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Abstract
In this paper is shown that eny two minimal Frege systems polynomially simu-
late cach other. This result is the extension of the similar result about polynomially

equivalence of intuitionistic Frege system. The latter is proved by G. Mints and A. Ko-
Jevnikov [1).

Introduction

It is well known that the investigations of the propositional proof complexity are very im-
sortant due to their tight relation to the main problem of the complexity theory: P % NP.
1 particular, one of the important open problems is obtaining superpolynomial lower bounds
ar Lhe size of derivations in a Frege system — the most natural propositional calculi. No
w=sults of this kind are known for a classical propositional calculus CPC, In [2] is proved that
the intuitionistic propositional calculus IPC (therefore minimal (Johansson’s) propositional
alculus MPC [8]) does not always have polynomial size proofs. Particularly in [4] is proved
hat formulas derived from the " clique tautologies” have only exponential-size proofs in intu-
ionistic sequent calculi or in some intuitionistic Frege system (therefore the representations
I these formulas have only exponential-size proofs in corresponding minimal systems). From
‘his point of view it is interesting what is the relation of proof complexities in different Frege
ystems for IPC (MPC). As shown in [1] any two intuitionistic Frege systems polynomially
imulate each other. The similar result about Frege systems for MPC is shown in this paper.

Preliminary

Recall that in the classical case a proof system for a language L is defined in [3] as
polynomial-time computable function f mapping strings in some finite alphabet (proof
andidates) onto L (the set of theorems). If y = f(x), then we will say that  is a proof
fy. An inferénce system is defined there as a finite set of schematic azioms and inference
ules, An inference rule is an (n + 1)-tuple of formulas A,, ..., A,/B, where B is a logical
onsequence of A;,...,A,. This rule is written

(1)
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S aolds. hence the rule (1) is derivable iff a formula
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{-4=_.....—o(.-ln-'8)“'.‘ : (3

is derivable in the system S. By completeness theorem this is equivalent to B being a log)
: of Ay,.-o1An- logical
o a1}k nd issible inSiIfon!]mbuitmiomodfmmnln for propositional variabl

A rule (1) is adm ! ! » :
if all formulas g{Ai)e---s o(A,) are derivable in S, then a(B) is derivable in §. It is not
difficult to prove that every admissible rule of CPC is derivable.

The same proof does not work for the IPC and therefore MPC, since they can have

non-derivable admissible rules. An example for the standard formulation of Int [5] is

-A4—=-BvC
{'*A—*B}V{"A-("}'

3)

This rule is not derivable, that is
ICP (MCP) ¥ (~A—BVC) —(~4— B)\V(=A=0), ;
but it is admissible: if the premise —A — BV C is derivable, then one of the formul

Harrop’s theorem (5. :
A problem of the existence of an algorithm recognizing admissibility of a rule in IPC was
in [6].
pmﬁ{ﬁla}sm of rules was proved to be a basis for admissible rules of IPC. In [1] an lilbert
style svstem AR was introduced such that arbitrary admissible rule of IPC has a finite proof
in AR and it was provided a polynomial time algorithm for modeling each of these rules of
AR. The polynomially equivalence of any two intuitionistic Frege systems is proved using the
polynomial justification of admissibility of rules. In [1] is pointed out that a possibility of an
extension of mentioned main result to other non-classical system depends on the construction
of an analog of the system AR and of a polynomial realizability notion.
In this paper we construct the similar system ARy for the rules, which are admissible

for MCP.

3 The main definitions, notions and results

As our result is based on the definitions, notions and results of [1], we must recall some
of them.

Definition 1. A Frege system S for JPC is a finite set of schematic axioms derivable in
IPC and schematic inference rules admissible in IPC provided S contains up to a polynomial
translation a standard axiomatization H:

Axiom schemata:
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A—(B— A)
A—(B~C)— ((A— B)— (A= C))
(AkB) — A; (AkB) - B
A— (B — (AL&B))
A—(AVB);, B—(AVB)
(A-=C)—((B—C)—((AVvB)—C())
1= A
ninference rule:
A—%“—B- Modus Ponens.

In [1] the formulas in the standard language L = {&,V,—, L} are considered (A is
A — L), but everything works for a language polynomially translatable into L. Important
fexample is the language of sequents A,, ..., A, = B translated by formula (2).
‘System AR

Axioms: all derivable formulas of IPC [a derivation in IPC is supposed to be given
rexplicitly]

Two inference rules:

(A—=rVvsvi
(A)r,8,p1,...,8.) VL

where
A= k:«‘-ﬂ(ﬂ fac 9‘)! -,
(A)r,s,pr,....p) =(A—T)V(A—34) vV V(A—p)and

AA—-B
B

In [1] is proved that a rule A/B is admissible in H iff there is a proof of B from A in the
system AR, and moreover a polynomial method of extracting from a proof of the premise
yor arbitrary admissible rule some proof of its conclusion is provided. Therefore the following
IPheorem holds.

Theorem [Mints, Kojevnikov]. Any two Frege systems over {&,V,—, L} for IPC are
wolynomially equivalent.

To prove this result the authors use also the following natural deduction system, which
8 polynomially equivalent to H and is more convenient for proving of the main result.

Che System NJ. Derivable objects in a natural deduction system NJ are sequents

Modus Ponens .

Ay...,An=>B (n>0)

written also I' = B, where I is a finite ordered sequence of formulas,
The system has axioms

INA= A and I, 1=> A for any formula A

ud inference rules (standard elimination and introduction rules for &, V, — plus structural
ules):

I= ALB I'A%B, . T=A I'sB,
To A o b T= ALB &

I
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A r.A=C NB=C SR e 1
r=avB T4=2C LEZovE oYl feave !

r=0C
r=A—=58 r=4 AT=HB 1
Pt s it =

r=5 r=A—-B8
=B rLAA=25 lLABE=C
A= ;‘3““k I, A=8 Coutx FBAL=C (.P'um.

where I, ¥ are arbitrary finite sequences of formulas.

For our result we give the following deﬁnmm

The standard axiomatization M for MPC is obtained from the system H by
the rule L— 4. Really axiom schema (A D -B) 2 ((4 2 B) D ~A) is obtained from second
axiom schema by substitution L instead of C.

Definition 2. A Frege system Sa for MPC is a finite set of schematic axioms derivable
s MPC and schematic inference rules admissible in MPC provided Sy contains ¥p $018
polynomial translation a standard axiomatization M.

The system ARy complete for admissible in MPS rules is the following: :
Axioms: all derivable formulas of MPC (a derivation in MPC is supposed to be given

explicitly).
Two inference rules:

(A=rvavt o 2
TA){\ 8, P Phr e r PR VI 1 (see definition for AS)

and _l_fl_—*_fi ModusPonens.

And lastly the natural deduction system NM for MPS is obtained from the NI
by dropping the axiom T', L=> A. ywen

It is not difficult to prove that 1) for every axiom schema A of M the sequence = A
is provable in NM and modus ponens is modeled by — I; 2) for any uatural deduction of
sequent Ay, Az, .0 Ay = B can be obtained M-proof of the formula (Ay, Aa,..., 4, = B)",

where

(Ary...An= B)" 1= { (;;“&(A*“---&(A-—IM-J---)) - B, if n>0, :

il n=0. {

Note that both transformation can be realize with no more than polynomial incrense (see
1a).

Further proofs of polynomial approximation property for some of sequences, which are
important for the proof of main theorem, and polynomial modeling of admissible rules, are
absolutely the same as in [1] with the exception of the cases, concerning axiom I, L=> A (or
formula L— A), which must be dropping.

Therefore the following Theorem holds.

l Theorem 1. Any two Frege systems over {&, V, —, L} for MPC are polynomially equiv-
alent,

On the base of the main results of [9], the Theorem (Mints and Kojevnikov), above
Theorem and the remark about language L, we obtain the following
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' * Conclusion. The natural deduction systems, the sequent systems with cut-rule and the
s"frege systems for IPC (MPC) are polin

omially equivalent,
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Wihnthnut

Unyfl hngwénud wujwgniggmd t, np UhGpdwy wunpughG hwalh GuiwjwlG
npynt  Dphghjh  hwiwlwpgbp pwqiulnuinph@  hwiwpdbp bG: W wprmGpp
HinnthghnGhunwlwG wunipughG hwayh hwdwn Uhfigh L UndtyGhymih [1] Ynnihg
tnwgywd Gfwluwnuy wpnmGph pGnjwGou



