)
imply that 3j; € {1,2} such that intcyc;, (7o, #),1] C @ U  Jpa(s)- Consider the edge

2€intVP(,

é € TPy(zy, 7x) with a(é) = i, Assume: & = (z,2"). Witho::’ loss of generality, we may
assume that pp(z0,2') < pp(2,2"). 1t is not hard to check that TP(z,z") C TPy(zo, ),
therelore, by the choice of 7y, we have 7, ¢ Orp(mzr). Lemma 2 implies that arp(, 2 isa
{-cyclic interval.

Clearly, 3j; € {1,2} such that m € intcycy, ((#',i"),) and therefore inteye, ((¥,4"),t) €
AT P(=,s")-

This Jconclu.sin:u'a, the equalities a((z0,%)) = ¥, a(é) = i and lemma 3 imply that
inteycyj|(#',1"),t] € @rp(ay,ev), hence cu-p(.._,ql 2 mg + 1, which contradicts the choice of
Py

.Cnse3b. 7 = This case is considered analogous to case 3a by changing the roles of
i’ and "
Case 3c. 7' ¢ {i',i"}.
Lemma 3, the equalities a(e') = 7y, a((20, Z)) = 7’ and the definition of the path P(ug, 7)
imply that 3j, € {1,2} such that intcyey (m,7),f§ Ca ;. This implies that

=&tV Plug,2)
al least one of the following statements is true:
]) i'e fﬂnyle [(Tu. TI}' tlv
2) i" € inteyey, [(ro, ), 1).
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Without loss of generality, let us assume that the statement 1) is true. Consicler ‘::m
i € TPRylze, ) with o(&) = i*. Assume: ¢ = (#,="). Without Joss of get ![}‘ yeiue;
assume that pp(20, =) < Po(20.T)- It & not hard to check that TP(zo.3") & THOLF0TRA
mwmmdm.nmntnrw,. lmm2hnpﬁulhllﬁrnml'
t-cyciic interval. . "0
- .Bj:e{l.?}m:hdmneM{(f.ﬂ.l}mwmmnm- o#)

Orp(s.s)- This conclusion, the equalities a((20.3)) = 7, af§) = 1" and lemma 3 1mpb"ﬂ§ll
intcyos (7, 1) 1] € arema) heoce |°m-.n"1| > mg + 1, which contradicts e

of Py. The proof of lemma 4 is

Corollary 1. Uuhacycﬁcﬂb‘cmmmt-mhﬂncohtm D, thent
# e VD), 2" € V(D) such that t < TP, =)

Proof follows from lemma 4 and the inequality lam.,,,[ < |TP(z,y)| for asbitrary
verticest € V(D), ¥ € V(D).

‘Theorem 1 and d

Theorem 2. Let D be a tree. Then

1) D e i,

2) wy,(G) = AlG),

3) Wy,(G) = M(D),

4 if wy,(G) £t S “’,\,(GL then D EN;.‘.

here ar® vertices
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