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On Edge-Disjoint Pairs of Matchings’

1
Vahan V. Mkrtchyan!, Vabe L. Musoyan?, Anush V. Tserunyan

RA

f Insti wmammamsd

I.um%u&r . ' ‘lﬂ

'De;utmtdlnhrmﬂhund&pﬂhdlw\'mmtnh ty, Armenia
MwmmW[m;m} -

Abstract
- ) consider the of edge-disjoint matchings whose union contains
- hica 2;;:?:&5&. and u::‘l:ar the relation of the cardinality of & maximam
mtd:i;x;lolh! cardinality of the largest matching among such pairs. We show that
5/4 is a tight upper bound for this relation.

e wi i i i ; V(G) and
We will consider finite, undirected graphs without multiple edges or loops Let G)
E-‘_(.";ed:nuu the sets of vertices and edges of a graph G, respectively. The cardinality of a
maximum matching of a graph G is denoted by 3(G).

For & graph G define B;(G) as follows:

By(G) = {(H, H')/H, H' are edge-disjoint matchings of G},
and set:
NG) = max{|H| + |H'| /(H,H") € B2(G)}.
Assume:

a(G) = max{|H|,|H'| | (H,H') € By(G) and [H| + |H'| = MG},
My(G) = {(H, H")/(H, H') € By(G),|H| + |H'| = NG),|H]| = a(G)}.

It is clear, that for every graph G the inequality a(G) < () holds. An intriguing
sufficient condition for the equality a(G) = A(G) is obtained in [4], which due to [2] is
equivalent to the following: for every matching covered tree (7, the equality () = 8(G)
holds. Note that a graph G is referred to be matching covered |3, 5] if its every edye belongs
to a maximum matching of G.

The aim of this paper is to obtain a tight upper bound for % We prove that E is

an upper bound for ﬂ, and exhibit a family of graphs, which shows that 4 ean not be
replaced by a smaller constant. Non defined terms and concepts can be found in [1, 3, 6].
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Lemma. Let G be a graph. Choose & maximum matching M of G and a peir (H,H') €
M,(G) satisfying the condition:

|M N H| is maximized, andlhennmonsthnsematdﬂngxchmmsaﬂsfymglhemn—
dition:

]MnH’Immmdmmd

Dﬁmthemtsﬂﬁandb’,;mmafedmwbichhnnnﬂl H slternating paths of odd
length and belong to M and H, respectively, and let X be the set of M4 — H' elternating
paths. Then every edge of H’ either belongs to M or lies on a path from X, and

|H'| = 1X| + [Hal + B(G) — alG).

Proof. By ihe choice of M and (H, H'), we have:

(a) there are no My — H' alternating cycles; and

(b) each edge of M4\ H' is adjacent to two edges of H’, therefore

(c) there are no M, — H' alternating paths of even length.

Hence, X consists of M4 — H' alternating paths of odd length, which start and end with
an edge of H'. This implies that every edge of H' either belongs to M or lies on & path from
X, and

|H'| = |X| + |Mal.
Since
|My| = |Hal + B(G) — a(G),
we get
|H'| = |X| + |Ha| + B(G) - a(G).
Prod of the Lexmia i complete.

Theorem. For every graph G inequalities 5 < ;A7 < £ hold.

Proof. Let M and (I, H’) be as in the Lemma. There are (G)—a(G) M~ H alternat-
ing paths of odd length. Moreover, if wy, (wi, ws), wa, (w3, ws), wa, ..., War1, (wa—y, war), wa
is such a path, then, due to |H| = a(G) and the choice of M and (H, H'), we have:

123

{(wy, w3), (war—y, wa)} S H', therefore |[M N H'| 2 2(8(G) — a(G));

there is 4, 2 < i <1 —1 such that (wy_;,ws) ¢ M\(H U H'), therefore

|M\(H U H')| 2 B(G) — (G),
every edge C;f M\(H U H') is adjacent to two edges of H’, therefore every edge of H that
lies on the path is adjacent to two edges of H', too.

Since [ > 3, we have:

|Ha| 2 2(B(C) - a(G)).
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choice and the 'H.H'}hnpﬁuthnthutmml{—ﬂdlmuu
w::w“;tdﬂ“plﬁ't Cmﬂ!lheﬂ—ﬂ'lllmllmpllblm

e 1, & and containing edges (. w;) € H' and (wx-1 wy) € H', respectively.
Iﬁ‘ﬁﬁ”amm therefore the last edges of those paths belong to  and do
y m(mmjdmmdduamz.m:wmu

belong to M — H alternating )
A 7 H: moreover, all edges (wy, wa), (@23, wa) {all end edges of M — H alternating paths)
paths. Hence:

lie on different ff — H' alternating
IMNH| = |M\My| = |H\H4! > 2(3(G) - a(G)).
Ontheotherbnd,nuymddpdm a path is adjacent to one of H',
wlmma.itanmd«!pdapnh&m.\’.
2(8(G) - a(G)) < |IMNH| £2]X],

which, due

or
8(G) - alG) < [X].
These incqualities imply:
|H'| = |X] + |Ha| + 3(G) - a(G) 2 4(3(G) - a(G)).

Proof of the Theorem is complete.
Remark 1. We huve given a proof of the Theorem which is based on the structural

Lemma. It is not hard to see that the Theorem can also be proved directly, without using
the Lemma. Note that the H — H' alternating paths which start from vertices wy, wy, are
of & length at least four, hence

|H'| 2 4(8(G) - a(G)).
Remark 2. There are infinitely many graphs G for which
8-
al 4"

In order to construct one, just take an arbitrary graph F containing a perfoct matching,
Attach to every vertex v of F two paths of the length two, as it is shown in the figure below:

4 5

Fig |
Figure 1,
Let G be the resulting graph. Note that:
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3(G) = ML 4 2|V(F)| = 5L

Let us show that for every pair of disjoint matchings (H. H') satisfying |H|+|H’| = MG)
and ¢ € E[F) we have e ¢ HU H'. On the opposite assumption. consider an edge ¢ € E(F)
and a pair (H.H') with {H| + |H'| = A(G) and e € HU H'. Note that without loss of
generality. we may always assume that H and H’ contain the edges shown in the figure
helow:

Figure 2.

Now consider new pair of disjoint matchings (H, H}) obtained from (H. H') in the ful-
lowing way:

Fig3

Figure 3.
Note that |Hy| + |H{| = 1+ |H| + |H'| > A(G), which contradicts the choice of (H. H'}.
therefore e ¢ H U H' and A(G) = 4|V(F)|, a(G) = 2|V (F)|, hence

56 _s
a(C) 4



PPN T

mwmmdw

References
1! F. Harary. Graph Theory, Addizon-Wesley. Reading. MA. 1969.

3 F. Harary. MLD. Plummer. *On the core of a graph”, Proc. Londen Math. Soc. 17,

305-314. 1967,

3] L. Lovasz. M.D. Plummer, Matching theory, Ann. Discrete Math, 29, 1986,

a maximum proper partial 0-1 coloring containing

1 V. V. Mkrtchyan, “On trees with
] thematics , vol. 306, pp. 456-459, 2006.

maximum matching”, Discrete Ma
V. V. Mkrtchvan, "A note on minimal matching covered graphs™, Discrete Mathemati
. vol. 306, pp. 452-455, 2006. .

i6] 1. B. West. Introduction to Graph Theory. Prentice-Hall, Englewood Clifls, 1996,

‘al

Gpwpnud pinhwnin Yynn mbbgnn quiquygnuiGtiph qnugtph dwuhl
L Uypengwi, L Untunjwd, W Obpmbwd

Withnthmd

Spdwd gpuph hunfup ghinwplblp plinhwnp Yon smGtgnn qmquhgnuiGtnh qouqtng,
npng Shwinpoudp wwpmbwymd t wibGwywn ping Yankp, L ahowplbip gpudh
dwpuptiw| qrquygiwl hqnpmpjwl hupwpbpoipymlp winuhuh qouqbpaud wibilwwn
Yrnp wwpmGwlnn qmauligiwd hnapmpjwlp: Ublp gnyg blp wijtig, npy $/4-p 6hawn lipha
qlwhwnwwi t wju hupwpbpmppul hwiop:




