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SOME CRITERIA OF COMPLETENESS FOR AXIOMATIC SYSTEMS

IN THREE-VALUED LOGIC*

erties mmnhmtkqnmhnndnul.LMm'g three-wvulued
oo dmn:r‘:uk.wmpkma—") are Investigated. For every axiomatic system [}

based on classical logic its image Luk(f) in the framework of J.Lukasiewicz's logic
Lﬂ:uf:odnud.ﬂ;t is proved that 27 (correspondingly, ) is complete in the classical sense

if 0 (correspondingly, Luk(()) is Luk-complete. These criteria are used for the
“lml:tg:ym uf(Luk-completmm of some arithmetical systems In the signatures {0 =)

and {0, <.=}

§l. INTRODUCTION. Formal axiomatic systems based on J.Lukasiewicz's three
valued logic [4] are considered in (8], [1113). In particular, the property of Luk-
completeness of axiomatic systems (i.e. completeness from the point of view of
J Lukasiewicz’s logic) was investigated in (12] and [13]. This property may be described
as follows: an axiomatic system € in a given language is said to be Luk-complete if for
every closed formula in this language the following statement holds: either B, or -8, or
(B > ~B)&(~B > B) is a corollary of Q. It is proved in [13] that, for example, the three-
valued analogue of M.Presburger’s arithmetical system is Luk-complete in the mentioned
sense (though it is not complete in the classical sense).

Below two general criteria of Luk-completeness are considered. For every axiomatic
system § based on J.Lukasiewicz's three-valued logic its classical image ' will be defined
as in [13]. Similarly, for every axiomatic system Q in the framework of classical logic its
Luk-image Luk(Q) will be introduced. It will be proved (theorem 2.1) that a classical
axiomatic system €1 is complete in the classical sense if and only if Luk(£2) is Luk-complete.

iThis research is partially supported by the grant INTAS 2001 - 447,

174

!



Similerly, an axiomatic system Q based on J.Lukasiewicz’s logic is Luk-complete if and
' only if @ is complete in the classical sense (theorem 2.2). The proofs will be given in
the sections 3 and 4. Theorem 2.2 will be used in the section 5 for the investigation
of Luk-completeness for some arithmetical systems HLUS and HLUL in the signatures,
correspondingly {0,',=} and {0/, <,=}.

menommatthmhmbammhismbetwmmdomaﬁcsmmmﬁderedin
classical logic and in J.Lukasiewicz's logic. The transformations of axiomatic systems
mentioned above are not reverse one to another. The system (Luk(Q))* is in general not
equivalent to €); similarly, Luk(Q0*) is in general not equivalent to . The signatures of
02 and Luk(€)) are the same, but the signatures of Q and O are different. The relations
between mentioned systems need to be additionally investigated.

The formulations of theorem 2.1 and of some part of theorem 2.2 were given in [14].

§2. Let us give definitions for some notions and notations used below; most of them ere
given in {13] and we shall recall these definitions here.

We shall use the language of first order predicate calculus ([1]-[3], [5], [13]) based on
the logical operations &,V,>,-,¥,3, and containing enumerable sets of predicate and
functional symbols; the symbols of constants T (,,true”), F (,false”), U (,;undefined”)
are also introduced. The notions of term and formula are given in a usual way ([1}-[3], [5])
as well 25 main notions connected with them. By LP (correspondingly, L*P) we denote
the set of all predicate formulas (correspondingly, the set of all predicate formulas, where
the symbols 7, F, U are not contained). Weak implication (A D B), weak negation -°A,
equivalency A ~ B (where A and B are any formulas) are defined, correspondingly, as
(A5 (AD B)),(AD~A),(AD B)&(B > A). A signature Z is any set of predicate and
functional symbols. By L(Z) (correspondingly, L*Z)), where Z is a signature, we denote
the set of all predicate formulas belonging to LP (correspondingly, L*P) and containing
only such predicate and functional symbols which belong to Z. By Subst(A, z, 8), where
A is a formula, z is a variable, s is a term, we denote the formula obtained from A by the
substitution of s for all free occurrences of z in A; we consider only admissible substitutions
(in the usual sense). By (VV) (correspondingly, (33)) we denote any group of universal
(correspondingly, existential) quantifiers; by (Y¥)(4) (correspondingly, (333)(A)), where
A is a formula, we denote the closure of A by universal (correspondingly, .existential)
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_ n‘mcmmof.\dintothem{ﬂ,ld}.whaelhemmbmﬁ.l.ﬂmm
i o5 numerical codes of logical values: 2 for wtrue”, 0 for ,false”, 1 for ,.undefined”.
A Lukvinterpretation oo M of an n-dimensional predicate symbol is any n-dimensional
three-valued predicate on M: a Luk-interpretation on M of an n-dimensional functional
symbol is any mmdn-:h&nmdeg!uoﬂ\l into M. A Luk-assignment on M
for the signature Z is defined as the set of Luk-interpretations on M for all predicate and
functional symbols belonging to Z .
wmﬂmummdwmmmimmedmdhgmthemhd
J Lukasiewicz's logic ([4]; see also (3}, (7], (13]). The logical values of T, F,U' are cor-
respondingly, 2, 0, 1.The logical values of (A&B), (AV B), (A D B), ~A are correspond-
ingly, min(z, ¥}, max(z, ¥}, 2-max(0,z ~ y), 2%, where z and y are logical values of, car-
respondingly, A and B. The quantifier Vx (correspondingly, 3x) is interpreted as a trans-
formation of three-valued predicates; namely, if p(y, 1, 22, ... Ta-1) I8 an n-dimensional
three-valued predicate on M, then the predicate Yyp(y, 71, T2, ..., Tu-1) (correspondingly,
Syply, Tty T2y s Tn-)) 18 defined as an (n — 1)-dimensional predicate on M such that its
logical value in the point (21,22, -1 Tn-1) is the minimum (correspondingly, maximum)
of values ply, T1, T2, Zo-1) forally € M.

The interpretation of a given formula A concerning & Luk-assignment § on M is defined
in a natural way as three-valued predicate obtained by replacing of every predicate and
functional symbol in A by its interpretation given in §. Ariomatic system in o given
signature Z is defined as any enumerable set of closed formulas (A, Ay, ...) (probably,
finite or empty) in the language L(Z). A Luk-assignment & on Z is said to be Luk-model of
an axiomatic system (A;, Ag, ...) in Z if the interpretations of all axioms A; concerning §
are equal 1o 2 (,,true”). An axiomatic system is said to be Luk-consistent if it has a Luk-
model: in the opposite case it is said to be Luk-inconsistent. A formula B in a signature
7 is said to be Luk-corollary of a given axiomatic system 2 in Z if the interpretation of
B concerning every Luk-model of { is a three-valued predicate having a logical value 2
(,true”) in every point. The Luk-theory based on € is defined as the set of all its closed
Luk-corollaries. A formula B in Z is said to be identically Luk-true if its interpretation
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concerning every Luk-assignment on Z is a three-value predicate everywhere equal to 2.
A Luk-consistent axiomatic system 0 = (A;, Az,...) in a signature Z is said to be Luk-
mmpteuifforﬂwynlnsedformulaBinL(Z}thefonwingmdiﬁmhalds: either B, or
=B, or (B 3 =B)&(~B > B) is a Luk-corollary of Q.

The predicate calculus HLU in the language LP is defined as in [13] (cf. also [9], [11])

by the rule of inference modus ponens
A(ADB)
B
and by the following logical axiom schemes and axioms (where A, B, C are any formulas

in LP; z is any variable; D is any formula in LP which does not contain free occurrences
of z, s is any term):

(HLU;) (M)(AD (B D A));

(HLUz) (W)((A>(B>C))> (B> (ASC));

(HLUs) (M){(ADB)>((B>C)>(A>C));

(HLUy)  (W)((AD (AD B)) D ((=B > (=B > -4)) > (AD B)));

(HLUs) (W)((AD B) > (=B D -A));

(HLUs)  (W)(A D ~—A);

(HLU;)  (W)(——A D A);

(HLUs)  (WV)((A&B)3A);

(HLUg)  (W)((A&B) > B);

(HLUw)  (W)((C > 4) > ((C > B) > (C > (AkB))));

(HLUy)  (W)(AD (AV B));

(HLUa) (W)(B > (AV B));

(HLUi3)  (W)((ADC)>((B2C)D((AVB)>C)));

(HLUw)  (W)(V2(A) D Subst(4, z, s));

(HLUis)  (W)(D > Vz(D));

(HLUi)  (W)(Vz(A > B) > (Yz(A) D Vz(B)));

(HLUy7) (W) (Subst(A, z,s) D 3z(A));

(HLUs)  (W)(3z(D) > D);

(HLUs)  (W)(V2(A 3 B) S (3z(4) > 3z(B)));

(ALUx)  (W)(Vz(A 5 (A > B)) O (3z(A4) D (3z(4) > 3z(B))));

(HLUz)  (W)(((A > =4) 5 ~(4 > ~4)) D A);
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HLUz) T;
(HLU») —F:
(HLUs) (U2°Uk
(HLU») (U 20U ]
Thepmd'mtecnkmuuilhinb'l’isdﬂﬁndﬂiﬂ!mlb!“hemhmdﬂlm |

ot by the axiom schemes HK - Hx, where the schemes HK, - HKy and HK; - HK0 ':
coincide, correspondingly, with HLU, - HLU; and HLUs - HLUx: the axiom scheme HK, |

has the following form:

(HK) (W)(A>(4DB)>(4> B)). :

The deducibility of a formula B from formulas Aj, Az, ..., Aa in the caleuli l{ll.l‘ and
HK will be denoted, correspondingly, as As, Az, ... An Frry B and Ay, Ay, ..., An Fyx B.
Sometimes we shall write Y Fyre B or £ Fyx B, where £ is an infinite set of formulas;
cuch a notation will mean that the formula B is deducible from some finite subset of ¥
in the corresponding calculus.

The calculus HLU is an extension of the calculi HS, HL, HSU considered in [6]-9], [11],
[13]. Let us recall some deductive properties of HLU (see [13]). The deduction theorem
for the calculus HLU is given in the following forms (see |71, p.106; [13], p.40):

(1) if Ay, Ay s Any BFaro C then Ay, Az Aa b B2 C;

(2)if Ay, Ag, ooy Any B Faze € and Ay, Az, ey A, ~C Fypy —B then Ay, Ay, .., Ay Fapp

B>C.
The classical form of the deduction theorem (if Ay, Aa, .., Ap, BF C then 4, Ay, ..., 4y
B2 C) is in general not valid in HLU. The law of double negation, De Morgan’s laws,
the law of contraposition (as well as the law affirming that ,a contradiction implies all”)
are valid in HLU:

Fuww —~A~ A; Fyp ~(A&B) ~ (mAV-B); Faw ~(AV B) ~ (~A&-B);

Farr ~Vz(A) ~ 3x(~A); Fare —3x(A) ~ Vz(-A)Faww (A D B) ~ (-8B D -4)

The rules of introduction and elimination of logical connectives & and V similar to
the corresponding rules in the classical predicate calenins ([3], pp.98-101) are also valid
in HLU.

The mentioned deducibilities and theorems are valid also for HL, HS, HSU which are
subealeuli of HLU ([6], [7]-[9], {11], [13]). Let us note that HL is a subcalculus of HLU

178



&

in the language L*P; it is defined by the rule modus ponens and by exiom schemes HL,
- HLy which are formulated, correspondingly, ss HLU; - HLUy;. The calculi HS and
HSU describe a constructive (intuitionistic) variant of J.Lukasiewicz’s logic, i.e. so-called
wSymmetric constructive logic” ([6}, [7], [10], [12], [13]). The calculus HSU is different
from HLU only in the following point: the axiom scheme HLUj; is absent in HSU (and it
is in general not valid in HSU). The calculus HS is a subcalculus of HSU in the language
L*P; it is defined by the rule modus ponens and by the axiom schemes HS; - HS;; which
are formulated, correspondingly, as HLU) - HLUy,. Though the law of double negation is
valid in HLU; HSU, HL, HS, however the law of double weak negation
F="="AD A

(which is actually equivalent to the scheme HLUz) is valid in HLU and HL but not in
11SU and IIS. Let us note that ~°-°4 and A are in general not equivalent in HLU; we
have only

Friy (A 2 ~°~°A)k(~"~4 D A).
The law of excluded middle (- AV -A) and the law of contradiction ((- —(A&~A)) are
in general not valid neither in HLU, nor in its subcalculi HL, HSU, HS.

A formula A in a signature Z is said to be HLU-corollary or HK-corollary of an
axiomatic system (0 in Z if, correspondingly, @ Fyry A or 0 Fux A. The following
property of completeness is established in [13] for the calculus HSU: a formula B in a
signature Z is a Luk-corollary of an axiomatic system © in Z if and only if it is an HLU-
corollary of 2 ({13], theorems 3.1 and 3.2). Besides, an axiomatic system £ in a signature
% is Luk-inconsistent if and only if every formula in L(Z) is an HLU-corollary of Q. The
calculus HK is equivalent to the classical predicate calculus (for example, to the form
of this calculus given in [1]), so analogous well-known statements are valid also for HK,
for axiomatic systems and their models considered in the framework of the classical logic
([1H(3), [8])-

We shall use the operations +,—, @ defined in [6], [7), [13]. Let us recall their defini-
tions. The operations + and — are based on a correspondence between predicate symbols
p and pairs of predicate symbols (p*,p~); we suppose that this correspondence is intro-
duced in such a way that the following conditions hold: (1) for every predicate symbol p
there exists a single pair (p*,p~) corresponding to p; (2) in every pair (p*,p") the sym-
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1) If A is an elementary formula having the form p(sy, &2, 8.), then A* is

pr(s1. 82 m8a)y AT B8 P (81,82, o1 Sn)-

2) (B&C)* is (BT&CT); (B&C)™ is (B~vC)

3) (BVC)*is (B*VC*); (BVC)" B (B~&C).

4) (~B)* s B~ ; (~B)" is B.

5) (B2 C)* is (B 2 CH&(C~ 2 B)); (B2 C) is (BH&CT).

6) (vz(B))* is ¥x(B*); (Vz(B))" is 3x(B").

7) (3x(B))* is 3z(B*); (3x(B))" is Vx(B").

§) T+ is (Do D Do); T~ is ~(Do 2 Do)-

g) F* is ~(Dg D Do)i F~ is (Do D Dy)-

10) U* is (Do D Do); U~ is =(Do D Da)-

Clearly A* € L*P , A~ € L*P for every AelLP

Ha[wmu]adaxprmathmvdwdpmdimwumﬂdudinthe&mmhd
J.Lukasiewicz's logic, then the predicates expressed by A* and A~ will be considered as
classical two-valued predicates.

The formula 8(A) obtained by the operation # from a formula A € L*P is defined
inductively by the following rules:

(1) If A is an elementary formula, then 8(A) is ~~°A.

(2) 6(A&B) is ~°(~(A)&~(B)).

(3) 8(A v B) is 6(A) v 6(B).

(4) 6(A D B) is ~~°(6(4) D 8(B)).

(5) 0(-A) is ~°~(8(4)).

(6) B(vz(A)) is ~~"Vz(0(A)).

(7) 6(3z(A)) is 3z(6(A))-

Clearly, 8(A) € L*P for every A € L*P.

R
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If p is any n-dimensional predicate symbol, then the formula
228 N2 (P (21, 25, ..., 20 )itp (21, 25, ..., Zn))
will be denoted by Dis(p); this formula expresses the following condition: the domains
of truth for the predicates g™ and_p~ are disjoint. If P is any n-dimensional predicate
symbol, then the formula
VzVz3. Vza 0z, 23, ..., Zn) V —p(z1, 22, ...y 2,))
will be denoted by Ezm(p) (,,the law of excluded middle for p"),

Let §1 = (Ay, Ag, ...) be an axiomatic system in a signature Z considered in the frame-
work of J.Lukasiewicz's logic. The classical image 0* of the system () is defined as an
sxiomatic system in the framework of the classical logic consisting of the axioms A" for all
A; belonging to £}, and Dis(p) for all p €Z. The system 0+ is considered in the signature
Z* (and in the language L*(Z*)) consisting of the symbols p* and p~ for all p €Z and of
all functional symbols belonging to Z (cf. [13]).

Let €1 = (Aj, Az, ...) be an axiomatic system in a signature Z (and in the language
L*(Z)) considered in the framework of the classical logic. The Luk-image Luk(Q) of Q is
defined as an axiomatic system in Z considered in the framework of J.Lukasiewicz’s logie
and congisting of axioms A(A;) for all A; belonging to Q and Ezm(p) for all p €Z.

Theorem 2.1, An axiomatic system £ in the framework of classical logic is complete in
the classical sense if and only if the system Luk(qQ) is Luk-complete.

Theorem 2.2. An axiomatic system (2 in the framework of J.Lukasiewicz's logic is Luk-
complete if and only if the system O* is complete in the classical sense.
The proofs will be given below in the sections 3 and 4.

§3. In this section we shall give a proof of theorem 2.1. We shall use the operations p,
On considered in [13] and the operations [)-, and []..., considered in [7]. Let us recall their
definitions.

The operations p and O, are defined as follows. For every natural number 7 and for
every formula A €LP the formula p(n, A) EL*P is defined as the conjunction of formulas
Dis(p) for all p contained in A or having indexes less or equal to n in the sequence of all
predicate symbols belonging to LP. The formula O,(A) €L*P, where A €LP, is defined
as p(n, A) € A*. The operation O, corresponds to the operation 0 introduced in [7];
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pamely, Q(n, 4) in {7] has the same sense a8 On(A).
mopuniomﬂ-andﬂ_.mdeﬁndnmwmmmi" o

7] (see 71 137 and p. 146). The formulas |4}~ and [A].~ are defined for every formula
A €L*P such that all predicate symbols contained in A have the form p* and p~. These
formulas are obtained by the following transformations: the formula AL is obtained
from A by replacing every elementary formula p* (81, 82, - 8a) in A by plsy, s, .80,
and every pr(81. 82, 8a) BY ~p($1.82,.-+ 8a). The formula [A]~~ is obtained from A by
replacing every elementary formula P (81,82, s 8a) In A by ~"p(sy, 52, 84), and every
(91, 82, 5n) DY = —p{81, 820 s 8- x

The proof of theorem 91 will be based on the following lemmas 3.1-3.10.

Lemma 3.1. If Ais any formula, A €LP, and n is any natural number, then the sets of
free variables in A*, A, 0a(4), [0(A7)]—, [0(A"))-~ are the same as the set of free variables
in A: if A is any formula, A EL*P, then the sets of free variables in 6(A), [4%]-,[A7]~ are
the same as the set of free variables in A.

The proof is easily obtained by induction on the process of constructing of the formula
A

Corollary. If a formula A €LP (correspondingly, A EL*P) is closed, then the formulas
A+, A-.0u(A) for any n, [8(A*)]~- [8(47)] (correspondingly, 6(A), [47]~, [A7]) are
closed.

Lemma 3.2. For any formula A €LP

Fax —AT&AT]-
Proof: If A is an elementary formula having the form p(sy, 83, .., 8,), then, obviously
Fux =81, 82, ey $0)&P(81, 82, 1.1 8a))-
The proof in general casc is easily obtained by induction on the process ol constructing
of the formula A, using the definitions of A* and A~.

Corollary. If A ELP, n is any natural number, then i [p(n, A)}..

Lemma 3.3. For every formula A €LP
Fax (A2 B)*]- ~ ([A*]-2 iﬂ+]_.)
Proof: Using the definitions of the operations -+, —, ||, we obtain that [(4 2 B)'] is
(1A% > (AL 3 (BB > A N&((A*)&lB]) > [47]1).
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But if P.Q, R, S are any formulas in LP such that
Fax ~(P&Q), Fax —(R&S),
then it is easily seen that
Fux (P> ((P > R)&(S > Q)))&((P&S) > Q)) ~ (P S R).
This completes the proof, taking into account the preceding lemma.

Lemma 3.4. For any formulas A and B belonging to LP

(a) Fugy ~"A D 4; (6) Fary A D ——°4;

(e)A gy A; (d)A Fpry ~—°A;

(&) Faoy =~ A ~ ~—°—c4 (f) Fary ==°(AV B) ~ (~~*Av ~°B);
(9) FrLy ~—°32(A) ~ 3a(-—"A); (B) Py ~A > -°4;

()AFyry ~*A ~ = 4; U)AFnLy ~°A ~ - 4;

(K)AV A Fyry A ~ A DAV -Atgry —*~A~ A

(m} FuLy —|—|°{—|—|°A&—s—|°B) ~ —n—f"(A&B),
Proof: The statements (a)-(g) are proved in [7] (see [7], lemma 9.2, p. 126) for the
calculus HS; these proofs are valid also for HLU. The statements (h)-(m) are easily proved
uging the deductive properties of HLU mentioned above.

Lemma 3.5. For every formula A el *P
Fux A
if and only if
Facw 0(A). .
(So. @ is embedding operation from HK to HLU).

The proof is given in [7] (see [7], theorems 9.1 and 10.4, p.125, p.154, pp. 126-129,
137-141, 155-156; cf. also [13], lemma 8.1, p.57) for the calculus HL; similar statement for
HLU is obtained using the fact that HLU is a conservative extension of HL ([13], corollary
of lemma 6.6, p.51).

Lemma 3.6. For every formula A €LP and for every natural number n

Fay A
if and only if
Fux On(A).
(So, Oy, is an embedding operation from HLU to HK).
The proof is given in [7] (see [7], theorems 9.3 and 10.6, p.125, p.154, pp.131-137, 146-
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150, 155-156; see als0 (13l |
R
i

cases connected with logical constants is easily obtained.

Lemma 3.7. For every formula A €L*P
Fax BA)T)-~ A

Fax [0(A)7]-sin-A
The proof is given in [7] (see [7], lemma 9.10, pp. 138-140; cf. also [13], lemma 8.11,

p.60) for the constructive (intuitionistic) predicate calculus; then it holds also for HK.

Lemma 3.8. For every formula A €LP
Farr [B(AY =~ %4 .

Fary [8(A)71-sin =" |

The proof is given in [7] (see [7], lemma 9.14, pp. 146-149; of. also [13], lemma 8.13,
pp. 60-61) for the calculus HS; then it holds also for HL; the proof for additional cases in
LP connected with logical constants is easily obtained.

Lemma 3.9. For any formulas Ay, Az, s belonging to L*P

ro O(A e Ase. & A) ~ 0 (0(A)&O(A2) .. &B(A,)).
Proof: If n = 1 then the deducibility
Faww 0(4) ~ ~=°0(A;)

is obtained by the induction on the process of constructing the formula Ay, using the
points (e), (), (g) in lemma 34. If n = 2 then the required deducibility is obtained
directly from the definition of the operation 6. 1f n > 2 then the required deducibility is
obtained by the induction on n, using the points () and (m) in lemma 3.4.

Lemma 3.10. If © is an axiomatic system considered in the framework of classical logic
then € is consistent in the classical sense if and only if Luk(f) is Luk-consistent.

Proof. We shall prove that £ is inconsistent in the classical sense if and only if Luk(€)
is Luk-inconsistent.

Let us suppose that = (A;, Az, ...) is inconsistent in the classical sense. Then for
some n

A1, Ay, ooy An Farie (Do D Dy),
where Dy is a fixed closed formula, Dy € L*P. So, we have
Fuk (A1&dak...&A,) D ~(Dy D Dy),
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or, by lemma 3.5
Fuoy 0((AdeAsk.. &A,) > —~(Dy o D)),
Using the definition of 6, lemma 3.9, and the points (c) and (d) in lemma 3.4, we obtain
(A1), 6(Aa); ..., 6(As) Frrpy (= Dy > Dy)).
But the formula 0(=(Dy = Dy)) is
==*-==%(8(Dy) > 8(Dy))
or, which is equivalent in HLU,
~=*=*(8(Dy) > 6(Dy))
However any formula having the form (A > A) is deducible in HLU, hence, using the
point (i) in lemma 3.4, we conclude that the formula 6(~(Dy > Dy)) is equivalent in HLU
Lo
6(8(Do) > 6(Dy))
hence
O(A1),0(Az), ..., 0(An) Frzy ~(0(Dy > 6(Dy)),
or
Luk(Q) Fg1u —~(6(Dy > 8(Dy)).
From other side, obviously,
Luk(Q) kg 8(Dg > 6(Dy).

8o, Luk(f1) is Luk-inconsistent.

Now let us suppose that Luk(Q?) is Luk-inconsistent. Then for some n and m

0(41),0(A2), ..., 6(An), Ezm(p,), Ezm(py), ..., Exm(pm) Fazy =(Dg D Dy),
where Dy is a fixed closed formula in L*P. Using the form (1) of the deduction theorem
for HLU mentioned above we obtain that the following formula
(0(A1)8b(Aa)e...&0( An) e Ezm(pn) & Ezm(py)&... & Ezm(p,)) D ~(Do S Do)
is deducible in HLU. Let us denote this formula by Q. So, FyLy Q. Using lemma 3.6, we
conclude that for every natural number [
Fax 0i(Q),
that is
Fax (p(1, Q) > @),

Now, using the theorem on substitution of formulas for predicate symbols in formulas

of the classical predicate calculus, we can conclude that the transformation [}. preserves
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in HK; so, we have

the deducibility of formulas
FEx b-‘uo Q) 2 Q.I'-t

that is
Fux (L Q- 2 Q7]

or. mﬂncﬂmﬂu\ of].emmﬂ&--

Fax Q%]
that is
F e [((B(AD&A(A)E-- LB(AEEzm(p)&Erm(py)&.. & Exm(pm)) 2 ~(Do 3 D))l
Umm&SandSa we can conclude that
Fa l_,h&,.-i,.L...a.-l.k[EmtprJ-&'Em(m)*]-& &LIEzm(pm)T]-) 2 (Do 2 n,)f"
or

Ar, Agy coes Ans [Exm(p) 7]~ [Ezm(pa) fmy o [Exm(pm)*]-) Fax ~I(Do 2 Da)*}-
But |[Exm(p:)*}- is Exm (»:); so, obviously,

Fux [Ezm(p)*]-
for | < i < m. Besides, [(=(Do 2 Da))*]- s [Dg &Dg -, and we obtain
Ay, Ag, oo A Pk (DS &Dg |-
From other side, using lemma 3.2, we have
Ay, Agy ooy Ag P DG &DG |-
So, the system {2 is inconsistent in the classical sense. This completes the proof.

Proof of theorem 2.1: Let 2 = (Ay, Az, -..) be an axiomatic system in a signature Z
(and in the language L*(2)) considered in the framework of classical logic. Let us suppose
that € is complete in the classical sense (hence it is consistent in the classical sense). Let
B be any closed formula in the language L(Z). We shall prove that either Luk{Q) k10 B,
or Luk(Q) Fazy —B, or Luk(Q) Frzv (B D ~B)&(=B D B) (this means that Luk(Q) is
Luk-complete).

Let us consider the formulas [B*]- and [B~]~. They are closed by the corollary of
lemma 3.1. We have, for some n (because 0 = (Ay, Ag, ...) is complete in the classical
sense):

Ay, Agy ooy An Pk 0] B,
Ay, Ay An Frix T1B7 )
where o and T are either empty, or negation symbols. They cannot be together empty,
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otherwise we could obtain, using lemma 3.2,
Ar Az, .., Ay ryy [BY&B),
AL Ay, ..., An -y ~[B* LB,
and £ would be inconsistent in the classical sense, but it is not so.
Further, we have
Fax (A kAl &A,) D o[ BY)-;
Fax (AkAdk. &A,) D 7[B7];
hence, by lemma 3.4,
Faoy 0((A Ak &A,) D o] B*].);
Faww O((ArdeAsk..&A,) > 7{B]).
Using the definition of the operation #, we obtain
Fury ~*(0((A1&Az&.. . &A,) O ~—°08)[B*].));
Fawy =" (0((A1&Ak..8An) S ~-"76)|B~].));
or, using lemma 3.9 and the points (c) and (d) in lermma 3.4,
(A1), 0(Aa), ..., 0(An) Frw o6([B*].);
0(A1),0(Aa), ..., 0(An) Fapy 78((B7)-).

Now let us note that the formulas [B*|. and [B~]. are obtained from B* and
B~ by such a substitution when every elementary formula p*(s1,83,..., 5) is replaced
by p(s1,83,..., 8), and p~(sy,83,...,8) by =p(81,83,...,8). From other side, [B*]-
and [B"]-., are obtained from B+ and B~ by such a substitution when every elemen-
tary formula p*(s), 8y, ..., 8¢) is replaced by ~—°p(s, 55, -3 8k), and p~(sy, 83, ..., 5) by
~="-p(81, 83, ..., 8¢). However by the points (k) and () in lemma 3.4 we obtain

Eam(p) Fru (p(s1, 83, ..., 88) ~ ~°p(sy, 83, ..., 8));
Ezm(p) Fury (-=p(s1,82, ..., 88) ~ ==°=p(sy, 83, ..., 51));
hence, if p1, pa, ..., pm is the list of all predicate symbols contained in B, then
0(41),0(A3), ..., 6(An), Ezm(p:), Ezm(ps), ..., Ezm(pm) Fpy 06([B*]-.);
0(A1),0(As), .., 0(An), Ezm(p), Ezm(py), ..., Ezm(pm) Frzy 70([B)--),
hence
Luk(Q) Fary 08([B*]--);
Luk(Q) Fary 70((B~]--);
or, uging lemma 3.8,
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Luk(f) ~rgp o= B;
Luk(Q) Faww —= =8B
possible: (1) o is empty, T is ~ {2) o is ~, T is empty; (3) both o

Here three cases are
m,m—lk(mnulllhuamdrcmbew:mpt}‘}. In the case (1) we

have
Luk{f}) Farv ~=*Btyrv B.

the case (2) we have

In
Luk{ﬂ\ Fawy —="=B g =8,

Fmall}“ in the case l31 we have .

Luk(Q) Frry =°B: y

Luk(f2) Furv =*=B;
that is

Lok(®) Fae BD =B;
Luk(Q) Fyew ~B D ~=B;

hence

Luk(Q) Fazy (B2 ~B)&(~B D —==B).
So, it is proved that if 2 is complete in the classical sense, then Luk(€) is Luk-complete.
Now let us suppose that Luk(f) is Luk-complete (hence it is Luk-consistent). Let
B be any closed formula belonging to L*(Z). We shall prove that either @ Fyx B, or

Q gk —B-
Let us consider the formula 6(B); this formula is closed (corollary of lemma 3.1). We

have, using the Luk-completeness of Luk(Q) that either
Luk(Q) Fuww 0(B),

Luk(®) Furv ~9(B),
or
Luk(€) Frzv (0(B) D ~0(B))&(-6(B) > 6(B)).
So, for some n and m
0(A)), 0(A2), ... 0(As), Exm(py), Exm(pa), ..., Exm(pm) b v G,
where G is cither 0(B), or ~8(B), or (6(B) D ~0(B))&(-6(B) > 8(B)). Using the form
(1) of deduction theorem for HLU mentioned above we obtain
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Frry {Q(AU,0{;&3}....,8[A.),E:mfp1),£'m(pgj, - Ezmips)) 2 G.
Hence, similerly to the proof of lemma 3.10 (considering G instead of —(D, D Dy)), we
can conclude that
Ay, A, ..., An Faxe [GF)-.
Now, if G is 6(B), then, using lemma 3.7, we obtain
Ay, Ay, ...y Ay Fg B
If G is ~6(B), then, using the same lemnma, we obtain
Ay Ay, ..., Ay by -B.
Finally, if G is (6(B) > -6(B))&(~4(B) > 6(B)), then [G*]. is
(8(B)*1- > [68(B)1-)&(18(B) - > [0(B) 1)
&([6(B)"]~ > [6(B)*]-)&((8(B)~]- > [6(B)*]-).
This formula is equivalent in HK to
(10(B)*]- > [6(B)])&(10(B) - > [0(B)*])&
or, using lernma 3.7, to
(B > ~B)&(-~B > B).
So, we obtain _
A, Ay, .y An by BD =B
A Agyey An g -B o B

Ay, Ay, .y An Fax B
Ay, Ay, Ay Faxe B
and the system £ in this case would be classically inconsistent, but it is not so. Hence
the considered case, when G is (8(B) > -0(B))&(~6(B) > 6(B)), is impossible. This
completes the proof of theorem 2.1.

§4. In this section we shall give the proof of theorem 2.2, The proof will be based on
lemmas 4.1- 4.6 given below. We shall use also lemmas 3.1 - 3.10 proved in the preceding
section,

Lemma 4.1 (cf. lemma 9.6 in [7], pp.130-131). If A is any formula, A €LP, and

P1, P2, --; P are all predicate symbols contained in A, then
m(ﬁ):pi’(h)r-": Dia(pm) I*HK “{A*’M—}.
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The proof is similar to that of lemma 3.2

Lemmad.2 IfA and B are any formulas in LP, and py, P2. ..., P are all predicate symbols

contained in A and B, then
Dis(p), Dis(pz). -
The proof is similar to that of lemma 3.3.

.. Dis(pa) =1k (A 2 B)* ~ (A* D BY).

Lemma 4.3 (cf. lemma 9.15 in [7]. pp.148-150). For every predicate symbols py, pa, ., P
FaLe [B{Dism?&:ﬂis{pg]k.‘.kDist..‘;‘_.].....
Proof: It is sufficient to prove that
Fuew [O(Dis(p))}- .
for 1 < i < m ; after this the required statement is easily obtained using lemma 3.9,
the point (2) of lemma 3.4 and the definition of the operation [|-.. However, for any
n-dimensional predicate symbol p the formula [8(Dis(p))l-- is
.,..er-q—w_r,‘..*Wz.,-'—-‘-'{--@{—--“p(:’ 3 X33 ooy T )&"p( 21, T3y 100y Ta)))
We shall prove that this formula is deducible in HLU. Using the point (d) of lemma
3.4 as well as deductive properties of HLU we conclude that it is sufficient to prove
Fapg = (~="p(T1, T2, s Zn )& =p(21, 22, e ®n))
or
=2 p(Ty, T2, ooy Fa) &P, B2y vy Tn) FrLy ~(0=°p(21, T2, oo, TaMe="=p(3), 23, .. Ta))
But we can deduce in HLU both plz1, %2, -y Tn) and —p(21, 23, .., 75) from the formula
=Py, T2y oes Tn )& P(T1 T2 0o I,,); 80, this formula gives a contradiction in HLU.
This completes the proof.

Lemma 4.4. Let 0 be an axiomatic system in a signature Z considered in the framework
of J Lukasiewicz's logic. Then for any formula A €L* (Z*) there exists a formula B €L%(Z)
containing the same free variables as A and such that

QF Fyx (BY ~ A).

Proof: We use the induction on the process of constructing for the formula A. If A is
an elementary formula having the form p*(s1, 82, .., 8a) OF P~ (81,82, .., 8a), then we can
define the formula B as, correspondingly, p(s1, 82, .., 8s) OF =p(8y, 82, ..., 8,); obviously
in such a cases B* coincides with A. (Let us recall that every predicate symbol in the
signature Z* has the form p* or p~, where p €7).

Let A be a formula having the form (A;&A4;). By induction we can conclude that
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there exist formulas B; and B, in L*(Z) such that
O Fux (Bf ~ Ay);
Q" Fux (By ~ Aj).
Then the required formula B for the formula A can be defined as (B;&B;). Indeed,
(By&By)™ is B &B7 and the deducibility
O Fax (BY&BS) ~ (Aj&Ay);
is easily obtained from the deducibilities given above for A; and Aj.
Let A be a formula having the form (4; > Agz). By induction we can conclude that
there exist formulas B; and B, in L(Z) such that
O bax (B ~ Ay);
O bk (Bf ~ A;).
Then the required formula B for the formula A can be defined as (B 2 Bj). Indeed,
using lemma 4.2, we have
O Fax (B 2 By)* ~ (B} > B});
(let us recall that the system Q* contains the axioms Dis(p) for all p €(Z). The deducibil-
ity
O bux (B1 2 By)* ~ (Af 5 A});
is easily obtained from the deducibilities mentioned above.
Let A be a formula having the form —4;. By induction we can conclude that there
exists a formula B, in L(Z) such that
O Fyp (B ~ A);
Then the required formula B for the formula A can be defined as =By, i.e. (B; D =B;).
Indeed, B* is the formula (B, D ~B;)*, that is
(Bf > ~By)&(Bf > -By)
or, which is equivalent in HK
(Bf > ~B;).
However, we have
QX Fux (Bf D By) ~-Bf.
Indeed, for the establishing of this deducibility it is sufficient to prove that
Y, B} D Bl bug =By,
QO -Bf bux B S By,
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Theﬁrstonhﬁesﬁtmuisobmmdwnsmﬂ.l.bmunthesumh.m,(p)m
s‘r-’Eurdlpez.hmammdkﬁminm{hdedudbhmnv_m > By, B!
So, B* and ~B{ are equivalent in 0", that is

0 Fax (BT ~~BY),

axioms of

themndohhem is obvious.

hence
Q* Fyx (BY ~ A
Finally, f Asa formula having the form (Ay V A2), ¥z(4y) or 32(A1), and there exist

formulas B; and B, in L*(Z) such that
Q* Fux (BY ~ )

Q* Fux (B ~ A2y
then the required formula B for the formula A can be defined as, correspondingly,
(B, v By). ¥x(By) ox 3x(By). Indeed, the formulas (By VBy)*, (V=(B))", (3x(By))" are,
correspondingly, B V BI.VIL'BI']-E’-‘{B?}- and the required statements are obtained
similarly to the considered case when A is (A& Ay).F This completes the proof.

Lemma 4.5. If Qis an axiomatic system considered in the framework of J.Lukasiewicz's
logic, then (2 is Luk-consistent if and only if Q7 is consistent in the classical sense.

Proof. We shall prove that {2 is Luk-inconsistent if and only if {* is inconsistent in the
classical sense. Let us suppose that Q = (A, A3,...) in the signature Z is Luk-inconsistent.
Then for some n

A1, Az, .y An Frzw =(Do D Do)
where Dy is some fixed closed formula in L P. Using the first form of the deduction theorem
for HLU we have, that the formula
(Ar&eAg&...&A,) 2 (Do 2 Do)
is deducible in HLU. Let us denote this formula by Q. So, by Q. Using lemma 3.6 we
obtain
Fux Oo(Q),
or
Faw (p(0,Q) D ((Ai&Ask...Aq) 2 (Do D Do))*.

Let pi, P2, - e be a list of predicate symbols in % containing all predicate symbols

taking part in Q. Then we have by lemma 4.1
Dis(py), Dis(pa), ..., Dis(pe) Frxe (p(0,Q),
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and by lemma 4.2,
Dis(p,), Dis(py), ..., Dis(p,) Fgp (A1&:Azk...An)* D (~(Dg > D))+
oar
Dis(p), Dis(p), .. Dis(py), AT, A, .., A Fprx (Dg&Dy),
hence
Q* byy DF&D;,
But, using lemma 4.1, we have
Q* bpg ~(DF&Dy).

Hence €0 is inconsistent.

Now let us suppose that Q0* is inconsistent in the classical sense. Then for some n and
m

A,*,A;‘,..._.A,*,‘,Dia(p,),l)ia(pg},...,ﬂis(p.,.) Fux —(Dg D Dy),
where [y is some fixed clozed formula in L*P. We conclude that
Fuk (AT&AT&. L AT Dis(p,) & Dis(py)&... & Dis(pm)) > ~(Dg > Dy),
or, using lemma 3.5,
FuLy 0((A?&A;&...&A:&Dia(p(}&Dia(pg)&...&Dis{pm)) > ~(Dy D Dy)).
By a substitution for predicate symbals we obtain
Fuww [0((AT & A7 &.. & A} & Dis(p, )& Dis(pa)&e...&Dis(p)) > ~(Dy > Do))]—.
Using the definition of the operation 6, we can conclude that for any formulas A, B, C the
formula [6((A&B) > C)]-- is ‘
= (=°([6(A))-&[0(B))--) > [8(C)]--),
and, using the points (c) and (d) of lemma 3.4, we obtain
1~ (0((ArbeAgks...&e An)*)]-~l0(Dis(pr)&e D (). &eDis(pm)))--) S [6(~(Do > D))
or
(0((ArdeAale. &An)* )}~ 0D (p1)&eDis(p) ... & Dis ()}~ 1225 [0(=~(D > D))
Now, using lemmas 3.8 and 4.3, we have
" (M&Ask.. &An)"Y) Fypy [6(-(Do > Dp)))-

Ar&eArde.. & An)Y Fhpy [0(=(Do D Dy)))--.
Similarly to the proof of theorem 2.1 we conclude that 6(=(Dp > Dy)) is equivalent in

HLU to
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~{(8(Do) D #(Do)),

and we obtain
Ak Ak KAL) PR ~(|8{Do}}~~ 2 [8(Do)}~-)

from other side we have obviously
A Ak &Aa)T Faw (18(Do)}~ 2 [6(Do)})

So. 0 is Luk-inconsistent. This completes the proof.

Lemma 4.6. Let 2=

e D A 1 o

(A, Az, -..) be an axiomatic system in a signature Z considered in

the framework of J.Lukasiewicz's jogic. Let B be any formula in the language L(Z). Then B '

;“Lug.wolhryd‘Qifandonly'lfB'isacumllaryﬂ"'inthedalkalm, ¥
Proof: LctBbesLuk-cmnlhn'ufﬂ.Thmfaraomen '
Ay, Az, - A FrLy B,
(1) of the deduction theorem for HLU, the formula
(A& Ak &A,) 2B
is deducible in HLU. Let us denote this formula by Q. So, Fgrv Q. Using lemma 3.6 we

or, by the form

have for any [

Fax 0o(@),
or

Fux p(0,Q) D Q*.
Using lemma 4.1 we obtain
Q* Fux p(0,Q).

hence

O Fux QT
that is

QF Fyx ((Al&b‘l;& &A,) 2 B)Y,

hence, by lemma 4.2,
O Fax (ﬂq&.ﬁ;&...&&)"’ aS:B*;

Ot Al AT, . A} Fux BY.
But Af, A3, ..., A} are axioms belonging to 2*, hence
Qt Fux B*.
which means that B* is the corollary of 2% in the classical sense.
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Now let us suppose that
O Fuy B*.
. Then for some n and m
7347, A%, Dis(p), Dis(p,), s Di8(pm) Fxc BY,
hence
Far (AT&Af&.. kAT & Dis(p, J&Dis(py)&...&Dis(p,,)) > B*,
Similarly to the proof of lemma 4.5 (considering B+ instead of =(Dp > Dy)), we conclude
that
Ay, 43, oy An FELy [8(3")]*:
or, using lemma 3.8 and the point (c) of lemma 34,
Ay, Az, ..., An by B.
Hence B is Luk-corollary of £2. This completes the proof.

Note. Lemma 4.6 is similar to lemma 6.3 in [13] (see [13], P-49). But the proof of lemma
6.3 in [13] is given on the set-theoretical level, using Luk-models of axiomatic systems. The
proof of lemma 4.6 is given on the constructive level; it uses only constructive properties
of the calculi HLU and HK,

Proof of theorem 2.2: Let 2 = (A,, 4,,...) be an axiomatic system in a signature
Z considered in the framework of J.Lukasiewicz’s logic. Let us suppose that Q is Luk-
complete (hence it is Luk-consistent). Let A be any closed formula in the language L*(Z+).
We shall prove, that either 0* Fyx A or @* kg ~A (which means that Q* is complete
in the classical sense). By lemma 4.4 there exists a closed formula B in L¥*(Z) such that
O gy (BT ~ A.
The formula B belongs also to L(Z), hence, by the Luk-completeness of 0 we conclude
that one of the following cases takes place:
case(1) QFyry B;
case(2) Q gy —B;
case(3) QFgy (B D ~B)&(~B > B).
In the case 1, using lemma 4.6, we have
0 kpx BY,
hence
QF Fax A.
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I the case 2, using the same lemma, we have
O Fax (~B)*,
hence
O Fax B,
Using lemma 4.1 we conclude, that a contradiction can be deduced in HK from 0*
and B* ; hence
QF Fgx BT,
and
QX Fax A,
Finally, in the case 3, using lemma 4.6, we have
Q* Fux ((B D ~B)&(~B D B),
that is
QF Fgx (BF D B)&(B* D> B)&(B- D BY)&(B~ D BY),

Similarly to the case 2, using lemma 4.1 we conclude that a contradiction can be

d«iucudiuHK&omﬂ"‘nndB*;hm

Q* Fyx B,
and

Q* bux -A,

Now let us suppose that the system Q* is complete in the classical sense (hence it is
consistent in the classical sense). Let B be any closed formula in the language L(Z). We
shall prove that either Q. Q Fxry B, or @ by —B, or Qbyry (B 2 ~B)&(-~B D B).

Let us consider the formulas B* and B~. They are closed (lemma 3.1). Hence, by the
completeness of 2* we have

Q* byg oB*,
QtFyx B,
where crand rare either empty, or negation symbols. They cannot be together empty,
otherwise " would be inconsistent in the classical sense (lemma 4.1), but it is not so,
We have for some n and m
Af, AT, ... AL, Dis(py), Dis(p2), ...y Dis(p) Fux 0 BY;
Al AL, . AL, Dis(p), Dis(pa), ..., Dis(pm) Fukx 7B~
Similarly to the proof of lemma 4.5 (considering ¢ B* and 7B~ instead of ~(Dy 2 Dy))
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we obtain

Ay, Az, oy An Py 8(aB7))—;

As, Agy ey An Py [0(TB7)];
or, using the definition of # and lemma 3.8,

A1y Agy oy Ap Py ~—*g—~—"B;

Ay, Agy ey An by =—Pr——°-B;
hence, using the point (¢) of lemma 3.4,
Ay Ay An Py 0B,
Ay, Agy ooy A by 7-—°-B;
Similarly to the proof of theorem 2.1 we conclude: if o is empty, 7 is =, then
Ay, Az, ..y Ay Py ~—°B gy B;
il o is =, 7 is emply, then
A1y Ags ooy A Fary ~—°-B by ~B;
if o and 7 are -, then
Av A, ..., A Frry —°B;
Ay, Ay, ..., Ay Frry —°=B;
hence
Ay, Az, ..y An Fyy (B D ~B)&(-B D B).

The case, when cr and t are empty is impossible, as it is noted above, This completes the
prool of theorem 2.2.

§6. In this section we shall introduce and investigate arithmetical systems HLUS and
HLUL in the framework of J.Lukasiewicz’s logic.

The system HLUS in the signature Z; = {0,',=} is defined by the following axioms:

(HLUS;) Vz(z = z);

(HLUSs) VaVi¥a((z =) > (z =2 Dy = 2));

(HLUSs) VaWy(z =y D2 =y);

(HLUS;)  Va~(z' = 0);

(HLUS;) VaVy(z' =y Dz =y);
and by the scheme of induction

(HLUSg)  (W)(Subst(B, z,0) 2 (Va(B 2 Subst(B,z,7)) 2 Vz(B))),

where z is any variable, B is any formula in L(Z;).

197



The system HLULinthesism-lmZ: = {0/, <, =)} is defined by the following axioms:
(HLUL;) ¥=iz= z)

:IHLl'Lﬁ vavpve((z=y) D (F=22¥= 2));

(HLULy) Yz¥ulzr=V¥ 2=y

HLUL) Yevpve{z=w) D W <= D<)k

;HLL'Ls_‘. vevgvs((z <y) D ly=22F< 2)k

(HLULg) YVavallz = y) V(=)

(HLUL-) vr(-(z=0)C Fy(z=y)

(HLULs) vr(z < T'); .
(HLULg) VaVylz <V ve=yVy<z)

(HLULp) VaWpvz(Ez<ycly<=zcz< 2));

(HLULy) Yavyllz < v ~-y< )

(HLUL;yz) vr—~(z' <0)

(HLULy) Yrvyf(r < yky < z').

Theorem 5.1. The system HLUS is Luk-complete.

Theorem 5.2. The system HLUL is Luk-complete.

Let us define an auxiliary notion. We shall say, that a three-valued predicate is a
quasi-classical one if its logical value in any point is either , true” or ,,false”. We shall say,
that & Luk-model of some axiomatic system is & quasi-classical one if the interpretations
of all predicate symbols in this Luk-model are quasi-classical predicates. We shall prove
below, that the system HLUS can have only quasi-classical Luk-models; of contrary, the
system HLUL has no quasi-classical Luk-model.

Let us note that if a Luk-complete axiomatic system 2 has only quasi-classical models,
then, however, we cannot say that it is complete in the classical sense. Indeed, if a formula
B is the logical constant U (,,undefined"), then neither B nor =1 is a Luk-corollary of {).

Proof of theorem 5.1: The system HLUS is Luk-consistent because it has a Luk-model,
where the main set is the set of all natural nmﬁhm, the symbols 0 and ' have usual
interpretations, and the interpretation of = is a threc valued quasi-classical predicate,
such that its value in any point is equal to the value of the classical predicate =,

Taking in the scheme of induction the formula (z = 0) V ~(x = 0) as B, z as z, and
the empty group of quantifiers as (¥YV), we obtain
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HLUS Fppy ¥z((z = 0) V ~(z = 0)).
Further, taking in the scheme of induction the formula ((Z=y)v=(r=y)) as B,yas
z, the empty group of quantifiers as (¥v), we obtain
HLUS, Wy((z = y) V*~(z = y)) Fuuy Wy((2 = y) vV ~(< =y)).
hence
HLUS Fypy Y2(Py((z = y) V ~(z = y)) 2 Wy((z' = 4) V ~(2 =y))).
Finally, taking in the scheme of induction the formule Yy((z = y) V ~(z = v)) as B, z as
z, the emply group of quantifiers as (¥¥), we obtain, using the preceding deducibilities:
HLUS Fapy Y2¥y((z = y) V ~(z = y)).

(c£.[3], point *158, p.193; [7], lemma 4.2, p.66). This deducibility means that the single
predicate symbol = in Z; can have only quasi-classical Luk-interpretations in models of
HSUS, hence, the system HSUS can have only quasi-classical models, Now let us construct
the axiomatic system HLUS* in the signature Z; = {0,’, =+, =}. Using the axiom

V2Vy-((z =* y)&(z =" y))
in HLUS* and the formula

V2¥y((z =y) V ~(z = y))*,
that is

V2¥y-((z =* y) V(z =" y))
(which is a classical corollary of HLUS* by lemma 4.6), we obtain that

HLUS* Fax VaWy((z == y) ~ ~(z =* p));

80, we can eliminate the predicate symbol =~ from Z} and construct a system equivalent
(in an obvious sense) to HLUS* in the signature {0,, =*}. It is easily seen, that all the
axioms of the system A,, considered in [1] (where we replace = by =*) are deducible
in HK from HLUS*. But it is proved in [1], that A, is complete in the corresponding
signature. Hence HLUS* is complete in the classical sense, and by theorem 2.2 HLUS is
Luk-complete.

Proof of theorem 5.2: The system HLUL is Luk-consistent because it has a Luk-
model, where the main set is the set of all natural numbers, the symbols 0,, = have usual
interpretations, and the symbol < is interpreted as a three-valued predicate having the
value ,,undefined” on every pair of equal natural numbers, having the value ,,true” on
every pair (z,y), where z is less than y, and having the value ,,false” on every pair (z,y),
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where y is Jess than =-
Let us consider the system

Similarly to the proof of theorem:
HLUL* Fax ¥2¥y((e =" 9) ~ ~(= =" ¢)).

HLUL® in the signature 23 = {0, <%, <7, =" =),
5.1, using the axiom HLULs, we obtain

Besides, using the axiom HLUL,,, we obtain

HLUL* Fax Vavy((z <~ 9) ~ (= <" 9))-
Hance, eplacing ===y by NE=" 2} el F <73 by ~{(y <™ z), we can eliminate =~
and <~ from Z7 and construct a system equivalent (in an obvious sense) to HLUL* in the
signature {0,'.-:*.="}. It is easily seen that all the axioms of the system A considered
in (] (where we replace = by =*, and < by <*) are deducible in HE from HLUL®. But
it is proved in 1], that Az is complete. Hence HLUL™ is complete in the classical sense,

By theorem 2.2 HLUL is Luk-complete, and the theorem 5.2 is proved.

Note 1. The system HLUL cannot have quasi-classical Luk-models. Indeed, using the

axiom HLUL;; we obtain
HLUL Fgx VaVy((z < ) ~ ~(z < 1)),

And so, in every Luk-model of HLUL the one-dimensional predicate r < x is equivalent
to its negation, which is impossible in quasi-classical Luk-models.

Note 2. If we replace in the axiom HLUL;; the weak negation =° by the usual negation
—. then the system obtained by such a transformation, will be Luk-inconsistent. Indeed,
we can deduce from the transformed axiom HLULyy the formula

VaVy(~(x < §) V ~(y < 2))
and the formula
=(0 <0)V-(0<0).
But we have, using axiom HLULs,

HLUL, =(0 < 0) V =(0 < 0') e ~(0 < 0),
and, using the deducibility
HLUL F gro VaVy((z < z) ~ =(z < 7)),
we obtain in the transformed system both 0 < 0 and ~{0 < 0) which means that this
system is Luk-inconsistent.
A Luk-inconsistent system will be obtained also if, for example, we replace «* by z in
the axiom HLUL».



Note 3. Three-valued analogue of M.Presburger’s system considered in {13] hes only
quasi-classical Luk-models. It can be proved similarly to the proof of theorem 5.1.
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