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THE FINITE-STATE RECOGNIZABILITY OF SEQUENCES OF
INTEGERS'

K. V. Shahbazyan and Yu. H, Shoukourian

‘We consider the possibilities of on-line tessellation automata (OTA) to recognize the proper-
ties of sequences of natural numbers, Ourumh-uctlmmvld.tllmph.mdm
mw-ummwmmmaommcmmmdmhymo-
sentences over information matrices of sequences.

INTRODUCTION

The aim of this paper is to investigate the possibilities of on-line finite state rec-
ognizability of sequences of natural numbers and to derive an implementation mode of
automata that, processing the matrix code of sequences, captures the properties definable
in existentional monadic second-order logic over information matrices of sequences. As
a tool for solving this problem we consider a cellular acceptor, namely, two-dimensional
on-line finite state tessellation automata (OTA) introduced by K. Inoue and A Nakamura
[1,2]. This automaton is an array of identical finite-state automata in which a transition
wave passes once diagonally across the array,

We identify a sequence w = wy, ..., w, of naturals with a square picture MC(w) whose
top row contains the sequence of unary codes of wy,i =1,...,n with zeroes as separators.
So to any set W of natural’s sequences we associate a language {MC(w)lw € W} of
pictures, and transfer the notion of recognizability from picture languages 1o sequences.
As is known|[3], the recognizability by OTA of the set W is equivalent to the definability of
the language {MC(w)|w € W} by the formulas over signature gje with unary predicate.

We investigate two ways for defining the sets of sequences by formulas over signatures
equipped with binary predicates defined over natural’s that makes them more convenient

‘mmhmppmwbym-mmmm-ml-ﬂl '
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toni!brdascrih‘mg:heuuolumm In both cases we indicate classes of form
las defining such sets W that {MCluw)w € W) is recognizable by on-line tessellati

automata.

The first way is 10
\fonadic Second-Order (EMSO) logic over the information matrices (/M) of sequences.
Information matrix IM(w) contains the values of some binary predicates for every pair
{1 1;). 1f the set W of natural's sequences is defined by EMSO-logic over information
matrices, then this set is recognizable by a tessellation automaton processing the MC
codes. More over there exists an effective algorithm that constructs the tessellation au-
tomaton that recognizes the set {MC(w)lw € W} (Theorem 1). This algorithm tan
be employed as a o0l for OTA's automatical construction by EMSO- formula. An easy
generalization of our results can be adapted to the problem of verification of message

de&mmemo{:qumb}'thcmmdmam

sequence charts [6,7].

The second way to define sequences is by the formulas of First-Order (FO) logic
equipped with binary predicates. However, this brings to the recognizability for very re-
stricted class of formulas (Theorems 2 and 3).

§1. PRELIMINARIES. DEFINITIONS AND NOTATIONS.
1.1. Languages of sequences of natural numbers.

In the following we write ,,sequence” as a short hand for ,,sequence of natural numbers”,
Let w = tw, ..., Wn be a sequence. A code of sequence w is a string C(w) = 1*10190...-
010 over alphabet £ = {0,1}. A matriz code of w (denoted by MC(w)) is a square
matrix over ¥ that contains C(w) as the first row. The entrics of other rows are zeroes,
We identify a sequence w with its matrix code MC(w).

A matrix code MC(w) is a model over the signature ayc = (81, 82, R) with universe
domuc() = {1,mam+ ?;'_',:w.-}=. where S; and S are horizontal and vertical successor
relations of the points of domye(w), R is an unary predicate that gives the sel of points
of domye(w), where

k k41
X 1 i1, 1+k+ D Sj<b+ Y w k=0,.n-
R, ) = GRLRMA R sk
0 in other cases.

Identifying a sequence language W with the language MC(W) = {MC(w)jw € W},
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we call thehnglugeWMC-fmgniubkifthehnguageofmﬁmMC(W’} is recog-
nizable by OTA. As is known (3], & language of matrices (pictures) is recognizable by an
OTA iff it is definable in EMSO-logic over gy,

We consider two other signatures for representing languages of natural’s sequences.

Let binary predicates Py,... , P, over naturals be fixed. We associate to any sequence
W= Wy,... Wy & square (n,n)-matrix JM(w) over &7 (where £ = {0,1}) whose entries
are r-bit vectors (R, ..., R"). If R} ((i, j)) = Pi(wi,wj), ... \F((i,5)) = P.(wi, ;). This
matrix js called an information matriz (denoted by IM(w)) of the sequence w. Notice
that information matrix contains values of all considered predicates for every pair (wy, w;).
1M(w) can be viewed a5 & mode] over signature o754(P, .., P.) = (Sy, 5y, AL, o ) with
universe domyp(w) = {1,... ,n}3, and unary predicates R\, ..., R". So a lenguage W of
sequences can be defined by a logical formula over (P, ..., B).

On the other hand if P, ... , P, are fixed, We can represent a sequence w = wy, ..., Wy
a5 8 model [l(w) = < {1,..,n}, 7,5,Qy,...,Q, > over signature oy(P,, ..., P,) = (r,<
@14 @r), with universe domp(w) = {1,..,n} where < is successor relation over
domp(w), 7 is & function (i) = w;, and Qu(i, k) = A(n(i),x(k)) = P(w,we), (1=
1,.,7), are binary predicates. So & language W of sequences can be defined by a logical
formula over ag(P,, ... ,P.).

Example 1. Let the sequence w be w = (2,3). Then C(w) = (1101110) and the matrix
code of MC(w) is (7,7)-matrix.

1101110
000DO0OODOTOO
000DODDU OO O
MCw)=[0 0 0 0 0 0 0O
000O0ODODOTUDOO
000DO0ODOOO
00O0O0ODODOTOO
The information matrix IM(w) can be defined only if the predicates are fixed.
Let us consider one binary predicate over naturals P(z,y) = ; ::’::'
z#y.
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Then IM(xw) = M

A,mmpkormmhwmmm W.. that consists of the
sequences W = W, » ¥ Where ;= & for i, € {L....n}h

Then on(P-) = (7,5, Qu), where the value of the binary predicate Q;(i,7) can be
mpmdbymo{thefuncﬁnnx and the predicate P. by the formula Q{i, ;) =
Poim(i),x())- Here i,j € domn(w) = {1y n}. The formula for the language W. over
signature on(P-) is ¥5. Quli,J)-

Now pass to the signature ory(Fu) = (51,82 Ry) where R, is unary predicate:
Ri(z) = Pufwiwy) if £ = (i) is a point of dompye(x) = {1,...n}%. The same lan-
guage W.. can be defined over oyx(Pa) by the formula  ¥x Ry(z).

Relating to the signature Ouc, We see that to write a formula defining W. is very
difficult. We give here cnly an intuition about how to proceed. We define OTA where the
computation of the matrix [ M(w) in a sparce form is combined with the computation
of the realizability of the formula VxR, (x). This OTA is equivalent to an EMSO-formula
over signature oac(R). ©

Further we intend to investigate the relations among the classes of languages of se-
quences defined over mentioned three signatures.

1.2. Matrices.
In the following we consider a variant of pictures called k-bit matrices (for some
k > 0), ie., matrices with entries in alphabet ¥ where £ = {0,1} . (The expressions
row, column, top etc. are interpreted as in terminology of matrices). Given a (m,n)-
matrix M over £¥ we denote the components of k-bit vector Af(i, j) by superscripts:
M(i,j) = M*(i,5) ... M*i,5), (1€i<m1<j<n)
Let M be a square (m, m)-matrix over £* where k > 2, and T(M) = {iy,...,i,} bea
set of integers such that 0 < iy < iy < ... <1, = m and
Wite { 0 if j € I(M),
1 in other cases,
G { 0 ifie (M),
1 in other cases,
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01
10@ 10 | 10 ﬁg

Figure 1: Cell-like matrix M.

A separating row (column) of M is the i-th row (corresp. column) of M if
i € T(M). An element M(i,j) i5 a crossing if i,7 € T(M). A matrix M
is cell-ike if T(M) # 0. A cell of matrix M is a block of M bounded by
the columns 4,141 and the rows i1, (denoted by M < iy, i >), ie,
M) eEM <ipii> & iy <i<iy, i <j<ip
(m,m)-matrices M; and M; are similar if T(M;) = T(Ma).
Example 2. A cell-like matrix M over £? is represented in the Figure 1.
The cells are shown by bold-face lines. The crossings are shaded. ¢
Suppose M is a cell-like (m, m)-matrix and card(T(M)) = 5 . A skeleton of cell-like
matrix M is & (s, s)-matrix S(M) composed of all crossings of M, i.e.,
S(M)(L,k) = M(iy,ix), ik €eT(M), 1<Lk<s.
A projection Pr(M) of matrix M by the tuple of integers 7 = (7, ...,7;), where 0 <
71 < .. <7 <1 is a matrix My such that M;(i,5) = M™(i, j)..M™(i, j) for every
(i,5) € dom(M). The same notation will be used for the projection of vectors.
Let M; and M; be (m,n)-matrices over alphabets £% and £'. The element-wise
concatenation of My and M; (denoted by M =M; ® My) is the (m,n)-matrix M over
!+ where M(i, j) is the concatenations of vectors M; (i, ) and My(i, 7).

1.3. OTA and EMSO-logic.

We consider two-dimensional on-line tessellation automata (OTA) introduced by K
Inoue and A.Nakamura [1,2]. This class of automata recognizes the matrix (picture)
languages definable by existentional expressions of monadic second-order logic (EMSO-
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logic) [3]

A ;-..?‘nAdtIem:m!ﬁc two-dimensional on-line tessellation automaton (OTA ) is defined

by the tuple A = {X.Q‘qn.F.J) where
’ X is a finite input alphabet,

Q is s finite set of states,

@EQisan initial state,

FCQiHhesﬂafacaptinsm

JchQxA--Q‘uthegtonrmsim

Let M be s (m,m)-matrix over alphabet X. The run of the automaton 4 =
(X, Q. g, F,8) over A is a (m, n)-matrix M; over alphabet Q such that the s

o g0 M(1,1) = Mi(1, 1),

My(1,5 - 1), g0 M(1,5) = Mi(1,9), 5 =1,y

o My (i = 1,1), M(3,1) = M1, i=1,..m,

My(i,3 - 1), Mi(i— 1,3), M(is3) = My(i,3), i=1Lum, j=1,..n
are the transitions of sutomaton A, i.., belong to §. The automaton A accepts the
matrix M if there exists a run M, such that My(m, n) € F. We say that automaton A
maps the matrix M to the matrix M; (denoted by M, = A{M)).

We need the following three operations over OTA.

Let AI. = (X.Q-‘hth"l) and Aﬂ 5 (XUT'mletan) be OTA.

1) The disjunction of automata Ay and Ag (denoted by A,V.Ay) is defined as A,V.d; =
(X,Q xT, (g.%), (F xQ)U(Q x F2), 8(d1,62)) wh
(01, 8) = {{g. 1), (g2, ta), 0 — (g3, t3)] G1,92,0 — g3 € &y, 1y, 13,0 — 13 € §}. (1) Here

a Ex! 2. G2 EQ, '1"’“’ GT-
OTA A, V A; accepts a matrix M iff either A; or A; accepts M. The automaton A, v A,

maps M into M; = (A V Ag)(M) = A (M) © A2(M).

2)The conjunction of A; and Ay (denoted by Ay A Ay) is defined as A; A Ay =
(X, @ xT, (go, ), Fi x Fa, §(8),02)) where §(8;,8,) is defined by (1).
OTA A; A Aj accepts a matrix M iff both A; and Ay accept M. The automaton A; A A,
transforms M into My = (A1 A Ag)(M) = Ai(M) © Ay(M), ie., Ay A Ay and A; V A,
define the same transformation.
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3)The composition of A; and A, (denoted by A; o A; ) is defined as Az0 4 =
(X, Q%T, (go, %), F; % F3, 6) where § is defined by (2):
1 6= {lg, 1), (ga ta), 0 — (g, ts) | 00— @EH hihga—thesh)l (2

OTA Az o A; accepts a matrix M i A; accepts M, and A, accepts M; = 4;(M). OTA

Az 0 Ay maps M to the matrix M = (A o A)(M) = M; © Ay (M;).
1.4. Recognizable binary predicates.

We begin with almost literally citing of [3, section 9]. Consider matrix languages over
' one-letter alphabet. In this case a matrix can be identified with & pair (m, n) of natural
" numbers where m is the number of rows of the matrix and n is the number of columns. On
the other hand, every binary predicate P defined over the set of pairs of natural numbers
is actually a set of such pairs and can be viewed as a matrix language over one-letter
alphabet.

Given a predicate P, the matrix language associated to P is defined as

Lp ={M | M is (m,n)-matrix, n,m € N, P(m,n) = 1}.

A predicate P is recognizable if the associated matrix language Lp is recognizable by
OTA. For example, the following predicates are recognizable: =, <, > n=m+¢, n=
em, n=m?, n=c", n:m, where c is a constant integer.

§2. THE PROBLEM.

In this paper we are interested in on-line finite state M C-recognizability of the se-
quence languages. As a recognizer we consider OTA. It is evident that the class of se-
quence languages definable by EMSO-formulas over the signature o¢ is the widest class
of sequence languages recognizable by OTA. Our problem is: what classes of formulas
over signatures oy and oy, define the M C-recognizable languages, We present below the
investigation of this problem and an effective algorithm that constructs the corresponding
OTA. In this connection, our arguments are based on the existence of effective algorithm
that for every EMSO-formula constructs corresponding OTA [3,4] and vice versa.

Now we sketch our approach to the problem. Suppose that the predicates
Pi,..., P, and their complements P;,..., P, are represented by corresponding OTA’s
Apy, A,y ...y Ap,, Ap: , and the formula @,y i8 represented by OTA As, .-

We proceed as follows,
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rmwwmorammmmweﬁmimmdnﬂw). For
matrix code MC(w) of the sequence & = Y, .., W OTA Ay constructs a cell-matrix
M = Agn{MC(w)) where each cell M < iy, 1; > is (wa, wy)-matrix.

s i S omi e (o) G vl S Sholicmte i) = 1 S
be computed on the cell M < ixi; > by means of Ap,, A To do this we define the
°moﬂwW“°T‘*£'&hmm°ﬂﬂd&ﬁHd.\ru,.md.n
OTAs Ap,. A= 1.....r. Besides L transfers values of predicates computed on the cell
M < iy i; > to crossing M(ik.1;). So the information matrix IM(w) is found in skeleton

matrix S(C(M)).
Then the operator Oyt constructs OTA Ouui(®c) that imitates on the matrix

S(L(M)) the run of As,,,, over [M(w).

At last OTA D realizes o composition of Apa, £,.4s,,,, that processes MC(w). OTA
D recognizes MC(w) iff Ay, Tecognizes IM(w).

§3. THE COMPUTATION OF INFORMATION MATRIX /M (w).

Let the predicates Fy,... Fr be given. Suppose that these predicates and their comple-
ments P, ... P; are recognizable by OTA. This assumption implies the existence of OTA
Ap ., App: - Ap,, Ap; recognizing these predicates.

Lemma. There exists a nondeterministic OTA £ and a tuple of integers © = (r,..,7,)
such that for every sequence w = Wy, ..., wa OTA L maps the matrix code MC(w) to a cell
matrix M such that

L(MC(w)) = M,
where
IM(w) = P.(S(M)). @)

Proof: Without loss of generality we assume that the automata Ap, Ap;, ..., Ap, Ay
have common dimension » of the state vectors. First of all let us describe several auxiliary
automata and Apeq.

1. Deterministic automaton Agoen = (2, %, Go, {0}, dasem) Where ¥ = {0, 1} copies
the first row of input matrix in all remaining rows, i.e., if M} = Agun(M) where M is
(m, n)-matrix, then M} (i, 5) = M*(1,5) for j = 1,....n.

The automaton Ag.m accepts any matrix iff it is the matrix code of a sequence.

158



2. Autornaton A ymn = (Z,Z, g0, , 8ciumn) NOndeterministically guesses the states
of the lefimost column and copies it in all other columns, i.e., if My = Apjumn (M) where
M is a (m, n)-matrix, then M}(i, j) = M}(i, 1) fori = 1,...,m.

The automaton A iumn accepts all matrices.

4°.  Deterministic automaton Ag, = (32 %2 g, {(11)}, 64;) eccepts a square
(m, m)-matrix M iff M(i,i) = (0,0) or (1,1). If M; = Aiag(M) then

(1), fi=j
Mi(i,j)={ (10), ifi<j
(01), ifi>j
4%, Nondeterministic automaton Ape = Adiay © (Adown A Acotsmn) = (Z, T4, go, {0} x
% # {11}, 6), accomplishes a single-valued preliminary transformation of matrix codes.
Ayot maps MC(w) to a cell-like (N, N)-matrix M where N = n + gwh and T(M) =

k
{k+ 3" wi}iay, n such that:
=]

1) M'(i,5) = M'(1,5) = MC'(1,5), 1<1i,j< N, i.e., the first components of rows
are copies of the first row of MC(w), i.e., copies of C(w);

YM'(1,5) = M*(,1), 1<ji<N,
i.e., the second components of the first columns copy the first components of the first row.
Automaton Agumn must guess the column equal to' C(w). If other column is guessed
then A has no run.

3) M*(i, j) = M?(i, 1), 1<i,j<N,
i.e., the second components of columns are copies of the second components of the first
column which are guessed by Aiumn;

4) M%(i, 5) , M*(i, j) are obtained by Ag,:

8 0 ifi<jy,
.M‘{t,j)={ =) I
1 ifi>j

0 ifi>j
1 ifi<i

M‘(‘rJ) = {
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tomaton OalA)- The automaton Ouu{A) imitates the runs of the sutomaton A on al)

cells of input matrix M. li
1at A= (T2 g Fiéa): The eutomaton Ol ) = (B3, 5943 g i § }
maps a cell-like matrix Af over alphabet £ to the matrix M; over the alphabet ¥+ |
so that M and M; are similar and

APy _sea(M <ipia >)) = Py_ssa(My iniy >), iy ia € T(M).

The automaton Ou(A4) realizes an arbitrary run (i.e., not necessarily the accepting
run}of;‘lonuchoeﬂoﬂlf. g |
The automaton Ocen(A) accepts a cell-like matrix M iff A has a run on the indicated

orojection of each cell of M. The automaton Oceu(A) is deterministic if A is deterministic.

Example 3. Consider the automaton A that realizes the following map of (2,2)-

matrices:
el x
A In | T2 By gn | 2 oA 1 | Tis B (4a)
zn | Tn gn | g Ty | T @ | gas
Ta | T 1| a2 T4 | Tas
A a1 | Ta2 = Qa A L Qa4 | Qas (4)
Ts | Ts2 gs1 | @s2 a4 | T55 954 | gss

G €L, GqyEI"

The transformation by Ogeyj(-A) of cell-like matrix M is represented in Fig. 2.

The automaton O~u(A) replaces the projection of each cell of matrix M by the cell
defined in (4.a), (4.b).¢

The set of transitions of Ou(A) consists of five sets:

St = A1 UA3U A3 U A U Ag
A; = {go, 90, (112) = (11¢) | g0, g0, x — g € Sa} U
U {go, (11g), (11x) = (11¢") | g0, 9,z — ¢’ € S} U
U {(11g), o, (112) — (11¢") | g,q0,z — ¢ € 84} U
U {(11g), (11¢), (112) — (11¢") | ¢,¢', @ — ¢" € 8.}
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1z | 1lzy; | Olzy | 112 | 10y, | Oz |
112p; | 112y | Olzgy | 112s¢ | 11258 | 012y
102y; | 10233 | 002y | 102¢ | 10255 | 0020
Ilzg; | 1lzgy | Olzg | 11z | 11z | Olzes

11z; | llzey | Olza | 1lzsg | 1lzss | Olzes
10z5; | 1027 | 00z | 102sq | 10z55 | 00zps

| Ot

gy, | 1lg, |Olg [1lgs [1igus [o1g
gy | 1lgy | 01 | 11gw | 11gss | 012
at, | 106 | 10 | 00g | 10g [ 10g [oog
llga | llge | 01g | llgu | lige | 01
1lgs; | 11gs, | 01 | 11geg | 11gss | 012
104, | 10g | 0og, | 10g | 10¢ |00z

Figure 2: The transformation of M by the automaton O.q(.A).

The transitions from the set A, are used for imitating A on the left top cell M; <
1,1 >.

Let gy € % be & fixed symbol, for example gj = 0. This symbol is used for computing
the states of separating rows and columns of M. I

Ay = {(11q), g0, (01z) — (01¢}) | g€ £¥, z € '} U
U {(11g), (01gp), (01z) — (01g5) | g€ £*, z € '} U
U {(11g), (00gp), (01z) — (01gp) | g € £, z € XY}

The transitions of A; compute the states of separating columns in Mj, except of the
states of crossings. These states are (01gj).
As = {g, (119), (10z) — (10g;) | g€ =, z € X'} U
U {(1045), (11g), (10z) — (105) | g € =¥, z € '} U
U {(00g5), (11g), (102) — (10g5) | g € 3, z € 51},
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m:mmdmmmmmaﬂmmh M. except the states
of crossings. These computed states are (10g5).
A, = {(10g)). (01gb), (00z) — (00g5) | = € ).
transitions of 34 compute the states of crossings. These computed states are (00g).
Ay = {(01¢), (10g0), (11x) — (11q); (01gh), qu,(11x) — (11g);
oo, (10g), (112) = (119) | oo, * = @ € 8} U
u{(11g), (11¢), (113) — (11¢") | @ ¢ x =g €8} U
u{(119), (10g). (112) = (11¢) | gz =g €} U
u{(01gp), (11g), {11x) = (11¢) | go.g.x — ¢’ €4}
imitate the automaton .A on all cells of M, except the' sell

The

The transitions of As
M <1y >

The operator Ot i fully defined.

Now we return to the proof of the Lemma. Let a predicate P and its complement P
be OTA-recognizable, i.e., there exist two automata

Ap = (£, 2%, qo, Fp, 0p),
Ap = (22, 1¥, g0, Fp, Ip),

which accept (m, n)-matrix over £ if P(m,n) = 1 (corresp. P(m,n) = 1). Without loss
of generality we assume that automata Ap and Ap have a run on each input matrix,

Consider the automaton Up = Ap V Ap = (%%, E¥, q. (Fpx ") U (2 x
Fp), fus), and the automaton Ocu(Up) = (54, E**, o, E%*%, §eu) that has & run
M, = Ouu(Udp)(M) on the every cell-like matrix M. This run computes for each cell
M < iy, i >, where iy, i € T(M), the values of the predicate P(wy, uw;) and its comple-
ment P(wy, wy). The accepting (or rejecting) values of the cell are v-dimensional vectors:
t = Paa,. weny(Myix = 1, = 1)) and ta = Ppusa, 242 (Mi (i — 1,3 — 1)). In every final
point of cells of M there are the following alternatives:

t, € Fp,tz & Fp, i.e., Ap accepts the cell M < iy, i > and P(wy, uy) = 1.

t: & Fp, 1z € Fp, i.e., Ap accepts the cell M < i, i > and P(uy, wy) = 1.

t, & Fp,t2 & Fp, 2., both Ap and Ap do not accept the cell M < iy, i; >.

In the last case the value of predicate P is not obtained and the run on M must be
interrupted. However, notice that for each M there exists such a run of O.u(lp) that
successfully computes the values of both predicates for all cells of M.
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Now we define an auxiliary automaton Lp that (if it is applied to M; = Opu(Up)(M))
computes and transports the values of P and P from the final position of each cell to the
nearest crossing.

Let us consider the following fu_nction fp defined on pairs t;,t; € £¥ :

(10) if t; € Fp,t; & Fp,
(01) if t, & Fp,tz € Fp,
(00) if t, & Fp,tz € Fp,
(11), if € Fp,t€ Fp

Iﬁ‘nlr‘ﬂ)‘ =

and the automaton
ﬂp = (2“2. E’. o, E’, 5,:,).
Here b, = Ay UAZUA3UA,

A = {g1, @, (11tstz) — fp(ts, ta) | 1, %2 € 23U {go}},
A2 = {51, 92, (01t1t2) — (1) | 71,2 € 2L {@}},
Az = {q, ¢, (101t3) — (10) | g1, 32 € 2 U {qo}},
Aq = {g, (01), (00t;25) — (01) | q1 € 2 U {go}} U

U{gs, (10), (00t1L5) — (10) | g1 € £2 U {go}}.

The automaton Lp transforms a cell-like matrix M in the following way. Notice that
the elements of the cells of M are (2v + 2)-dimensional vectors and therefore can be
represented as (11t;1;) where t;,1; are v-dimensional vectors.

The transitions of A, replace all elements of every cell by fp(t;,15).

Theunusit.ionsofhghrmsportthaelemumsoftherightmlumnofem-yceﬂtothe
nearest right separating column. So the state of the point (ix — 1,4, — 1) gets into the
point. (ix — 1,4;) for iy, 4 € I(M).

The transitions of A; compute the elements of separating rows except the crossings.

The transitions of A4 transport the state of (ix — 1,4;) to the point (i, ), i.e., to the
corresponding crossing,

Observe that if the transported value is (0, 0) then there is no correspondent transition
in A4 and this run on the maltrix M is interrupted.

Consider the composition

Leoatl(P) = Lp © Opanr(Up) = (B4, T2, go, B2+, §),
It is evident, that for every sequence w if M = Ape(MC(w)) and M; = Lu(P)(M),
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1 if Plenuw)=1
3L ) =
s S 0 if Plunwr)=0

psider the automaton £ = (Lol PONALtt( )0 At = (E, TAves o v

Co
and the tuple of integers ;
fiy.rl={2v+7.4v+ll.....2rv+4r+3). (3) :
Evidently, for each sequence w the automaton £ maps the matrix code MCl(w) to g
the cell-like matrix M = L{ MC(w)) where the required condition (3) from Lﬂm . J
satisfied: Pryn)(S(M)) = IM(w). The Lemma is proved. & t

Thus[orﬁxedprdmmﬂ . P. and for every w = uy ... wy:

. £ processes the matrix code MClw);

9 The matrix JM(w) with respect to P ... P is found in the sparce form in the skele
ton of cell-like matrix L{MC(w)).

§4. MC-RECOGNITION OF LANGUAGES DEFINED OVER THE

SIGNATURE o

Theorem 1. Let Py, ... , P- and their complements be OTA-recognizable and &,,,, be an
EMSO-formula over signature arar = O1ae(Py, ... , Pr). Then

1) There is EMSO-formula Woy,.(®s;,,) over signature auec such that for every sequence
we IM(w) | ®gpy &= MC(w) = Vouo(Pary ).

2) There exists an algorithm that effective constructs OTA which:

2.1) processes the matrix code MC(w);

2.2) accepts MC(w) if IM(w) = Boyy,-

Proof. We begin with definition of an operator O,ea. Given an arbitrary OTA A =
(£, 5, go, F, 8.4) a tuple 7 = (71,...,7) and an integer I > 7; (i = 1,..., k) operator Oyuq
constructs OTA A’ = Oual(A, 7,1) such that

1) A’ processes any cell-like matrix M over alphabet £+2,

2) A’ imitates OTA A on the projection Py (S(M)) where 7/ = (1, + 2,7 +2).

Example 4. Consider OTA A = (X, X, g, {1},4) and let
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i——-—_—-— t ] T
M= 0021072} Wnmz 0022022
00z, 04 0025052, 00z40 7,
| Orren(a, )
00g; 00g, 00g4
00q¢ 00gs 00gq

Figure 3: The transformation of the matrix M by O,xu(A, (2),3)

o | o3 | o

A 1| 02|03 = Q|2 |G 6)
04|05 | Og Ga [ G5 | 96

where gj,q; € &

In the Figure 3 a cell-like matrix M is presented where only the elements of skeleton
5(M) are indicated. The cells of M are shaded.

The OTA Ojkui(A, (2),3) replaces each crossing of the input matrix M in accordance
to (6) and accepts M if the final state is (001). ¢

Let us define Opu(A, 7,1) = (B2, Bt+2, (11g0), Fuket; Ouker), Where Fiypg = 2% Fy,

Ogket = Ay UA U Az U A,

Here

A; = {(11g0), (11go), (110) — (1*?) | o € £'}U
U {(11gp), (1+?), (110) — (1*?) | 0 € U
U {(1%%), (11g0), (110) — (1**?) | 0 € B'}U
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u (%), (0%, (o) = (1) | o € ¥}

The transitions of A1 put the vector {1%) in‘-‘hd:‘:m‘dlhulhojm

O,HI.-Lr.U{MJ if M is a cell-like matrix over alphabet X423,
A; = {(10g). (1¢+3), (100) — (10g0) | o € E'JU
U {(19), (01qu), (010) — (Olg) | o € ).

The transitions of 82 translate the state go along the separating rows to the right and
along the separating columns downwards till the nearest crossings.
Ay = {(10g0), (01gc), (00) — (00g) | go. Go, Pula) = g€ U
U {(10g0), (01g), (00) — (00¢") | Goy ¢.Pe(0) = ¢ €U i
U {(10), (01go), (002) — (00¢") | @90, Pr-(0) — &' € S4}u
U {(101), (01g2), (000) — (00gs) | @1, 2, Pr(0) — qs € 84}

S = et bt L e e, S 2

T - By F Y N e

Here P.(a) = @™ -.0™.
The transitions of As realize the computations on the crossings. The transitions are

agreed upon the transitions of OTA A.
A, = {(00g), (1+2),(100) — (10g) | ¢ € E'}u
u{(12), (00g), (010) — (01¢g) [ € Thu
u{(1"%), (01g), (010) — (01g) | o € B'}U
U{((10g),1*%), (100) — (10¢) | o € '}
The transitions of Ag translate the computed state from each crossing to the nearest
crossings to the right and down. The OTA OualA,7,1) is fully determined.
Suppose that the predicates Py, ... , P, and their complements satisfy the conditions
of Theorem 1 and let ®,,, be an EMSO-formula over signature ayx (P, ..., P).
For the sentence ®,,,, there exist an OTA Aa,,,, = (57, X', g0, F, 8.4) which accepts
sequence w iff IM(w) = @, Given the OTA Aa,,,, and the tuple 7(v,r) from (5) let
us define the OTA D = Oue(As, - 7(¥,7), 2rv +4r +4) 0 L where OTA £ is defined by

il o S

Lemma. For an arbitrary sequence w OTA D accepts MC(w) iff IM(w) |= &,,,,. i
Therefore, an EMSO-formula Wy, (®s;,) exists such that D accepts MC(w) iff
MC(w) = *vnc(q’tm} . 1

The statement 1) of the Theorem 1 is proved. The proof of the statement 2) arise
from the construction of the OTA D.O

)
g
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§5. THE RECOGNIZABILITY OF LANGUAGES DEFINED OVER THE
. SIGNATURE op.

Let us consider signature oy = og(P,, ... + Fy) for definition of sequence languages.
Theorem 2. Let binary predicates P, ... , P. and their complements be OTA-recognizable.
Let @,,, be a first-order formula over the signature oy in the form of

Pop = 321..259(21...73) € T, (7)
i.e., $op is EFO-formula where 1) is a boolean formula with free variables Ziy...,Te. Then
there exists EMSO-sentence =, (®,,) over signature o7y = oy (P, ... P.) such that

M) b oy 4= 1) b= Zayyy (B0) ®)

Proof.: We begin the proof by enumeration of several formulas that define predicates
we use in sequel.
1. Predicate ,,z belongs to the top row of matrix”: wu(z) := -3y ySiz.
2. Predicate ,,z belongs to the bottom row of matrix”: py(z) := =3y z5yy.
3. Predicate ,,z belongs to the right column of matrix”; er(z) == -3y zS.
4. Predicate ,,z belongs to the left column of matrix”: wi(z) = -3y ySaz.
5. Predicate ,,z and y coincide™: ¢.(z,y) = Vz (252  z81y) A (2512 & ySiz) A
A (2537 & 25y) A (2522 © ySaz)
6. Predicate ,,the set X is the main diagonal”:
wal(X) =Yy X(y) = (2(v) & @) A (2(¥) © 0. (v))] A VgVaVE (X (y) AySiz A
z5t) — X(1)).
Predicates ,,z is over the main diagonal” (denoted by ¢-4) and ,,z is under the main
diagonal” (denoted by (p.y)are defined analogously.
7. Predicate ,,the set X is a row”:
#n(X) =Yy, 2((X () A (uSaz V 250y) = X(2))A
Y, 2[(X () A X(2) A @i(y) A u(z)) = p(y, 2)]A
W, 2[(X () A X(2) A pr(y) A pr(2) = 0a(y, 2)).
The predicate ,,the set XX is a column”: ¢,(X) is defined analogously.
Let ®,,, be a formula (7). We define the transformation process of this formula to a
formula Z,,,,(®,,) such that (8) is realised.
This transformation replaces the subformulas of ®,,, by formulas over signature oyy.
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The point of
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The desired formula is:
SH;. HiVi-Vee walfHi) A A ea(H) Awe(V2) A A (Vi)A
: (Hy(2) AVA(2) AgaE) A A3z (Helz) A Valz) A we(2)).

b) The elementary subformulas of ¥(Z1, ..., Ta) are of the form

Alxiz), 7(zs), B, x(zj)), * ST
We replace the subformula Pi(m(z). 7(x)) by 3= : (Hi(2) A Vj(2) A Ry(2)).
The subformula Fi(x(z:), %(x;)) we replace by 3= : (Hi(z) AVy(z) AR(2)).
The subformula z; < z; we replace by 3= : (Hi(2) A V(=) A (25a(2) V palz))-

e T,

The formula obtained by all replacements is denoted by =, (Psy). Evidently, this is

EMSO-formula over signature s and (8) is satisfied.Q
Corollary. Let binary predicates P ... Py and their complements be OTA-recognizable.

Then for each EFO-formula &, over signature oy there is a EMSO-formula W, (P, ) over

signature ¢ such that for each sequence w
(w) & & <= MC(w) F Yoy (®on):  ©

Theorem 3. There is a binary OTA-recognizable predicate P and a formula & over the "

signature an(P) = (%, S, P) in the form of
0 = Var.aap(zy, - 2x) €[
where ¢ is a boolean formula with free variables xy,...,z) such that the languages
{(IM(w)] () = @2} and {MC(w)] M(w) |= &5, } are not recognizable by OTA.
Proof: First of all we prove two statements.
Statement 1. The predicate
1 if m,n are relatively prime,
0 in inverse case
and its complement are OTA-recognizable.
Proof: We use here the equivalence between OTA recognizability and the recogniz-

P,..(fn.,n) = {
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| 1bbbbbbbbb3 Ibbbbbbbhbaflhbsl

a# c|la= cla=0c
a =# cla = clal=c
|a = cc|la o c|2dd4
a - cla * ¢c|1lbb3
& 0w N0 e el 0N e Y0 e el
a * cll= * c|al=c
a * cl|a * c|2dd4
a * c|a * c|1b31
a *cla #cla*ca
| 2ddddddddd4 | 2ddddddddd4 [2d42

Figure 4: The tiling system for (11, 26)-matrix.

ability by tiling systems [3] . The tiling system recognizing P, for the case m < n is
shown in Fig.4.

It is the tiling system over the alphabet {0,1,2,3,4,a,b, ¢, d, *, #}.

For the case m > n there exist analogous tiling system. Analogous tiling system exists
for the complement P,,.. ¢

Statement 2. Consider the signature a5 (P,r) = (Si, 53, R"). For each square symmetric
matrix M over the alphabet X = {0, 1} there exists a naturals sequence w = w, .... , w, such
that IM(w) = M.

Proof: Let M be a symmetric (n,n)-matrix over £. Consider a symmetric (n,n)-
matrix A of prime numbers such that if i < j, k < [ and (3,7) # (k,1) then A(i,7) #
A(k,1). Define a sequence w where w; = ,fﬁ: M(i, 5)AG, 7), where

= 1 if M(3,5) =0
MG, 5) =
(2 {n if M(i,5) = 1
Evidently,
1 if M(G,5) =1
P, Jwy) =
(10, 1) { 0 if MG,5) =0

This gives us our statement. ¢
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,\;“mmp:aethepmdof'}:mm& Consider the formula

%, = VIIM:?:P#LII-F’] A Pp\rg.m}f\f',t:;.m_\ = Pulxy, 1)
It is easy to see that

Nw) =8, <= IM(w) € CORNERS

over on(Per):

whﬁelhtWCORNEﬂs.deﬁndin [5], is the set of matrices over ¥ such that ‘
henever M(isj) = M(#,]) = M(i,7) = 1 then aleo M(¢',5) = 1. This language |
s not recogaizable by OTA. Therefore, it is sufficient to prove that CORNERS i not
recognizable in the universe of symmetric matrices over E. We use the construction
proposed in [5). To each partition P of the set {1,... .2k} on two-element sets — bel
associated a (2K, k)-matrix Bp [5] so that :

BpBp € CORNERS <= P =P )
The number of these matrices is kL.
Now consider for each partition P symmetric (3k, 3k)-matrices My in the form
0 Bp
:H;P =
S(Bp) 0

where S(Bp) is a matrix, symmetric to Bp. The number of these matrices is k! as before,
From the consideration of (4k, 4k)-matrix A(P,P') where

L 2 S(Bp)

00| 5By
AP P) =

Bp | Bp 0

and from (9) follows that A(P,P) € CORNERS <= P = P'. The language
CORNERS defines the corresponding syntactic equivalence denoted by ~copners 3,6
It is easy to see that Mp ~cornens Mp: <= P = P". Therefore the number of classes
of syntactic equivalence foorvers(3k,3k) 2 k! and {IM(w)| Il(w) |= &7} is not recng-:
nizable. Evidently, the language { MC(w)| Tl(w) |= ®5,} is not recognizable.d
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© §6. EXAMPLES.

*  Here are three examples of OTA-recognizable languages of sequences. Recall that it is
sufficient to prove the recognizability of corresponding languages of information matrices.
In the following examples only one predicate is used - the equality predicate P. and the
signature 0}y = 01y (P=) = (51,53, Ry), where Ry((3, 1)) = P-(w, w,).

Example 5. Let W, = {wy,..,wp |wy #wyifi#j, wye N, ne N} be the set of
sequences of pairwise different numbers. If w € W, then IM(w) over signature o},, is a
' square (n,n)-matrix over £ = {0,1} in the form

y SRR e
0510
Mw)=| o 0o . g : for w € W,.
: (== 0
050 %o el

and the language L, = {IM(w)|w € W1} can be defined by the formula
D) =Yz (pa(z) & R (z)).

Hence, the set W; is MC-recognizable. ¢
Example 6. Let Wy = {wy, ..., wn | wy = wp_iy, i = 1,..,n}.
W is the set of palindromes. For each w € W; the matrix M (w) has the form

1

IM(w) = - = for w € Wy,

1

Le, the language Ly = {(w) | w € W} is the set of square matrices that have 1 on
indicated diagonal. As is known the language of square matrices with 1 on the main
diagonal is OTA- recognizable. On the other hand, the set of OTA-recognizable languages
I8 closed under rotation [3]. Therefore the set W; is MC-recognizable. ¢
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Example 7. Let W3
such that there exist two sequences 0 <# < .. <ig Snand

operation, e, w = W..Un
0.< j < - < J3 < such that
Ni#n (1Ssks3h

D w =ws 1Sk !

Let us prove the MC-recognizability of Ws. In this connection we need some auxiliary

P ——

automata.
Accturmn
column and copies it in all other columns.
AL = (.5, go, E, freee) -an automaton that guesses the first row analogously to

= (5. £, @, E: Sut ) -which is defined in section 3. Aciumn Suesses the first

A toms and copies it in all other rows.

Ases = (52,5, o, {(10), (01)}, 8se;) accepts square matrices Af over B2l M(3,9) =
(10} or (01) fort = ) e

Ay = (5.5, qo, £, 0ig) accepts any matrix over £ and Ag(M) = M .

Algiag = (5,52, o, {11}, 8lsqy) aceepts M i
1) M is a square matrix,
92) Mi(i,i) =1fori=1,...n

Evidently, the OTA

Ao = (Ading © (Arone A Acctiomn)) 0 Aid = (5, 2%, qu, £, &). transforms arbitrary square
matrix M to the matrix M; where MF(i, j) = M(i, j) and M, (i, #) = Olx or 10x for z € ¥,
Hence the OTA Aw; = Ot (Aliags (5), 5) Ao recognizes the set {IM(w)] w € W3), and
due to Theorem 1 the language {MC(w)| w € W3} is OTA-recognizable. Sa Wy is MC-

recognizable. &

§7. CONCLUSION.

We have investigated the sequences of naturals. Our investigations can easily be
generalized for the sequences of words w = wy |ua|ws|w, where w; are words over alphabet
A (the separator | € A).

The notion of OTA-recognizability of binary predicate P(w,w") can be transferred
for the case w,w' € A*. Then il P,P,...,F are OTA-recognizable predicates
there exists OTA that accepts the MC(w) iff JM(w) is EMSO-definable over signature
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F

(51,52 Pii-.. . Fr). As an example, we refer to the problem of recognizing send-receive
. protocols by cellular automata [6,7].
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