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Abstract

i iding in the case

In this psper we consider the problem of reversible ln@mu!hn hiding in t
when the attacker uses only discrete memoryless channels (DMC), the decoder km“?
only the class of channels, but not the DMC chosen by the attacker, the attacker knows
the information-hiding strategy, probability distributions of all random variables, but

not the side information. ‘ ‘ .
We introduce the notion of reversible information hiding E-capacity, which ex-

presses the dependence of the information hiding rate on the error probability exponent
and the distortion levels for information hider, for attacker and for the host data ap-
proximation. The random coding bound for reversible information hiding E-capacity
is fourd. When E — 0 we obtain the lower bound for reversibility information hiding
[ .

p::i;yartkuhr. we have analyzed two special cases of the general problem formulation,
pure reversibility and pure message communications.

1 Introduction

Historically, the main goal of the information-theoretic analysis of communications over the
state dependent channels was to establish the optimal information transmission conditions in
terms of maximal achievable rates that can be attained in such protocols [1, 2, 3]. However,
recently it was realized that in some practical applications, recovery of the channel state
at the decoder might be required instead of a pure information transmission 4 8. A
special attention this line of research has attracted in information hiding or watermarking
conuunity where it is known as reversible information hiding [0, 7, 8], The imformation
theoretic analysis in these referred publications was dedicated to the definition of the optimal
achievable region of pure information transmission rates and attainable distort jons of channel
state recovery at decoder. In particular, in [6, 7] similarly to [9] an optimal protocol of joint
pure information and channel interference communication is designed based on a modification
of the Gel'fand-Pinsker coding and the corresponding rate-distortion pairs are established
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by the proof of a source-channel coding theorem. Oppositely, the analysis of [8] considers
& formulation where the communication protocol is specifically optimized to a particular
pure information communication regime while reversibility is analyzed as a by-product of
this design. Similarly to the previous cases, the rate-distortion region of pure information
transmission and channel state recovery is defined.
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Figure 1. Reversible information hiding system
In this paper we would like to make one step forward with respect to the existing results
and 1o establish the error exponents thal can be attained in the reversible information hiding
protocols in terms of E-capacity [10]-[14].

2 Notations and Definitions

We use capital letters X,Y, 8,8, K,U for the random variables (RV) distributed over the
discrete finite sets X, , S, KC,U according to the probability distributions (PD) P, V,Q. ...
and lower case letters z, y, s, 4, k, u for their realizations. For the N-length vectors of RVs we
use the capital letters with superscript N (for example X™) and we use the boldface letters
for their realizations (for example x = (z;,..., zx) € XV). The size of the set X we denote
by |¥.

The notation |a|* will be used for max(a, 0).

We shall use the following PD:

Q=Qoo Q) ={Q(s,k) = Qo(k)Q:(s]k),s € 5,k € K},
Q2= {Q’(‘il"a kJ: 8,5eSke ’C}
P = Pyo Py = {P(u,z|3,8,k) = Py(ul3, s, k) P\(z|u, 4,5, k uelU,z e X,4s€8 keKk},
V={V(ylz),z€ X,y € )},
A= {A(ylz),z € X,y € V}.
The joint PD of the RV U, X, 8, S, K will be denoted
Qo Qa0 P = {Q(s,k)Qa(5, |3, k) P(u,z|3,8,k),z € X,u € U,ss€e8 kek}).

Information:theoretic quantities, such as conditional entropy of RV Y relative to RV X
will be denoted Hp, v (Y|X); the conditional mutual information of the RV S and S relative
to RV K is

k Qa(8]s, k) =
Ta.qs(S A S|K) = ‘);Q(s. k)Qa(3]s, k) log > Q,(;|a, K)Qu(slk) ~
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= Hoou(S1K) — Hooa(S1S. K) = Ho(SIK) - Hoas(S15. K- L3
S, k& -
W'W&depl)q-‘{q.[&k}u!eb-‘ o tonal
{Q:;H.I <€ 8, ke K} onSxK is dencted by D(QIQ") and the conditional informat
divergence of the PD @ cQioPoVand @ eQsoPeodby
DIQ o Qe PoViQ e @s® Pecd)= pVIAQ . QP =
ik V(ylr)
= .,§.,. Q" (5. k)Qaldls, k) P(u, zi5. & k)Alylz) log Aly)
We shall use the following relation

D(QoQoPoV|Q oQoPod) = DQIQ) + DVIIAIQ", Q. F-

The type g of a vector k € K¥ inhePDcri{Qn(:h i)k € K}, where N (kik) is
the number of itions of symbol k among Ky, K2, ... AN~ 3

Themnditimtypeql of s for given k is the PD ¢ = {Qi(slk), s € S, k € X} H
Nis kis k) = N(kk)Q; (¢lk) for all 2 € S, k € K. The st of all vectors k of t.\‘_tn} g we
denote by T (K). The set of all vectors s € S¥ of conditional type ¢ for given k € T3 (K)
we denote by 'J;N{SER}. It is called also g-shell of vector k.

:\Iibpdlhmmqunnmin:hepapermdthebmz

The following properties will be used 15, 16}

(N +1)-DBAXISTI xp( N He e (Y|U, X, S, 8, K)} <

(1)

< TN, (VIux(m,s.8.k),8,8.k| <

< exp{NHp gpe(YIU. X, 5.58,K)} < Q‘P{NHHJ-N‘(H‘\-]}' &)

for (s.k) € TV (S K), 8 € T5,(Sis. k), x € TG, ,(X). ¥ € TN polY 1X):
QY (s, k) = exp{—N(Hy(S, K) + D(gllQ)}- )
AN (y[x) = exp{~N(Hompu(Y|X) + D(vliAlg. 02 P))}- Q)

Host data source (figure 1) is described by the RV S, which takes values in the discrete
finite set S and generates N-length sequences SV of independent and identically distributed
(iid.) components. The message source produces equiprobable and independent messages i
from the message set M, which must be transmitted to the receiver. The side information
source is described by the RV K, which takes values in the discreto finite set A, and in
the most general case has the given joint PD Q° = {Q(s,k), s € S, k € K’} with the
RV S. In particular case, when the side information is a eryptographic key, § and K are
distributed independently. The side information in the form of N-length sequences KN of
iid components is available to the encoder and decoder. It is assumed that QN (s, k) =

N
-Eu Q- (s, k).

The information hider (encoder) embeds the message m € M in the host data blocks
s.€ 8" using the side information k € K¥. The resulting codeword x € A is transmitted
vin attack channel A with the finite input and output alphabets X' and . The altacker
trying to change or remove the message m, transforms the data blocks x € A into corrupted
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blocks y € V. The decoder, pmingsidemfarmaﬁon,deoodesthedatablod:ysy-"
and derives the memagemmdtheappmximaﬁonio[theaﬁgimldsublmk. within the

Letthema.ppin;;do:Sx.S'—o [0,2c), d; SxX - [0,00),dp: X xY — [0,0c), be
single-lelter distortion functions,- The distortion functions are supposed to be symmetric:
dy(s, 3) = dy(4, 8),dy(s,z) = di(z,8),dy(z,y) = daly,z) for all s € SieSzeXycy

and assume "Mt dﬂ{‘laj - 01 if’ - aldl{‘!x) - ol if! — 3'@{:|FJ = 0, ifz= Y. Distortjon
functions for the N-length vectors are defined as

B8 =53 dalon ),

N N
df(s,x) = % Zldl("mzn)- a(x,y) = % Z‘idz(zmyn}-

Definition 1. The information hiding N-length code is a pair of mappings (fy, gn) subject
to distortions Ag, A;, where

In: MxSY x KN - xN

is the encoder, mapping host data block s, & message m and side information k to a sequence
x = [n(s,m, k), which satisfies to the following distortion constraint:

dy'(s, fu(s,m,k)) < A, (5)

g: YN 5 Mxsh

is the decoding, mapping the received sequence ¥ and the side information k to a decoded
message m' and sequence 8, which satisfies to the following distortion constraint:

dy (,8) < Aq. (6)

Note that the definition of the distortion constraint (5) means that the maximum distor-
tion constraint with respect to s,k and m is used, as distinct from [17], where the average
distortion constraint is considered, and the maximum distortion constraint is mentioned as

more difficult case.
The N-length memoryless expression for the attack channel A is:

N
AV(ylx) = T Alynlzn).
n=]
An attack channel, subject to distortion Ay, satisfies to the following condition:
2 3 G xy)AY(yx)pY (x) < A,
xEXN yeyN
Definition 2. The nonnegative mumber
1
R= v log | M|
is called the information hiding code rate,
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We se the following notation m = T for m = ”‘,;:l,, PDs Qg for which the

mmqm&mwm(@m)mﬂudaﬂuﬁdh
following inequality takes place
T Qe k)Qu(ls, K)do(s.3) < Ag. (M
ik
We use an auxiliary RV U, taking values in the finite set 2/ and forming the Markov

chain (K,5,3.0)— X =Y. . AT,
Definition 3. A memoryless covert channel P, subject to distortion
PD P = {Pluzls.8k), ue ll, = € X, 5,5 € 8, k € K} suwh that for any

Qs € Q:(Q. 20)

Jevel Ay, I8 a
Q and

T Qle k)Qs(3ls, M)P(uzs, 3, K)ds (8.2) < S 8
wxaik

Denote by P(Q, @, A;) the set of all covert channels, subject to distortion level s
J\'-lu:slhmemmiuwtorthcw\m:hmndle

The

3
P¥(u,xi8.8,k) = J] Plun. Zalsu, 3a: ka).
n=l

Definition 4. A memoryless attack channel A, subject to distortion level Aq, under the
condition of covert chanuel P € P(Q, @2, A,), is defined by a PD A = {Awjz), yEY T €
X}, for which for Q and Q; € @2(Q, &)

Y Qls,k)Qa(dls, k) P(u, xis, 8, k) (D) A(yle)da(z, ¥) € Ao

PEEFE S

Denote by A(Q,Qa, P,A;) the set of all attack channels, under the condition of
covert channel P € P(Q.Q: A;) and subject to distortion level Ay, The sets
Q.(Q.20), P(Q.Q2,A)) and A(Q. Qs P.Ag) are defined by linear inequality constraints
and hence are convex.

Denote by g5 (m,8) the set of all y which are decoded into (m, 8):

gvk(m,8) = {y: on(y,k) = (m,8)}.

Definition 5. The probability of erroneous reconstruction of the message m € M and
the approximation of data block s € S¥ for k € K™ via channel A is:

“"‘-’*"’=‘U-*'-9~-*‘""'-'~"~A-A°1=l-ﬂ"{ U s&k(m.enm:n.s.m}. )
& disA)Sdo

The error probability of the message m averaged over all (s,k) € S¥ x KV equals to

e(m, AJ - e(f-’?n g.Nth m.Q'. J‘l.Ao) = 2 Q-N(Il. k]!’(ﬂl.ﬂ-,k).
(nk)E S¥xKN

ll'lel'mw by A = [Ag,A;, Al the collection of distortion levels, fixed for the current
systen.
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The error probability of the code, for any message m € M, maximal over all attack
channels from A(Q, Qs, P, A;) is denoted by:

efm) - e(!Nr N, N: m, Q’| AJ = J‘wlqnglx}-ﬂﬂ) efﬂl, AJ.

Themuimdmrmhﬁ!ﬁydthemde.maﬁmalomaummkchmm}sﬁom
A(Q; Q’r P!AZJ Quah to:

e=e(fw.gv,N, Q" A) = max e(m), (10)

and Lhenwugeemrpmbabiﬁtgofthewde,mmdmalmaﬂatt&ckd:mdsfmm
AfQ. Q?r'PIA?} aquals to:

E= a(f"lgNINlQ-IAJ I ;_J\I'Tl Z G{m}. (11)
mEM

3 Reversible Information Hiding E-Capacity
Consider codes the maximal error probability of which exponentially decreases with the given
exponent E > 0, (called the reliability)

e < exp{-NE}. (12)

Denote by M(Q", E, N, A) the highest volume of the code, satisfying the condition (12)
for the given reliability £ and the distortion levels A.

The rate-reliability-distortion function, which we call reversible information hiding E-
capacity by analogy with the E-capacity of ordinary channel [10], is defined as:

R(@',B,A) = 0(q",E,A) £ T +los M(Q", E, N, A).

By C(Q", E, A) and T(Q", E, A) we denote the reversible information hiding E-capacity
for maximal and average error probabilities respectively.

In this paper the lower bound of reversible information hiding E-capacity for maximal
and average error probabilities are constructed.

Consider the following function, which we call the random coding bound

R.(Q",E, A) =

=00 e B ey PEP(Q,Ga,1) ACAG OnP0) V:D(@eaoP Bh- oquoponycs 1A 2y (Y A UIK)~

~laaun(SAUSIK) + D(QoQeo PoV|IQ o Qo Pod)~E['.  (13)

Theorem. For all E > 0, for reversible wnformation hiding system with distortion levels A
R.(Q"E,A) < C(Q',E, A) <T(@,E, A).

Corollary 1. When E — 0, from (18) we obtain the lower bound of reversible information
hiding capacity:
R.(Q",E,A) =
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(S \:'..“;:Eh'l}_

{Ie-guralY AUIKY = I e
J L))

= min
aﬁ%a»mﬁw.n AcAag @ ral
Curollary 2: pure reversibility. [f ds = 0 from (1) we hare

R\Q-E. &) = ngn nﬂgm Mng.’l‘.\.: l'-pieamﬁlg'vh-*'s

~Ho(SiK)+ D(Qe P ViQ e Podl— ET.

e prlY AUIR)=

L1

Corollary 3: pure message communications. f 3o = X then

or = i lo.r. 1‘ A !‘:K‘h' ;
RAQ.E.A) “ﬂ“ Nﬁfa,,M%_,,,,-‘mmnﬂi&ahussl p

~lgpiSAUIK) + D@2 PoVIQ oPoA) - El".

{16}

In (15) and (16) P = {P(u.z|s.k), u €U, x € X.seS kek}and A= (&1 A2k

4 Proof of the Theorem

The theorem is proved by the Shannon's random coding arguments, using the method of
vpes. covering lemma and demonstration of a generalization of packing jemma |13. 15. 16].
To prove the random coding bound, we must show the existence of a code with R satis-
fving (13) and
e < exp{~N(E -2},
for any 0 < s < E.

\e will constriict the encoding and the decoding and explore the errors caused by cach.

For encoding we use the idea of Gelfand-Pinsker [2, which is known as random bin coding
techinique (18],

Tiie decoding is based on minimum divergence method, first introduced by E. Haroutu-
nian [19] and developed by M. Haroutunian (13, 14]. The expansion of this met hod, adopted
for data hiding systems, can be considered as semi-universal decoding, as the decoder needs
to know only the specific class of channels, instead of the channel, used by attacker.

Encoding
Step 1. Denote by Q(Q", E) = {¢: Dl(gllQ") < E} und
BES.K= U TVSK). (17)
EQ.E)

; We will construct the code only for (s, k) from TE(S, K), because for sufficiently large
N the probability of (s.k) & T (S, K) is exponentially small:

0""{ U 'z‘;"{s.m} =
W¥QQ.E)

= Q'x TN(S.K < ~NDiqllo*
«lm%-.m {7 ) ‘m%.'h""li{ {qll@")} <
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< (N +1)"" exp{~NE} < exp{~N(E — )}, (18)

where £, > 0.
Step 2. Denote
G(3k) =3 qalsls, k)qu (slk).

Covering lemma. For every type q, conditional type g5, vector k € K¥ there ezists a

collection of vectors
{8 € BY(8k), i =T J},

where
I =exp{N (La(SASiK)+58/2)}, 5> 0

such that the set {T (S[8;, k) j = T X} covers TY(S|k) for N large enough:
J
T (Sk) € U T (5185, k).
J=1

For the proof of covering lemma see [15].
For type g € Q(Q", E) and conditional type ¢ € Q,(g, Ao) denote

(a2, 3) = T, (5185, k)\ }J TN (Si8y, k),
y'<j

therefore for the vectors s from S(g,4s, j), we put into correspondence the vector 8;.j €
01, ).

Taking into account the inequality (7), we can show that for types g € Q(Q", E), ¢ €
Qﬂ(‘?o &0) and any; J = m. B E s{ql Qsj)! Sj

dy(s,8;) = N~' E_n{s. 8ls, 8;)do(s, 8) =

— %9(3! kJﬂfifax kldo(ﬂa i) < Aﬂr i= TJ;

Step 3. Fix the type p = poop; € P(q, g2, A;). For fixed py, E, for each types g € Q(Q", E),
02 € Q(q,A0) and vectors 8, k we choose independently, at random from TN (U8, k) IM|
collections J3(m), m = 1, | M| of vectors uj(m), j = T,J;, where

o= xp (N (Lma(S AUIS, K) +6/2)} (5> 0).

Then for each s € T¥(S|k) we choose such uy(m) from Jy(m), that uj(m) €
T 5(U]8,8,k). Denote this vector by u(m, s,8,k).

II for some s there is no such vector in J3(m), we choose u(m, s, 8,k) at random from
the 7%, u(Uls, 8, k). Denote the probability of such event by Pr{b,e.0(m,8,8,k)}.

Pr{by.g.50(m,s,8,k)} = Pr {ﬁ uy(m) ¢ TN . (Uls,8, k)} <

J=1

% (T2 (Uls,8,10)(7*
< I11t = Pr{uy(m) € Y, . (Uls,8,k)}] < [1 = —f%:—{ﬁm <

=1
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A& Kyed 3
4) }P’l" Ve re(FAL :

— expi{=N(1 SAUIS.K) +6/
< [1 - exp{ ~N{lgmaml nS.K) (@.1), we can

Using the inequality (1 )% € exp{—nt}, which is true for any n aad { €

hat
= Pr{bjamimsikl} £ exp{—exp{Nd/4}}.
Notice that for each m the code contains

J=Jy x by = exp {N (Tous(S A SIK) + Li(S AUIS K)+8/2+ §/2)} =
= ep{N (lonn(SAU.SIK) +8)} >0

vectors 1. q .-‘1_:-&_15'&;
Step 4. The codeword X is constructed in the following way. For each m = 1,12V,

and k we choose at random a vector x(m, s,8 k) from TN (Xhu(m,s 8, k).s.8 ki Ee
It is easy to show that the constructed encoding satisfies the distortion constraint- Ru.ni %
for types p € P(g. g2, A1), ¢ € Q(Q", E), @2 € Qa(g, Ao), taking into account the inequality

(8), we have

(19)

¥ (s, x(m,,8.K)) = N~* Yo n(s, xis, x)di (s, 7) =
e

o E Q('Jl?lﬁl’-ﬂp{u.:]l.i.k)d,(a.:r] < A
vz bk

Denote by eg(m) the encoding error probability for any m € M:

exm< Y @Yal+ X Q"N (s, k) Pr{by g (m. s, 8.K)}-
(s KNETE (S.K) (S KETE(S.X)

Now taking into account (17), (18) and (19):
esm) S exp{-NE-e)}+ T Q@V{TNS K} ep(- exp(N3/4}}
$EQ(QE)

As the number of types g in Q(Q*, E) does not exceed (N + 1)I*! according to type
counting lemma [15, 16] and Q¥ {‘1;"(8.)(}} < 1, we can write

ex(m) < exp{=N(E = 1)} + (N + )" exp(— exp{N§/4}} <

< exp{~N(E - &1)} + exp{~ exp{N§/d} + &1}, (20)

for N large enough.
The attacker chooses the attack channel A from the set A(g, ga. p. A2) as he knows proba-
bility distributions of all random variables. It is clear, that in this case the average distortion

constraint is satisfied:
Y ¥ d¥xy)Ayixptx) =

xEXN yey¥
N
= Bdf(X¥, YY) = & 3 Edy(zu,ta) =

= Y qls,k)aa(3|s, K)p(u, z|s, & k) A(yz)da(z, y) < A,
uzsd by



M. Haroutunian, S. Tonoyan, O. Koval, S. Voloshynovskiy 27

Decoding
For brevity the vector pair u(m, s, 8,k), x(m,s,8,k) we denote by u.x(m,s,5.k).
Decoding rule is the following: eachymdkaredacodedtosurhmmdl, for which
¥ € 155 (Y |0, x(m, 5,8, k), 5,8, k), where g, 43, p, v are such that Digegopeo
ul|@" o qaope A) is minimal.
ThedwodermmnhemmwhthemmagemeMiutnmmittedin the case of
(s.k) € TE(S, K), but there exist the types ¢/, %, 7/, V', vector &' and pair (', &), for which
m' # m or m' = m, dy(s,&) > Ay, with

Y € Ty (YT, x(m, 5,8, k), 5,8, k)N Ty gww (YW, X (', 8,8 k)¢, 8, k)

min
A€Algm.pda)

and .
senBihy oy DA GoH V@ oGiopoA) < | min  Dlgomopor|@ogmopos). (21)
Denote by

D={9,4,p.V, 0. chv,v : (21) is valid} .

The decoding error probability ep(m) of message m € M, maximal over all attack chan-
nels A € Alg, g2, p, Az) can be estimated in the following way:

< N
S i T TR

AN {U T ou(Y 10, x(m, 5,5 k), 5,8 k) n
D

N U U TypvY',¥(m'¢,8,k),¢, 8, K)|x(m,s,8,k) } <
mim or }"ET'{‘(W#) ;

[m'r.']‘-{ m'mm, dg(sd')>0g
€5 ’T,_“;, po(Y 0, x(m,5,8,k),8,8 k)N
D

n U U Q;r%m,(wu'. x’{m". 8‘, ﬂ'| kJ| d, ﬁ’| k) x
W] 8 } ¥ W

2 QM(sk)AN(yx).

(BJETE (SK)
The last inequality follows from (4), because for fixed types of x and y the probability
AN(y|x) is constant,

For the estimation of decoding error probability we use the statement of the following
lemma. }
Packing Lemma. For any E > 25 > 0, fized g € Q(Q",E), ¢ € Qa(gq, Ao) and covert
channel p € P(q, g2, Ay), there exists a code with

x max
AeA(q,2,p,82)

M| = . : ; 2
M| = o {NM?-::??AI wﬂtmﬁ?mmﬂsﬁum"' AT
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-l......tSf\U.-ﬂh'}+DlﬂaorcrlQ‘ﬂoﬂpod}-5*35-'}- (22)

such that _ A
Ufu‘m!k.smdl.thmmu.x(m.l.l.k}mmaford;ﬂ'ﬂrﬂlm=t .

o) for sufficiently large N the following inequality holds for & types ¢ € Q" ELE €
3’.'{,«.5..;. ¥ ehﬁ'(tq'.q;..a,}. v.t". and for all m = L,[M|, (8.k) € TN (S.K). 8 €

7Y (Sis.k) '
lﬂnll’imx(m.s.l.k).s.&k)ﬂ

I‘ Il |
T i o' a & ) ar ] .
U é‘f-sy.«{?lu.x{m.s.i.k}...e.ml5

i, N
RPN S I L e

< ITY . (Yinx(m,5,8.k),8,8,k)Ix

| I ’
-N|E- i ; Morodiepod) . (23
xexp{ :\|E ’ wjm’ﬂ(q ogaopovi@Tegep e ]l }

In other words, the lemma guarantees the existence of a good code, the codewords of
which must be far from each other in a sense that all g, v-shells have possibly small intersec-
tions.

Proof of the lemma is presented in the next section. Now we can bound the decoding
error probability using (3), (21) and (23):

ep(m) € gatp{NHw,_,(Yi.\')}x

mp{—N( z-w%n,)ﬂ(q'oq;oﬁov'"@'oq’:aﬂc:ﬂ)} x

X amax (exp{~N(Homane(Y1X) + D(@llQ) + D(vllAlG: 02 Pl =

= gﬂp{N{Hmav(Hx ) — E = Hyqpo(Y1X)-

= euiin | Digomepov|@ eqope Ayt

+M¢"ﬂ'im!pw°é°p'“’“q.odw’u))} »
< (N 4 1)2SURHASPIRI 2N A ISP RIS x| - N E} <
< exp{~N(E - e2)}, (24)
for N large enough, where £; > 0,
Taking into account (20) and (24), the error probability of the message m € M can be
bounded in the following way:

e{m) < exp{-N{E - Cl” + p{-— W{N&fﬂl] + g‘} a2 ﬁp{—N[E 1 52)} <
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<exp{-N(E—-¢)}, £>0.
Taking into account the continuity of all expressions, when N — oc, arbitrary probability
distributions can be considered instead of types.
The: theorem is proved. -
5 Proof of the Packing Lemma

First we shall show that if for any code (23) is satisfied for any ¢/, ¢}, ¢/, v, v/, then point
1) of lemma is true. 'Ihpmvethat,itissnoughtodnmeq’=q,qg=%p‘=p,;-'.= v,
and “ﬂ'q'n";r‘i’mﬁﬂffOﬁOP’oflIQ'oqéop'c-A) < E. Really, if we suppose that for some

m# m' u,x(m,s,8,k) =o', x(m’,s,8,k) then in (23) we shall have
|Tolen (Y 10, X(m, 5,8,k),5,8,k)| <
< [T (¥ [0, x(m, 5,8, k), 5,8, k) x
xerp{-—N(E—Awﬂndm)D{q'oqQoﬂodHQ'oq;op’oA))},
which is impossible,

Now we shall show that (23) is true for any ¢/, @3, 7 and v'. First consider the case when
¢, @, ¢ and v' are such that m«‘«"“}#ﬂ‘o{""’f’“”"‘”’l"?"’%°”'°AJ > E. Then

+
E
and (23) is valid for any |M]. It is left to prove the inequality (23) for

17'(0'-3}=‘{f.aénp',ﬂ’:Ag{pénwmlﬂ(q'ﬂ'qé"ﬂw'ﬂﬂi‘ °gop o) <L}

i {-le_mm'.. s D0 2tV oI o gop 0 )

Denote
Bu(d 5,7\ v,v') = (N + lJIJJIM[x"qlmx

ey {N (E = a4y D@ 0 hor o¥|Q 0 oyl 0 A) — Hygpu(YIU, X, 5, 8, KJ)} 3

P m)grﬁs.x)mn*’ 2o(Yu,x(m,s,8,k),8,8,k)

N U U T X8, 8,K),8,8,K)
(m'.l'J:{ Pt il D } T (511K)

and
By, = 2 z Bn(d, @, 7, v, 7).

v o5hp vED'(Q,E)

Itisclmt.hntifB,,.glforallmEM.thenthepointi!}oflemmaistrue. So to prove
lemma it is enough to prove that B,, < 1 for all m € M.
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Notice that if for some code the following inequality holds ‘
(25)

s 13 »1,"‘ Bie s
M2 |
: = by m* then
for at least |M]/2 indices m. Further, if we denote such indices A

then <1 i ",
B ?&SIWM'MM‘. Hmthluumawilibepumd:ﬂornm 1
v i1, (Y AUIK)-
2"“"{"\ 2D D i S \

—['“”[31\[’-.5”‘-}“‘ D{quhopngewnpo.ﬂu— E- 2.’!’} < !-"'i s l:'ﬁ}

» (Y {" & =
s erp{-—’\ AN A e Digeure SR )
g (SAU.SIK) + Digomopari@ emeps A) — E =41}
(25) will be satisfied.
To prove that (25) holds for some code it suffices to show that for random code
EB, < ;:- m = LM, @n)
To this end we observe that
E|T% e (YIUYXY, S, 5%, KN
n U U  TweYIUVXY 8,8,K) <
(i e A L)
< “Z):m Pr{y € T, . (YIUYXY, 8%, 8% K
nu U U T YIUYXY,4,8.K) ) <
~ RET) (SR VETT, (SN

<Y T Priy € TX, . (YIUYXY, 8%, 5% K)} x
™' yeyy

xPriye U T v (YIUYXN ¢ 8,1) ),
tl.-'n'r.’r‘.i(-#.mn

hfxam the events in the brackets are independent. Let us note that the first probability is
ﬁl.lenml from zero if and only if y € T,i, solY1K), in this case for sufficiently large N' we
ave

N oo
Prly € T, »(YIU¥XY, 5%, 8% 1)) = Tamanlls X, 5,5l K)|

T, U XS 8]~
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Taking into account the construction arguments of the code, the second probability can
" be estimated in the following way:

Pl‘ e € U 7}’?"_',()'[(;?)("' "t yl k) S
(MET}',‘(#&&J

<Pr{yelJ u Lgr v YIUN,8,8,1)} <
i Ty g, (S5 )
<

; N
<3-Priye Taww(YIU} K)} < J_h;l’fq#(fﬂli}rn
= Vot
<(N+ IJMIK? EIP{—N(!'-&.#M(Y A U'K) - Ifrﬁ-ﬁ(‘s AU, gIK} - 6{2)}

At last we obtain:
E Iﬁ';:!.nua,lufx”. sy 5y k) n

n U U U 7;"%.,’.# (YlUfXN, E" E's k)
m’ vea;':'_,; (81ie) -'E‘r&mr.u
< (N + )MIRGHISED M TN (V]| x
#oxp{-Nlmas(Y AU,X, 8, 81K) + Iy gy (Y AUIK) = Iy (S AU, SIK) = 6/2)}.
From (26) it follows that for any (¢, ¢}, 7/, v') € D/(Q", E)

IM| < exp {N (Iy gt (Y AUIK) — Iy . (S A, 1)+

+4€A[F.én.#.ﬁ|) D(deqaop ov/||Q* o ghop/c A) ~ E - a‘)}
and we obtain

<

EB,, < (N + 1)MIKIGSPRIDHSI41)

e )% exp {N (Iygpw(Y AUIK) ~ Iy qm (S AU, 8|1K)+
Y ¢4 p VED(Q,E)

+AEA(,’!1§,A,,DW°95op’ov’IIQ'oq’,op’oA}—E-a)} x
X BXP{NH,mm(ﬂK)}x
*xp{=Nlamna(Y AU, X, 5, 81K) + Iy g0 (Y NUIK) = Iy (S AU, B|K) — 6/2)}
’f“’“’{”( ~ aeaiPy ay P oo 0¥ |Q 0 g oy 0 4)-

' ~Hyasn(Y U, X,5,8,K))} <

< (N + 1)MIKIISTXAV IS ¥1+1) VT exp{~N6/2} <
YV o @pVED'(QE)

< (N + 1)MICIOSTAIDHSTI 4 SIS AT s g0}
which for large enough N proves (27) and hence lemma.
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wwunwhwiwl Ynpudnpiwb gGwhwunwlwbp
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