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Abstract

In this paper we discuss strong normalization for the — ¥ - fragment of first-order
logic. The use of the method of collapsing types to transfer the result concerning strong
normulization (that is, any derivation r is strongly normalizable) from implicational
logic to first-order logic is illustrated (ref [1]). The considered result is improved by
& complement, which states that for any derivation r and its collapse r° we need the
same number of one-step reductions (the — rule) to bring them to their normal forms.

Our basic logic calculus is the — ¥ - fragment of minimal natural deduction for first-order
logic over simply typed lambda-terms. This restriction regarding the minimal fragment does
not mean a loss in generality, since the full classical first-order logic can be embedded in this
system by adding stability axiom. The method of collapsing types developed in [2] is used
to get some results concerning the strong normalization of derivations in first-order logic.

1 Preliminaries

Let us fix our language. Assume that we have a coul;tabla infinite set of function symbols
J.9:h... and predicate symbols P, @, R.. ., each of arities > 0. Terms (object terms) d,e, .. .
are defined inductively from object variables z,y, z. .. by the following rules:

1. object variable z is & term,
2. if d is a list of terms, then fd is a term,
3. terms are defined only by rules 1 and 2.

Atomic formulas are L (falsity) and Pd, where P is a predicate symbol and d is a list of
terms,

Formulas are built from atomic formulas by implication ¢ — 1 and universal quantifi-
cation Vzp. °

Derivations 'r%,t%, 8%, ¢% . are built from assumption variables u?,v®,w®. .. by the in-
troduction and elimination rules for — and V :

—* - implication introduction - (Au®r¥)e—¥;

—~ - implication elimination - (£#—¥s¥)¥;



Strong Nermatization for First-order Logic

. ification introducts m.mwmnﬂnﬂeuﬂmﬁth
r'i:.mmmpthunﬁsbhu'&uin‘r}glfruiniﬂuwv:
¥ - universal quantification elimination - i
In the case of elassical logic: for any predicate symbol P the term stobp : VE~~PT— PE
isndaivuﬁm.“’eabuth:mhr:;immdﬂr’- .
Mw-mnwﬂ!mthewmdmmfurdahnnmlmmntilthm-nno
with the notion of object terms) and fype for formulas.

Aowhawmmﬁumdl.he—v-mmdminimal
o:du-lcm‘c.hin[l]thhmbemuhﬂolt _

1. Associate with any fmmuln;inthchnsuaseddanﬁr.d first-order logic a finite list
thmnluinw—ov-w.windmong.

46

“\'wmhiﬁ_

confusion

logic contains full classical first-

Pd — Pd

e = a—_’ﬂ-‘:----.'ﬁ—'v.
gAY — v =

gvy = (Fol)(p—l)—L
Yrp o Vrg,....Vigm
Sry = Yr(F—l)—Ll

Wmmmﬁ—opfa(wl—o(ﬂ—....{%—.v}.-.)}.

. In any model M, where L is interpreted by falsity, we clearly have that a formula ¥
in the language of full first-order logic holds under an assignment a iff all formulas in
the assigned sequence 7 hold under a (in our — ¥ - fragment of minimal logic).

L]

4. Our derivation calculus for the — ¥ - fragment is complete in the following sense:

a formula @ is derivable from stability assumptions V¥.~-P¥ — P7 for all predicate
symbols P in o iff » is vulid in any model under any assignment.

2 Strong normalization

It was shown in [1] that for pure implicational logic any term can be reduced to a normal
form (w.r.t. —; conversion, the one step reduction using d-conversion rule) and this form
is uniquely determined. Moreover, it was shown that any reduction sequence terminates,
i.e. any term is strongly normalizable. Derivation is said to be in normal form if no more
reduction s possible to perform. Here we use the method of collapsing types (ref [2]) to
transfer the result (concerning strong normalization, obtained in [1]) from implicational
logie to first-order logic.

It must be mentioned that the general S-conversion rule is extended {o first-order logic.
In particular, we have
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(APt®)s?  converts into (—;)  t,[s],
where £, 5 are derivations, u is an assumption variable; and
(Azr?)d  converts into (—;) P
where z is an object variable, d is an object term and r is a derivation.

For any formula  of first-order logic we define its collapse & by

(Pdf = P (c1)
(p—v)F = F—9* ()
(Vzp) = T—y* (c3)

where T :=L—1 (i.e. T means truth). Though, L is an atomic formula it behaves like
predicate symbols, i.e. (L)° =L, therefore (T)°=T.

For any derivation r¥ in first-order logic we can now define its collapse (r¥)c. It is
obvious from this definition that for any derivation r¥ in first-order logic with free assumption
variables uf”, ..., u#m the collapse (r¥)° is a derivation (r*)*" in implicational logic with free
assumption variables ul, ..., ufk.

(W) = o (c4)
(ufr)e = Iurre (c5)
(trs%) = t°° (c6)
(Azr) = Mu'r® (c7)
(ed) = t=(Aztz)T  (B)

Note that for any derivation r¥, assumption variable u” and derivation s* we have that
r°[s°] is & derivation in implicational logic (where the substitution of &° is done for the
assumption variable u¥), which is the collapse of r[s]. Also for any derivation r¥, object
variable z and object term d we have that r.[d] is a derivation of ), [d] with collapse
(rg[d]) =
Lemma 1. Ifr — 7’ in first-order logic, then r° —, (r')° in implicational logic.

Proof. The lemma can be proved easily by induction on the generation of r —; 1/ (ref [1]).

From lemma 1 and the theorem, which states that any term in implicational logic is
strongly normalizable, the following main result was obtained in [1]:
Theorem 1. Any derivation r in first-order logic is strongly normalizable.

Indeed, since the collapse r° of the term r is a term in implicational logic and any term
in implicational logic is strongly normalizable, i.e. any reduction sequence starting from r¢
terminates, then from lemma 1 we conclude that any reduction sequence starting from r
also terminates. Otherwise, if there is a reduction sequence starting from r, which does not
terminate, then from lemma 1 the corresponding reduction sequence starting from r= will
not terminate as well, which contradicts the fact, that r° is strongly normalizable. From this
it follows that r is strongly normalizable,

But it is stilll conceivable that r terminates (in terms of reduction sequence) before r<,
i.e. the reduction sequence of r° is longer. Our aim is to show that it is impossible, and both
of the terms do the same number of one-step reductions.

First of all it is necessary to emphasize that it is not so obvious, since there is no bijective
correspondence between a derivation in first-order logic and its collapse.
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Example 1. Assume the collapse is € = Au
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Tye Then there are two possible forms of

=A== (.\uTr!" acconding to

We write 7., instead of x to indicate the fact that x is an object \:ariablc. Thtsmthn
is extended on object terms 100, e.8. do; instead of d. For the convinience, sometimes the

ohj pattern will be amitted, but implied.

Example 2. Assume ¢ = T — P, where P is any predicate symbol. Then there are two

pessible forms of a formula (ambiguity):

1. on the one hand, since (L—L) =T*=T = (L—l1),then o= T — P=(lL—=l)—

P=T—P;

2.mtheotherhmd.,f=T—P:T-f"u(v.t.‘,f’)"mrdinslutc:ﬂ:n

v = Yy P.

Now we reformulate the theorem 1:

Theorem 2. Any derivation r in first-order logic is strongly normalizable. Moreover, the
length of reduction sequence to obtain normal form of 7 is equal to the the length of reduction
sequence ta obtain normal form of r°, in other wonds, the same number of one-step reductions
is needed (o bring v and r° to their normal forms,

Proof. The first part of the theorem is plain due to the theorem 1. It remains to prove that
+* terminates as soon as r terminates, Assume that r —* r* and r’ is the normal form of r;
that is r terminates and the last term of normalization reduction sequence is . Here —*
denotes transitive and reflexive closure of —. From lemma 1 we obtain that r¢ —* (r')° as
well. Now it should be proved that ()¢ cannot be normalized further, Le. it terminates.

Let us suppose the opposite and come to contradiction. It means that there exists a term
v such that (r')¢ = rZ. So we have the next structure-view:

r —* r' -terminates

bt ks
e

e

Therefore, we conclude that (r')€ has a form

(') = th((Aucto)s)td
hence

e = ‘ﬂ'u |'enlf

P)* according to (c1) and (¢2); 80, ¢ = (L—+L) = '
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Ler us denote by ¥ the middle part of (r)e
M= (Auct,)s,.

More exactly ()¢ has one of the two following forms:

(a)
[t (Oucte)s R = (t2 1M R,

(b)
te[((Auetc)sc)tR) = (. £ 18),

Note. There is no need to consider the case that (7 )¢ could have been extended to the Jefi
and to the right, like (r')° = 12442 (MiRtRR Tt does not change the technique of the proof.

Remark. By 7(s) we denote the type of derivation s, eg. 7(s ") = ¥ — L. Lot us
consider the term t°((Az*24)7)¢ in case when 7(1°) = T — £°=T% — 2 It is obvious 1 ha

((Az=2*)" )P = (Az*2*)". According to (c6) and (c8) there are two possible forms of term »
which collapse is r¢ = 19((Az+2+)T)e:

L. on the one hand r = {7—#(\z*z4)";

2, on the other hand r = 1¥5ohP

Inter alia, this remark can be viewed as one more example, which shows the accuracy of the
note about inverse problem mentioned above,

For the form (a): (1) = (& ()R
We consider two cases depending on the form of 1.
Case (a-1). 1f = (Az'2=)7 = ((Az=z*)7)e.

Let us denote: ¢° = 17 ((Auete)s,), hence () = g#((Az=2=)T)e.
From the remark mentioned above we obtain that either

=g "¥(Az+z4)T

' =q"d,

Case (a-1-1). r' = ¢"(A2*2)T and ¢* = t4((Aucte)s,) = et () =T — =

Since 1) = (Muedc)s, # (Az+24)T then according to (¢4)-(c8) we conclude that there is
anly one possible form for ¢°, that is-(c6). It follows that 3¢ L+ Laz terms, which satisfy these
equations: (£ = (1,)° and t} = (t5)%, hence g° = (tL)"(tar)°. Let us denote: (1y/,)° = Au,d,.
5o we have (fy)¢ = (Audt,)s, = (fpr)°sc. Depending on the form & (= (Az=2*)T or
not) we get either {y = tij}'s, where s = Cobj OF tay = 15778, where s° = s, (s, is a
derivation term). As we have (tare)® = Augl,, then according to (¢5) and (¢7) there are
two possible forms of term ty;, which collapse is Augly: typ = Azyil. if T(de) = T ar
e = ut, if 7(ug) # T, where u® = u, and ¢ = t,. Therefore. M = ()¢ = [(Azop;then, )
or tM = (ty)" = I{,\ufjs]‘. which means that in both cases the term 7' contains subterm
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(A2 st} OF (Auit)s respectively, Le. we could have performed one mare == for
¢ which contradicts our theorem condition that r' terminates.

Case (a-1-2). ' =¢"™dand ¢ = 5 ((Augte)s:) = £ M ()= T =
This case is similar 1o the case (a-1-1).
Case (a-2). (F # (Az=2°)". ; _

According to (vd)-c8] we conclude that there is only one pﬂfll‘!:k' form for (r'). that is
(¢6): it follows that ¥ = ¢"~Vig , where (tr) = tRfand g =1 tM, hence we come 10 the
cuse {a-1-1) when r(¢°) =¢" — v
For the form (b): {r')¢ = t(ee" tf) N

Since ¢t does not have the form (Az*2*)7. it follows that according to (c4 -'-{c_bltthm .
s culr oo poasible form for (), that is (c6), Hence. r' = {z 4. where (t)¢ = t¢ and
= f;“t!' = ((Aut st According to (c1)-(c8) g" may have cue of the two following forms:
(¢! or (c8). Depending on the form of t8(= (Az=z*)" or not) we get gither ¢ = taduy,
where (L) = 2 or g = tata, where (fa)" = t2 and (tr)° = t® respectively. In both coses
we have ty which satisfies the equation (tu)* = (Augt:)s.. The rest is similar to the case
(a-l-i). )

All the cases have been considered. hence the theorem is proved by the method of con-
tralicthom.
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