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Abstract

Weuulmbmmdstuthelmgmduummmmmmormin
typed A-enlenlus, consider some estimates obtained by the other authors and compare
these estimates. The cut elimination and normalization algorithms are also investigated
in this paper. Thereafter we refine the estimates achieved in [3] (for pure implicational
logic only) by supplement of n-conversion and then we extend evaluations to first-arder
logic.

1 Preface

reduction sequence of that term is finite. The size of this tree yields a nontrivial bound on
the maximal length of a reduction chain starting with the term, since the tree represents the
worst case reductions.

In [7] the author considers head reduction trecs of A-I-terms. A term r is called a A-I-
term if for any subterm of the form \z.s one has z € FA(s), where FA(s) is the set of free
assumption variables in s. Here and from now on we use the word term for derivation terms
(ref [8]) as we are interested in normalization of derivations, By normalization we mean a
collection of algorithms transforming a given derivation into a certain normal form, i.e. it
does not contain any "detour” (ref [6]). That is the reason why we use the notion FA - the
set of free assumption variables (ref [8]).

In [3] the author considers head reduction trees of an arbitrary term in simple typed
A-calculus. Each node labeled with B-redex (Az.r)s will have two child-nodes, rfz := 5] and
3. Hence, also in the case z ¢ FA(r) the head reduction tree controls conversions in 5. "l'he
main difference of these two calculi investigated in [7] and in [3] is besides some refinements,
that in [3) A-terms of arbitrary level are erived (whereas in (7] A-terms of 0 level are derived)
and the estimate is independent from the arities of subterms of a term. In other paper [2]
the authors develop a perspicuous method for classifying the derivation lengths of GODEL's
T'. Here the derivation length of a term r is the longest possible reduction sequence starting
from r. Following ideas from (3] they extend the previous approach to GODEL'’s T, where
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rerms may be constructed using R recursor. Tbuhuecpnddhududnﬂhn_‘“‘_’“:
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Let us first mﬂaquahﬂdwhhmmmtm“dmm which will be useful
after. By r*, &, t°, 7/, ¢... we denote derivation terms (simply typed lambda-terms), which
are built from assumption variables 27, 5%, 27 ... by the introduction and climination rules
for — {hmmmm“mmideronb'hnplhtmﬂk:de):

_.+ - jmplication introduction - (Az*r)™%;
—- - implication elimination - (s*~*")°.
Though assumption variables and derivation terms have types (henceforth we use the

word type for formula), for the convenience, basically they will be omitted, but implied.
The length I(r) and the height h(r) of a term r are defined recursively as:

iz)=1 h(z)=0
I(Azr) =1(r)+1 and h(Az.r) = h(r) +1
I(rs) = U(r) + Us) h(rs) = max (h(r), h(s)) +1

The level lev(r®) of a term r is defined to be the level lev(o) of its type o, where the
level of a type formula is defined recursively as: for a ground type + (l.c. for an atomi
formula) lev(t) = 0 and lev(p — o) = max (lev(p) + 1,lev(a)).

The degree g(r) of a term r i defined to be the maximum of the levels of subterms of 7.

With d(r) we denote the maximum of lengths of arbitrary reduction sequences starting
from r with respect to —, the one step reduction, for the moment using just G-conversion
rule.

With ar(r) we denote the maximum of aritics of free assumption variables of r. As usual
the arity of a variable x is the maximal number of parameters it admits, eg. il x has a
type = (mp— .. — (r, — 7)...)and 7 is a ground type, then ar(x) = n. We write

TioveesTn = 7 for (n = (ta = oo = (Tn — 7)...)). For instance, let x,y are variables of
type (1" =+ 1) =1 and ¢ — i respectively, then ar(xy) = n.

Terms of the form (Az.r)s are called convertible - (Az.r)s converts into r4|s]. A convertible
derivation (Az?.r)s is also called a cut with cut-formula a. By the level of a cut we mean
the level of its cut-formula. The cut-rank of a derivation r is the least number bigger than
the levels of all cuts in r.
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3 Obtained bounds for lengths of reductions

As“h.walrel.dy mmtionedntthebesinningufthepnpurthepﬂndpal observation in [7]
s well a5 in [3] is that the number of nodes with conversions in the head reduction tree of
& term bounds the length of any reduction sequence of that term.

can disappear hymmmo{.mnmﬁom. and henmthehaadmductiontmemnynotshow
any trace of a conversion inside the term. For instance, the terms (Az.y)((Az.p)q) and
(Azy)(pela]) have the same head reduction tree (consisting of one additional node labeled
y). Afterwards, to reduce the general case to the case of A-I-terms, the author introduces
the notion of variant of a term. For this purpose, thaanthor'mtmdmdummymriabls
which turn the given term into a corresponding A-I-term. Secondly, there is a restriction on
the level of the term to be derived. The calculus is defined for terms of level 0,

m;-ofle\mjDtherdatianl-:',r{tobamdrisdeﬂvablew&thmducﬁon branch of
height < o and cut-rank < m) is defined inductively hy

o (3 — Rule) I[ -5, r[s]f, then F&+! (Az.r)sE.

o (Variable Rule) If F2 &4 for i = 1,...,n, then F&#! z¢;...¢,, In particular, Fo+! 7
for any o and m. ;

o (Cut Rule) If F& ryy -y, withnglandl-;t‘ﬁmdleu(t() <mfori=1,...,n,
then 3+ rty -« -ty

Note that Ff r is generated by a uniquely determined rule. Hence the generation tree
(with the a’s stripped off) is uniquely determined; we call it the ezpanded head reduction
tree of r (sometimes for brevity head reduction tree).

Based on the aforesaid the author gives the following estimate of bound for length of any
reduction sequence for the defined calculus:

Theorem 1. Letr be a term of the typed \-caleulus of level 0 with requirement that ar(r) >
2, Then the length of an arbitrary reduction sequence for r with respect to — is bounded by

ar(r)%t) G 2h(r)+ ar(r)+2)
where 2m(n) is recursively defined by
2(n) =n and 2y,(n) = 2%,

In [3] it is shown thai the preceding buuud can be improved to 2,0y{l{r)), respectively
2yrp+1 (h(r)), since it is casy to show that I(r) < 2%0), Here the author considers head
reduction trees of an arbitrary term in simple typed A-calculus. The main difference of this
calculus compared with the one in [7] that A-terms of arbitrary level are derived and that
the width of the expanded head reduction tree is also controlled, as well as the estimate is
independent from the arities of subterms of a term.

For A-terms r of arbitrary level (and o, m < w) 5, 7 is defined inductively by
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o (3 Rule) 1f+2 riz = sji and F3, 3, then =% {(Azr)sl

. \&—Nﬂlﬂ-:r.tbenl-:" Azr.

o (Variable Rule) TFR & for i = 1,...,m, then FI5% <ty ==t In particulas, 5 * €

any variable r and a,m < w.
e (Cut Rﬂe)ub-;r.lﬂ[r\smndl-:l.lhml-:“ ri.

Mmmwmwmmmmdm‘mwwmm
of reductions for the defined calculus:
Theorem 2. Let  be @ term of the typed \-calculus of arbitrary level. Then the expanded
head reduction tree of r with g(r) > 0 has

height < 2g-1(l{r)).

Respectively, for the quantity #r, the number of nodes with conversions in it which
boundsthﬂms(honm'mducﬁonaqmdr.itldm

d(r) < #r S P20 = 25,(I(r)).
4 Cut elimination vs normalization

As yet we consider only the pure implicational logic by means of Gentzen's rules of natural
deduction. In this section we consider another type of logical calculus, the sequent calculus
introduced by Gentzen (Gentzen type formal system, henceforth GS). It treats with sequents
I' = , where [ is a finite set of formulas. In other words, sequent is a formal expression
of the form @y, .- ¥k => Ty e v 1 Oms where k,m 2> 0 and @1, ... ¥k: 014+ o o O WIE formulas
(ref [5]). The p1,..-, ¥ part standing at the left side of = is called antecedent, respectively,
the right part oy....,0m is called succedent. The full sequent has the same interpretation
for GS as the formula oy A=A DOy Vo2 Vm has for the propositional or predieate
calculi (Hilbert type formal system, henceforth HS).

In [6] the author considers only the implicational fragment of the sequent calculus. The
rules of the sequent calculus for pure implicational logic in [6] are slightly reformulated as
compared rith the corresponding rules given in [5]. Those are the following (we write [y
for I'U {p}):

(Aziom) + T, = @ for  atomic formula.
(— —right) [FT,p=> ¢, then F T = p = .
(= ~left) fFT,p—¥=>pand FT,p = ¥ = X, thenTp— ¢ = x.

(Cuf) If - T'= yand =T, x = @, then - ' = .



T. M. Galoyan 9

The notation + S, where S is a sequent, serves as an expression of the fact. that the
sequent 5 is derivable in GS.

One of the main results obtained byGeutzenisthathuystemGSisaqtﬁmlanthSin
lmth&tfaruyfmmuhp,l—#pGSiﬂl-winHS.Thngmdizujonnl'thismsuhis
smin[5]bymmmdthefnlbwhgtwothm(forbmvityndomgiwtheonmp]m
versions of the theorems):

Theorem 3-1. If T in HS and all variables stay fized, then b T = 4 in GS,

Let us give some notations, which will be used in theorem 3-2. Let ¢ be any fixed, closed
formula. Let © be gy, ...,0, and m > 0. And let us suppose that €'isay,...,0m (0 is
empty, fm < 1), 8" 8 0, fm 2 1, a0d ~(p 3 ), if m = 0, - is ~a, ..., ~0,, and O’
i6 =G5+ «y "Om—; (I8 empty, if m < 1).

Theorem 3-2. If+T = © in GS, then in HST,-8' - ©" and all variables are fized. (In
W,iﬂ-l':pinGS,MF!—thSmﬂaﬂmﬂdﬁamM}

Just based on these theorems it is stated in [6] that the sequent calculus is equivalent
tonnturaldadncl.ion,inthsuusathatb!‘:agoiﬂpisderiwbhﬁ'amr'bymmsofthe
rules —* and — and assumption rule. As we know a normal derivation of i from [ has
mepmputythaxallformu]asoccurrmg-inthisdaimuonmmbformuhsofeﬁherpora
formula in I'. The same property holds for a cut-free derivation of the sequent I' = . The
fundamental theorem of Gentzen, or the normal form theorem, states that the cut rule can
njnysbee]hninated[romndm'ivaﬁmdanyaequem.Hnmeofthewﬁablesinthesequent
oceurs simultaneously free and bound. The same cut elimination theorem is proved in [6] in
such & way that is also obtained a bound on the length of the resulting cut-free derivation,
in the form

2“" x I(d)l

where I(d) is the length of the original derivation and j(d) is the maximum taken over all
paths in d of the sum of the degrees of all cut formulas on the path. It must be mentioned
that the notion of degree used here (denoted deg(y) for a formula ) is rather peculiar and
differs from the one defined in the Preliminaries section of this paper (denoted g(r) for a
term r). Formally, the author defines the relation 2 I' = ¢ (to be read T’ =  is derivable
with height < a (number of applications of rules) and cut-rank < m) with a, m natural
numbers inductively by the following rules:

(Aziom) k3. T', p = i for p atomic formula.

(= —right) -5 T, 0 = 9, then F&H T = p — 9,

(= ~left) [FE T, — P => pand F2 T, p — ¢, 9 = x, then F&H I o — 0 = x.
(Cut) If} 5T > x and & T, x = @, then F&HL,  T'= 4.

Note. In principle, for the (— —left) rule the ¢ — ¥ formula can be removed from the
antecedent,

As is easy to see the obtained bound 2/*) . I(d) mentioned above linearly depends on the
length of the original derivation, whereas the obtained bound 2,41 (I(d)) in [3], mentioned
in the previous section, non-linearly depends on the length of the original derivation. A
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- A lower bound).

Another cut-elimination method for Gentzen's sequent calculus (LK) i defined in 111 ml:l
must be emphasized hucwhnlededmiwmfmﬂm«ﬂerm-?uﬂuﬁdﬂ“-‘h
only its pure implicational part as it is in [6]. Fhuthecut-diminnthnmud}lmlh‘ .
(more general) problem of redundancy-elimination and then a resolution method udﬂi‘h}

in size(®). 'I‘hemduprtnl@iiddnedlv_«'lhﬂmmhﬂols_\-nmulmxu:mm@mﬁ
is denoted by size(®). The new problem then consists in the elimination of the formula
B :Y(¢s -p;}n—--nb'{ps.—-p.]onthehh-hand-ddcdllw end-sequent. The method
whichisuudlurthkpurpmhmmllinthemtmiteliminnmnhohmnulaa
B which are of different syntactical form; they only must be valid. The elimination of
mdundnmyinpmokhpaﬁmnadhylmﬂuummnhod. The final goal is to construct
a cut-free proof of the original sequent. Nmthnhminmodiaryncpapmfofthv
original sequent with atomic cuts of the sequent will be obtained. In the last step the
atomic cuts are eliminated and a cut-free proof is obtained. The complexity of the method
is analyzed and it is shown that & non-clementary speed-up over Gentzen's method can be
M.T‘helmglhnlthﬁwt-&eemwfobmndhythhmhndh

< o {Tes (B)H(7)

where d is an appropriate independent constant, y is the resolution refutation of charac-
reristic clauses CL(Tue(®), @) (ref [1]), Tue(®) is a cut-free proof ¥ of the cut-extension of
the extended end-sequent for which it is shown that

Teu(®) SU®) +n-r+k- n’

for a constant k independent of ® (@ is a proof with cut formulas @y, ..., @) and r =
max {vg(@) | #=1,...,n}, where vy(¢;) denotes the number of free variables in a formula,
2, (If & is an LK proof then [(®) is defined as the number of sequents (i.e. nodes) oceurring
in . I($) is called the length of ®.

More generally, the idea of the resolution method is the following: instead of showing
that = @1,..., s = ¥, we start with the set of sequents (=> ¢),..., (= @), (0 =») and
try to prove from these the emply sequent =. The first stage is to reduce the sequents
(= ;) and the sequent (¢ =) to clauses (sequents which contain only atomic formulas)
using reductions which maintain the (un)satisfiability of the set of sequents. In other words,
1o start with the original set of sequents S, and using certain reductions to obtain a new sel
of sequents §' which is satisfiable if and only if S is satisfiable. After obtaining the clauses
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the question remains how to prove that the set of clauses is inconsistent (i.e. unsatisfiable),
that is, how to prove the empty sequent = from it.

5 Some refinements concerning the normalization

In this section we consider the calculus investigated in [3] which we have already observed
in the "Obtained bounds for lengths of reductions” section of this paper. More precisely,
in this section we make some refinements of the calculus mentioned above, by supplement
of g-conversion and elimination of the S, — Rule and Variable — Rule from definition of
the 5 r relation, and show that the same results and estimates can be obtained without
the use of these two rules. Thereafter we extend evaluations to first-order logic, since the
investigations in [3] were done for pure implicational logic only.

From here on with d(r) we denote the maximum of lengths of arbitrary reduction se-
quences starting from r with respect to —, the one step reduction using - and n-conversion
rules. The calculus is defined for terms of arbitrary level.

For A-terms 7 of arbitrary level the relation F2 r (to be read r is derivable with reduction
branch of height < & and cut-rank < m) with &, m natural numbers are defined inductively
by

o (B — Rule) If 2 r[z:= s]f and 2 3, then F=* (Az.r)si,

o (17— Rule) Il 2% r and z ¢ FA(r), then F&H J\z.rz.

s (Cul Rule) Il -3 7, lev(r) < m and F2 ¢, then F&H rt.

The calculus allows a structural rule, i.e. if F% r and o < o/ < w, m € m’ < w, then
o

Remark. Though we eliminate the Variable Rule used in the previous calculus, we may
use its particular case ( 7, z for any variable z and @, m < w) in spite of that elimination.
because 7, z by itself independently obvious, as it is evident from the meaning of F2 r.

We observe that I-§ r can be viewed as a tree which is generated in a unique way. As it
is mentioned above we call this tree (with the a’s siripped off) the expanded head reduction
tree of r and we denote by #r its number of nodes. More precisely #r is defined by induction
on I r in the following way:

#z := 0 (for any variable z)
#((Azr)st) = $(rlz:=s]i) + 1+ #s
#(Azrz) = fr+1 (ifz¢ FA(r)

Lemma 1. #r = ffr(z:=y).
Proof. The proof by induction on g r is obvions,

Lemma 2. #(ry) = ##r.
Proof. The proof by induction on F§ ry.

#((Azr)sty) = #(rlz=sliy) +1+#s

> fH(rlz: = sli) + 1+ #s = #((A\z.r)si)
#H(Azrz)y) = #(ry) +1+#y = #(ry) + 1

> fr+l=4(Azrz) (fz¢ FA(r))
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Main Lemma. Ur-—-;s,&nﬂr}ft.
Proof. We show more general assertion. If = € FA(r), then
(3) #iriz=(=pil > #{riz=plz==gl)
() #lriz=(Arps)]) > #iriz==p) =& FAP) 2
Let t:= tiz:= (Arpg] and ti= tlz= plz:= g]] for assertion () lﬂdf“"’“:ﬂ"ﬁ
g = tiz:= (Azpr)] and f:= tiz= pl for (7). We prove both assertions by inductic
#re
#gns) = #lripz=al) +1+ 8
> #rp=sj) +1+ 8¢
= w{(Ap.r)st)
For * >’hkwmnwhw:€f‘d(riv:-s}ﬂorze FA(
mmwhywe[wmuhtadthe_ﬂ-ﬂﬂ:intbmmndl-:ruwdid.

#pry) = #r°+l
> #r'+l
= #(yry) (fy € FAr)
I-‘nr’)”itilimporunnhntwhnwzef':l(r.Ahowhnwtolmpaenﬂlﬁwﬂ\?ﬂl&
ytr‘mdyﬁr’.dnceweneﬂlhhrr—ml\lcﬂm!.\r.r‘yand.\y.t’y.

). This is the

Now we undertake the cut elimination process.
Renaming Lemma. If+2 r, then 3 riz==y].
Proof. The proof by induction on -5,  is obvious.
Appending Lemma. [f+5, v and ry is @ term, then 3t ry.
Proof. The proof by induction on =5, r.

(3— Rule) By induction hypothesis we have =3t r{z: = sliy and 3, &, hence 5" {(Az.r)sty
by the 3 — Rule.

(n — Rule) The n — Rule states: if -7, r and z ¢ FA(r), then Fg*! Az.rz, therefore rx 5
a term. Since % r and rz is a term, then by induction hypotiwsis for x variable we
obtain 2+ rx, hence F&*! rzfz: = y] by the Renaming Lemma. Note that we may
use Renaming Lemma, since we have (Az.rx)y is o term, which means that variables x
and y have the same type. Having fe+! y (according to the remark mentioned above)
and F#! rafz: = y] we apply the 5 — Rule and obtain F&'? (Az.rr)y.

(Cut Rule) We have -5 rt and lev(r) < m, hence lev(rt) < lev(r) < m. Having F'' #
(according to the remark mentioned above) we obtain 22 rty applying the Cut Rule.

Estimate Lemma. IfH§ r, then #r < 2°,
Proof. We show 8 r = #r < 2° — 1 by induction on kg r.

(3~ Rule) #((Ar.r)sh) = #(rlz: = 8]} + 1+ #(s) < (P =D+ 14+ (2"~ 1) < gevt _ 1,

(- Rule) #(Azrz) = fr+1<(@°-1)+1522 -1
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Let us notice lhattheEsﬁmnalmadoennotdependontheaﬁtyar(r)aftheterm

r.

Substitution Lemma. If+3 r and +, s; and lev(s;) < m, j=1,....F, then a3 rli =
8
Proof. The proof by induction on +5, r. We write t* for t|f: = 3.

(/4 — Rule) By induction hypothesis we have -5 r*[z: = 5*]f* and 22 5*, hence pa+dsl
(Az.r")s°t" by the 8 — Rule.

(- Rule) By induction hypothesis we have -5.*# r*, hence -273+! (\z.r*z) by the n— Rule.
The proof is indifferent to the fact whether z € 7 or no, because z € FA(r). An
important requirement is z ¢ FA(s;), 7 =1,...,k, which can be obtained renaming
z 1o unused variable z, i.e. z € FA(s;), j=1,...,k.

(Cut — Rule) By induction hypothesis we have -5 r* and 272 ¢* and lev(r") < m, thus
P+l 71 by the Cut — Rule,

Cut Elimination Lemma. Ifr2 ., r, then = r,
Proof. We show F,, 7 = F5=' r by induction on F2,_, r.

(i~ Rule) By induction hypothesis we have -7'~" r[z: = s|f'and F2"~! s, hence -2 (Az.r)si’
by the 8 — Rule and 2% < 20+ — 1,

(n — Itule) By induction hypothesis we have 25 ~" r, hence F2 (Az.rz) by the n — Rule
and 2% < 22+ — 1,

(Cul — Rule) By induction hypothesis we have 2~ r, 2"~ { and lev(r) < m + 1, hence
lev(t) < m. By the Appending Lemma we obtain F% ry, thus F2*'~1 rt by the
Substitution Lemma.

Embedding Lemma. g(r) < m+ 1 implies H{) r,
Proof. We show g(r) <m+1= F(=1 ¢ by induction on r.

(Case x). By the remark we obtain H{(=)-! z,

(Case Ax.r). By induction hypothesis H)~1 r, It i obvious that the terms Az.r and r have
the same number of B-redexes, thus H(-1 (\z.r), so =11 (Az.r). With regard to
the 7-redexes the term Az.r can contain the same number or plus one of 1-redexes as
compared with the term r, thus ) (\z.r), so FHid=n)-1 (\z.r),

Case ts). By induction hypothesis Fi~! ¢t and F{®)~! s, thus the Appending Lemma
m

yields 4% iy. Since lev(t) < m+ 1 we have lev(s) < mn, lience FIOHT 5 by the
Substitution Lemma, so H{t)-1 g4,

With the Embedding Lemma and the Cut Elimination Lemma it follows that the ex-
panded head reduction tree of r with g(r) > 0 has the

height < 2y, (I(r)).
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#r< g1 ) = 2".)“(,“‘
Together with the Main Lemma this vields

d(r) € #r S 2mlir).

T&mdthmﬂhﬂddmlhpdﬂlypﬂtoumdﬂlhemuh mnmniml_ﬂﬁ‘“&“"
mnﬁnlim(thntls.wduhﬂionrin Jogic is strongly m@duakl&llr:m
implicational logic to first-order logic is illustrated in [4]. Then the result is improved by @
complement, which states:

Theorem 4. Any derivation © in first-order logic & strongly normalizable. .\Ion'mt'f'.‘ l.be
length of reduction sequence 40 obtain normal form of r is equal to the length of mim.flm
sequence to obtam normal form of r°, in other wonds, the same number of one-step reductions
is needed to bring T and r° to their normal forms.

Let us notice that r is a term in implicstional logic and it is called the collapse of the
term r {ref [4]).

Now using the theorem 4 we can extend the result obtained in this section (the upper
bound for the length of arbitrary reduction sequences for pure implicational logic) to include
first-order logic. So we obtain, that in first-order logic any reduction sequence (by means of
3- and n-conversions) for & term r is bounded by

210,
where r* is the collapse of the term T, I(r) and g(r) are the length and degree of the
term r* respectively.
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(HnmlghnG hwenprulwlmpmGGtph bpwpmpywl vwhiwGGhph
Ybpimompjnilip mhywlulwgiwd A-hwpynud

S. U QuynjuG

Withnthmy

Uzjuuinwlpnd awundGwubpgmd &0 nbgolghnG hwenprwlwnpmibbph bplwnpnis-
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