-

Transactions of the Institute Jor Informatics and Automation Problems of NAS RA.
Coilected reports of participants of JAF-28.

INFINITE GAMES AND FINITE MACHINES: FROM LARGE
CARDINALS TO COMPUTERS'

Dedicated to Denis Richard in his roaring sixties
' J.-P. Ressayre

We give & new proof of finite state determinacy, Inspired by Martin’s proof of analytic
determinacy using the large cardinal axiom of sharps. The proof suggests a new direction
in order to study the feasible aspects of finlte state determinacy. It is on the borderline
between Logic and Computurﬂdnnu.butourpmenhtionﬂmannmdundmhndhg
no matter which side of the line you prefer.

§1. INTRODUCTION :

Let A be a set of binary ,,infinite words” : A C 2¢ ; the associated game G(A) lets
player I and player II choose z € 2, This play z is won by player I iff z belongs to A,
and by player I otherwise. (Thus A is player I s winning set ; while the winning set of
player Il is the complement 2 — A). The choice of z is made in an infinite succession of
turns : at turn n player I chooses z(2n) € 2 and player I replies with z(2n + 1) € 2.

G(A) is determined iff one of the player has a winning strategy (=: w.s. ) That is, a
map 0 : 2°“ — 2 such that the player is guaranteed to win every play z in which he
played z(n) = O(z|n) whenever it was his turn to play.

An analytic set A is one accepted by some non deterministic Turing machine with
oracle.

Martin [M] proved ,,analytic determinacy” : determinacy of G(A) in case the winning
set of one of the players is analytic. But. Martin’s proof uses ,;8harps” : a large cardinal
axiom, much stronger and daring than ordinary Set Theory, although the strength of
the latter is already way beyond the current needs of mathematics (as of today). And
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Hacrington [H] (building on ideas of Harvey Friedman) proved a converse, to the effect tha
,wmwntwmﬁrdaaminr& This underlies the fact that the winning
strategy proved 1o exist is in the general case of the most extremely non effective kind
{n fuct, set theory's topic of large cardinals is the most infinitary part of mathematics.
and analytic (mere generally projective] determinacy is the most spectacular outcome of
this infinitary riot.

Back to earth : the study of FS (= finite state ) machines is the very first chapter of
Computer Science. Can we combine fruitfully these two opposite extremes, and use ideas
coming from large cardinals to produce results about finite state machines ? Surprisingly
we here give a modest but definitely positive answer : we shall supplement Martin's proof
<o that it yiclds FS determinacy: the existence of some FS computable winning strategy
in G(A), whenever the winning set A itself is FS accepted. This nice theorem is one of the
few in existence to be entirely mathematical and at the same time entirely abont Comput.
ers. It had three proofs due to Rabin, Biichi-Landweber, Gurevich-Harrington (the latter
pmufhmbcenoptimjzadby’rhomns.see[]‘f}. The new and highly paradoxical proof of
FS determinacy we present suggests quite a new perspective explained in the conclusion,
in order to adress some main unsolved problems connecting effective determinacy with
Computer Science : the P-time realization of FS strategies, and the P-time decision of

the winner of a ,,parity game".

Section 4 below exposes most of Martin's proof of analytic determinacy. This is not
abusive : if we simply gave a reference for it, we could not reasonably explain our own
proof. In addition Martin’s proof is short and most commendable reading. And we pro-
vide it with a new and accessible form S of sharps, since the original form of this axiom
looks hopelessly away from Computer Science.

§2. PREVIEW OF THE PROOF

Recall that A is a finite stale accepied subset of 2% i[ there is an FS machine such
ihat A consisis of the words z € 27 which are accepted by this machine. We cail it the
acceplor A, we denote Q its set of states (so Q is finite) and for every s € 2“ we denote
g(s) the state which the acceptor A enters upon reading the word s. Thus when acceptor
A reads an infinite word = € 2¥, there is a subset of Q
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Inf z :={g; q = q(z|n) for infinitely many n < w}.
* which forms a loop in the transition graph of the acceptor A. And the acceptor has a
. fixed fnmilyfofawspt&:gloopsmchthatzisaccep:adiﬂfnjzbelongsto?—'.

Nota-Bene : except in last section we assume that the acceptor A is deterministic (:=
g(s) is uniquely defined ; this does not change the class of FS accepted set). :

Let us call rejecting (for player I ) all other loops in Q. In order for player I to win
the game G/(A), he must avoid a rejecting loop to repeat itself eventually during the play
z. Here is a way (*) to ensure this :

#) player F plays ordinals in addition to his moves, in such a way that whenever a
rejecting loop L starts being repeated by the acceptor A (reading the play z during its
performance), the ordinals chosen by player I when each repetition occurs start building
a strictly decreasing sequence of ordinals.

Remark 1. All such sequences are finite, hence if player I manages for the whole play
z to ensure (*), then every sequence of repetitions of a rejecting loop L is finite and play
z € A and is won by player [ .

This idea can be made precise in different ways, which are not equivalent. Indeed, the
whole sequel depends on a careful selection of the precise version of (*) that is used.

For any ordinal v we denote G(v) the version of the game G/(A) that follows :

© in addition to his moves z(2n) for G(A), player I must produce ordinals < = in
the above way (*) :

o if he does so for the whole infinite play he wins at the end

o and if he cannot at some finite stage, player I immediately wins.

Thus we turned G(A) to a game G(v) that is open for player player I := he wins a
play iff he already wins it at a finite stage. Gale and Stewart proved open determinacy :
determinacy of every game which is open for at least one player. Thus there is a strategy
0., that is winning for one of the players (which one depends on 4,4). From the family
of strategies 0", we now deduce a w.s. in the original game G(A).

Case 1 : there is some 7y such that the strategy 0, is winning for player I . Then
by R.0, 0, is winning for player / also in G(A) (just omitting to exhibit the ordinals
provided by @, since they are not required in the original game).
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mddineammn;dned:j,ﬂ,dlhmmgﬁu[m-.umm?.“ This meas
mluenolomgerdependsontheordin!l!ptwidadb_rplwuj during the play of G(s)
becminstmditmmeir..mmge'. For that reason 0 is o strategy for player J in
the ariginal game G(A) ; and using the fact that the strategies 0, which O comes from
were winning ones, Martin's proof shows that 0 is winning for player ¥.

Nota-Bene : actually Martin's idea only applies to a modification of the above & “)
and 0. Buluzemodiﬁmtionniﬂusﬂthemidm; Gale-Stewart and a version of

Case2:

(*)+R.0.

The disjunction of the two cases produces a winning strategy for G(4) in any case,
hence proves its determinacy. But it does so in a way that seems infinitely far away from
FS determinacy. For the set of countable ordinals and the strategies 0, -let alone their
mean valu¢” which depends on a large cardinal- are everything but effective -let alone
FS!

Nevertheless there are many possible variations in the definition of the open game
G(v) and its w.s. 0. And we found one of these variations which in Case 2 vields an
average strategy 0 that is FS. This shows FS determinacy in case player I has a winning
strategy. And interchanging the roles of the two players puts an end to the proof : it
allows to show the other case.

Let us finally preview how the outrageously non eflective average strategy [ 0, is to
become an FS one. We recall Gurevich-Harrington’s contribution to F'S determinacy. Let
A be a FS accepted subset of 2¢.

Proposition : oblivious determinacy - In GG(A), one of the players has a winning strategy
@ such that a(z|n) only depends on LAR(z|n); where for s € 2<%

o LARY(s) := the sequence i < ... < iy = Ih(s) which enumerates all stages i; at
which some state ¢’ € @ is entered for the last time by machine A reading & (thus
k<N :=|Ql, ¢ = qlsli;), ¢ = q(s) and LAR%(s) € [th(s) + 1]5V)
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o LAR(s) := (¢, ....q*) € Q< (with i #j — q' # ¢).

Such a strategy o is said to be oblivious because it can forget most of s, retaining only
the information LAR(s) which is bounded independently of ik(s). We shall later set

LAR(s) := (LAR(slio), ..., LAR(sliy))

where (i, ...,ix) = LAR(s) ( thus in particular LAR(s) is the last element of LAR(s)).
The dependence of o(s) on LAR*(s) ( instead of LAR(s) ) is a weaker oblivion property
for a strategy o that we call 2-oblivious.

Let us come back to the games G(~), the winning strategies 0", and the average Lo,
 their precice, modified definition will ensure that this family of games and strategies is
oblivious in some sense, so that the avernge will become 2-oblivious. By the Remark (a)
below, a 2-oblivious strategy is an FS one. And this ends our preview of the proof of FS
determinacy.

Remark

(a) Let LAR denote the (finite) set of possible values of the function LAR(s) ; the
reader can easily devise an FS machine L such that LAR is the set of states of L,
and L enters the state LAR(s) upon reading s. Likewise there is an FS machine L?
with set of states LAR? which enters the state LAR?(s) upon reading s.

Strategy O is 2-oblivious := 0 (s) = w(LAR?(s)) for some function w. Note that
w has finite domain and image : it is the writing function of an ,,FS transducer”
(L? w) which computes 0.

(b) It looks as if our new FS determinacy proof is not as good as the Gurevich-
Harrington one : the latter obtains an oblivious w.s., which is better than 2-
oblivious. But this is not & weakness of our proof in the perspective we shall present
for future research : see R.19 below.

There are quite a few ways to use the mathematical theory of infinite games in Com-
puter Science: see [T]. We end this section by recalling one of these ways, which has
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great practical content. Present days industry raises a large number of problems of the
form - design o (non terminating and FS) procesor P working in rea time intersction
with itsenﬁronm&.mdthnmthﬁaﬂoramninspedﬁmhn_ FS determinacy is the
thearetical Wounddamuddmddmdlhhm

ww’mm"wh"mmvﬂﬂ'f is the environment: jis
pmﬁblemmumallsthnnliwhichtheenvirmmt might send at once to the
pmm:pla}wlis:hepmomm its possible moves are all the reactions which
{he processor might have to make at once. The plays are all infinite saquences of
alternate moves of player / and player J - coded so as to coincide with all clements

of 2.

(a)

{b) The specification is then represented by the set A of all plays 2 € 2~ such that the

e moves of player I are a satisfactory response to the moves of player / , according to
the specification; thus our problem becomes: find a transducer @ which is o w.s.
for player I in the game G(4).

(c) If A happens to be FS accepted, then by FS determinacy one of the players has a
w.s. O which is an FS transducer. If this player is player I, then 0 is the abstract
form of the desired processor P; and if it is player [ , then no processor of any kind
will ever satisfy the specification. Moreover using Biichi's lemma which says that
an FS acceptor accepts a non empty set of infinite words iff it accepts an ultimately
periodic one, we can effectively determine which player has the w.s. - and find out
the transducer & which realizes it.

The infinite length of G(A) is an imaginary feature and makes us expect that the
above ,.model of real world processors” is a crude and falsely idealized one. But if a w.s,
0 for G(A) is performed by an FS processor P then P has done everything & has to
do every time a loop is completed in the transition graph of P. ( For otherwise player /
could induce infinite repetition of the unsatisfactory loop, to win the play and defeat 0 ).
Now suppose P is a real world processor, with about 10° states say. ‘Loday, its speed is
counted in gigaherz : P completes a loop every [raction of a second !

Thus although G(A) seems to allow @ and P unlimited hence unreasonable amounts
of time to complete their task, in practice P is very quickly effective. So that the above
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 model of processor design has some (hearistic) value for a very large class of applications

~ - for instance, in the design of processors used in modern plenes. Indeed, the expanding
mathematical theory of this model is giving guidemarks and ideas of algorithms for the

. design of such processors. Which is an extracrdinary fate for a theoretical research about
infinite games.., ]

But FS determinacy is only the beginning of this remarkable story. Today there are
unsolved theoretical problems which are as beautiful, and have much more precise and
strong bearing in applied CS ... only they are much harder. Namely :

1. P-time realization of FS strategies

2. P-time decision of the winner of & parity game (= a special case of FS games).

While FS determinacy mntmhseﬂwiththammedsﬁenuofaFSwinningﬂmtegy,
these problems ask to quickly compute it and to quickly decide which of the two players
hns it. The first, obvious step in the study of this ,,P-time version of FS determinacy” is
to examine the now 4 proofs of FS determinacy and see whether we might extract from
them additional information (on the moves of the w.s. , or on the winner). The answer
looks rather negative to us for the first three proofs. Whereas our new one opens a track;
but this will be discussed in last section.

§3. OBLIVION

We start the full account of the proof just previewed : we work towards a modified
definition of the games G(+) which via Lemma 7 and section 6 leads to »oblivious”, hence
FS winning strategies. This will use not only the results below up to Lemma 6 but also
the particular proofs we are providing for them.

We write s C & if sequence &' is a proper extension of 5. For s C & € 2<¥ we
denote g(s, &) the set of states which machine A reading s' visits after s is read through
: qs,#) = {a(s}i); th(s) < i < Ih(&)} .

Lemma 1: ,,normal form”

IfsC s €2 weset: s’Hs «— there is s~ C s such that
1) g(s, &') is a rejecting loop and g(s,s') = g(s~, 5).

Then for each z € 2¢,
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= € A iff the relation R, is well founded

-whee R, = RI zm;n <wkh |

Proof L1 |
We prove (L.1,—) in contrapositive form. So we assume that R, is ill founded : for

some infinite sequence (s;) we have sp.iRsp C 2. Thus g(8y, 8p41) is rejecting we show
that it becomes constant for all sufficiently large p
There is n < w such that @{Sa-1, $) is not strictly contained in ¢{(Snsp, &nspe1) for any p.

Claim : Q(h-:-ﬁn-'—p) C q(&n-1,5a) for all p < w.
This being true for p = 0, it suffices to show a contradiction if one assumes it tree
for some p but false for p+ 1. Indeed, let g be an element of g(8p-1, $aspe:) but not in

q(Sn-1s $n)- TheN Snypet RSuip implies :

+) g € q(851p Snepsr)-

Remark 2.

The only property of R needed to ensure (+) is “s’Rs — (1)", and not the converse.

(+) implies : 85, C 85y hence q(8n-1,8,) included in g(snis Saspn) =
2(Sn 491 8nsp+1)- The inclusion is strict due to the element g. This contradiction with the
choice of n proves the Claim,

Thus g(Snip: Snsps1) i8 constant or decreasing. The first case ends our proof of
(L.1,—); and the latter case happens at most [Q] times. That is: k < |Q] if
n =n(0) < n(1) < ... < n(k) are such that i) each n(i) has the same maximality property
as n; and ii) q(8a(0), Snii+1)) Boes decreasing each time. Thus eventually g(sn)4p Sutyipi1)
gets constant and equal for all p to Inf z which is thus rejecting : z € A is false and
(L.1,—) is proved (in contrapositive form).

Now we show (L.1,+—) in contrapositive form. Assume that = @ A: Inf z is rejecting.
Set

o mg := smallest m < w such that g(zlm,z) = Inf 2

o myyy = smallest m > m; such that Inf = = g(z|my, z|m).
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| Since glzlmi,, zlmq)=q(zim,, zim;.) = Inf 2 is rejecting, z|my.; Rz|m; for each i > 0.
* Thus R is not well founded.

. L1 proved

We next want to linearize R : extend it to an order < on 2 so that R is well founded
on {zln;n < w} iff < is well ordered on it. For any s € 2<“ and z € 2 we shall set
R, := R {sin;n < lh(s)} - hence R, = UpeyRupn.

Lemma 3. : , linearization”

‘ LetR‘_denotethetmnsitivedosureofﬂanddeﬁneforS=sE2‘"and3=ze2“'a
linear order <5 extending Rs by the clauses :

o 8 C & and lh(s') = h(s) + 1 implies : <,C<, and in the order <y, & is immediate
predecessor of the set {s|k; k < Lh(s), s’ R's{k} if the set is non empty,
o &' is the greatest element of <,/ otherwise,

0 <3i= Unew <ujn for z € 2¢

Then whenever z € 2% we have : R, is well founded iff <, is well ordered.

Proof L.3 The ,,if” part of 1.3 is clear since R, c<,. We prove the reciprocal
in contrapositive form : from an infinite descending sequence (s,) for <, we deduce a
sequence (s") descending for R,. Note that for this purpose our definition of <, is most
natural : it is descending only when this is forced by R,. However in order to prove the
reciprocal we need the alternative definition of <, provided by the Fact below. The initial
definition by induction on s remains useful in order to prove properties of <, by the same
induction. In particular it makes inductively clear that s C s’ —<,C<} and <, extends
R, R' to a linear order of the restrictions of s.

Fact 4. For L € 2*, k < w recursively set

o 1 :=minc{t; t =1t or LRV}

o " :=minc{t' > t*; L = ¢ or LR} (t*+' undefined if the latter set is empty)
Assume s C ¢ and s* = ' for each i < k, then
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a) 2 C s* implies <8
(b) & C t* implies 5 <s ¢
(c) t* = s" implies
oi)ifs*=sthent <t s ,
aii}i!a“c.s.lhent""‘mds"“bothmtkﬁnal
Remarks a) This decides the relation ..t <; &” except in case (c.il). But in this case ':

the comparison for C between t¥*1 and §*** offers a new chance to decide .t <, at"..

e e i

b) Using this chance at most th(s) times eventually decides ..t <, 8", since s* d :
implies k < Ih(s) ( because SR'S*IR'S* ).

¢) Note that the definitions imply : (Y =8G<h) R adF=th icj — j
(PCtiort =) |
Proof F.4 (c.) is clear : tR't = s* = s implies t <, 5. (c.il) clear too : if necessary ;
¢+ ¢*+! are provided by 2, s.
We adress (a+b); it clearly holds when k = 0, of length 1. We inductively assume that
(a+b) holds : |

o for any shorter sequence in place of ¢
o and for each smaller or equal integer in place of k.

(a) - (t*)* = t* C s* implies : t* <, & by induction hypothesis (b) with s, t*, k in place
of t, 5, k. Thus t <, t* <, s. :

(b) - Let X denote {t'; tR''} ; if X is empty then s <; t by definition of <. Otherwise
our inductive hypothesis applies to each t' € X; and by the above R.c there is j such that
' = 1" foreach i < j and either j=k+lorj<kand (¢ CtY ort' = t!). |
Assume s € #' ; if 7 = k<4 1 then s <y t' by induction hypothesis (b) with t'.a.kin;
place of t,5,k. If j € k then t' = ##~! is excluded (by s C '), 5o & C ¥/ C "/ implies

i
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A-q;‘-:.-!'hyhlduction hypothesis (b} with #,s, j in place of ¢, s, k. Now assume t' C 5 ; if
'q:kJ-lthena<.!’byinductinnhypnthais{a}withat‘kmplaoeol't,s,k Hi<k
asand ' = ¥~ then s <, ¢/~ = g1 — ¢/, Ifj<kand ¥ Ctthen s =/ C ¢/ implies
48 <, ' by induction hypothesis (a) with 8,1, j in place of ¢, 5, k.

Inanycasswegots-:.t',henceaq)f. And s <, t, since t is immediate predecessor
olfor <, of X.

F.4 proved

_¢I Proof L 3 Assume that <, is not well ordered : 8n+1 <z 8n for some sequence (s,)
umuch that U,..eus,. z. By extracting a suitable subsequence we can assume Yn Snt1 C 8p.
‘IThen by F.A.b applied with t = s,.,,5 = s, we conclude that 53, C 2 for each n. By
mextracting a suitable subsequence we can assume : 52 is a constant s°. Inductively assume
ithat (by extracting subsequences) we have : Vi < k ¥n < w (s}, is a constant s'), Then
in >0 — s*! exists, by F.4.cii. Then by F.4b shtl C s+ . hence by extracting a
isubsequence we can assume that s3*! is & constant s**1. Note that for any s, s* R/sk
» whenever it is defined. Hence by induction on k < w we are constructing an infinite
sssquence (8*)y.c,, such that Uys* = z and s*+! R's* for all k.

L.3 proved

Remark 5 : the preceding proof and lemma actually work for any relation R on 2<“ such
{:hat tRs implies s C &
~ When R comes from the ,irst normal form* (L.1) of A and < denotes the linearization
of R by the above lemma, we immediately obtain :
Lemma 6. : ,linear normal form”
z € A iff <. is well ordered - whenever z € 2¢,

There remains to bring oblivion to these normal forms. The concatenation of two
sequences s, L is denoted s,
Lemma 7. : ,,oblivious normal forms”

In L.1's definition of 5'Rs, to the condition
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1) gls, 8183 rejecting loop and g(s, ') = qls7, 8)

jet us add
2) q(s‘.s'ﬁ#q{n‘,s‘)mscfc o
Then
r._alRand<kzepsatisfyiu::e.iliﬂﬂ.iswelifoundediﬁq,ismum. -.
=€ 4
(b) R becomes in addition ,,oblivious™ ;= for s € 2%~ .!!

o i) the sets {t € 2" tRs} and {({t. ) t,t' € 2=, s"'Rs"t} m]ydwq
LAR(s)
o i) the set {i < lh(s); s tRs|i} is contained in LAR(s).

e S

(c) <, becomes in addition ,, 2-oblivious™ := for s € 2%, and (i;);cx = LARY(s)

o i) the set {(t,t);t,t' € 2,87t <A, st} only depends on LAR*(s); ;

the set {(t,7); L € 2%, st <A, sli;} only depends on LAR?(s) q

o i) min {i S th(s); 87t < ., sli} and max {i < Ih(a): 87t > | ali} belong to
LARY(s). ’

Proof L.7 ',
i

(a) The modified R still satisfies : tRs — s C t; by R.5 this was the only condi
for L.3 to apply. Thus here we only need to prove the part of (a) relative to R. Below (
only denotes this part. '

|
(a,—). The modified R still satisfies : ’Rs — (1. By R2 this implies (a,—).

(a,—) in contrapositive form. We assume that z € A: Inf z is rejecting. And we u’

o mg := smallest m < w such that g(z|m,2) = Inf z f
!

134



i

o mys1 = smallest m > m; such that Inf z = q(zim,, z|m).

Thus g(zim—;, zlmi)=q(zlm, zlmy.1) = Inf z is rejecting, and (1) is satisfied for each
. § < w by s := z|m;. 8" := zjmy,,. But (2) is not guaranteed, so &'Rs cannot be concluded.
However we shall define n; such that m; < n; < m,., and both (142) are satisfied if z/n;

replaces z|m,
o 1') glzlni_y, zlm) = glzln;, z|ns.y) is rejecting
o 2') glz|ni-1, z|nicy) # (8", zini; ;) whenever zin; € & C zjn.,.

This will ensure z|nge Rz|ng.

Inductively assume that we got n; < my,; for i < p ; we shall obtain n] with the
same property but up to i = p+ 1 and with n; < nf for i < p. If we succeed this can
Le repeated w times, and the changing value of n, during this process is non decreasing
bounded by my,. Hence it stabilizes : at some stage p(i), n} remains equal to n; forever.
This provides a final sequence of values n;, i < w satisfying z|n..; Rz/n; when R involves
(142).

It will show ill foundedness of R,, proving (a,—).

Obtaintion of nf, i < p+1:

Ty o= My § Ny i=max k: g(zlk, 2|n},,) = Inf z; n}_; ;= maxk: q(z|k, z|n}) =
Inf 2. '

Note that n,_, < m, as required, because nj, < my., implies g(z|m,, z|ny) # Inf z by
definition of m,,.;. Repeating this leads to n] successively from i = p— 2 down to i = 1.

Thus L.7.a is proved.

L7b : R is oblivious. Set LAR%(s) = (ig,...4). If s™tRsli and i; < i < iz,
then by (2) q(slis, s) # qlsli,s). By definition of LAR®(s) this implies i = iz;; thus
{i: s"thsli} C LAR"(s). We checked (b.ii); further we have s”¢Rs iff there is s~ C 5
with g(s~,8) = q(s,57t) rcjecting. Clearly this only depends on LAR(s) and g(s,s"t),
hence on (LAR(s), t). We checked a part of (b.i).

Next we show for £, € 2< that both conditions (1) and (2) in the definition of
s"t'Rs”t have their truth which only depends on (LAR(s),t,t'). The rejecting character
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of gis"t.87t) (which is part of (1)) only depends on g{s),1,¢' - and ¢(s) is the last
element of LAR(s). Thus this part of (1) only depends on (LAR(s).t,1'); and the same
clearly spplies to (2)- There remains the other part of (1): existence of &' C 57t such
that gls', ¢ ~t) = q{s"t, s ~t'}. It has two cases.

. sC ¢ : existence of ¢ then only depends on (g(s),t,t").
o & C s: since g8, s71) = ¢(¢',8) Ug(s, s™t) and the possible values of ¢(¢', &) anly

depend on LAR(s), existence of &' then only depends on (LAR(s), ,t).

Thus we checked the remaining part of (b.i).
Next we show L.7.c : < is 2-oblivious. <, satisfies (ii) of 2-oblivious because by
definition s™t is immediate predecessor for <, of {(s™t)|t; s "tR'(s"1)}1} and since R is
oblivious, the latter set intersects {sfi;i < Ih(s)} only where i € LAR®(s). There remains

(i) of 2-oblivious.

cst <A § iff sTtR'sli € ~ s for some ¢ € LARY(s). By (i) of obliviousness of
R (applled to s|i in place of s} the latter only depends on LAR(s)i), !, hence on
LAR*(s) and t.

o 87t < &7t iff there is j > h(s™t) such that : s"¢R'(s"t)]j and Sk <
j s"’t};'{:"ljlk. Truth of the first conjunct for any given j only depends on
t, LAR(s) and truth of the secund for any given j, k only depends on t, LARY(s).
The whole only depends on t,t', LAR(s).

L.7 proved.

§4. FROM INDISCERNIBLES TO DETERMINACY : MARTIN'S PROOF

We consider G(A) in a much more general case than in section 3 : namely we only
assume that A is co-analytic. This is equivalent to say that A has normal forms as the
ones of L.1+6 (only they are not ublivious us in the FS case). Thus Lo every s € 29 iy
associated a linear order <, on {s|k;k < lh(s)} so that for z € 2 we have: = € A iff
<, is well ordered, where <;:= Upcy <up . A trivial modification (done for notational
convenience) allows to assume that actually <, only orders the initial segments of s of

136



even length: namely, set s|2i <, s|2j in the modified order <, iff s]i <, 5| in the original
~ one .

Then for each ordinal +y define an auxiliary game G, : in addition to z(2n), player I
" chooses an ordinal o, < . So the positions in G., are of the form ((s,a;)i<s) With
5 € 2° and lh(s) = 2n or 2n + 1; they are legal (for player I ) iff the map: s[2i — o
is order preserving: <,— 7. And play (z,(0)ic.) is won by player I iff all its po-
sitions (z | 2n, (o)icn) are legal. Observe that in such a case the map :8[2i — oy is
order preserving from <, to 7, hence <, is a well order and (because of the normal form
of A) play z in G(A) is also won by player J . Thus a w.s. 7’ for player I in G, pro-
vides a w.s. T in the original game G(A). This shows the first point of the Remark below

Remark 8.
() 3y player I has a w.s. in G(7) — player I has a w.s. in G(A).
(b) The converse is true, in fact with a countable value of ~.
(We shall not use this (b), so its proof is in appendix)

(c) Each game G., is open for player § . Hence by the Gale Stewart theorem it is
determined.
(d) For every s € 2<“ the property for any ordinals & < 7 that (s,&) is legal in G,
only depends on the order type of & (w.r.to the order of the ordinals). Indeed let
P, denote the order type of {s|2m ; 2m < lh(s)} for <, ; then (s, &) is legal iff p, is
the order type of &.
Notation : we let p,(&,7) mean that & is a sequence of ordinals < + with order type
s
Martin's idea is to deduce the determinacy of G(A) from that of G, for all 7 < wy;
there are two cases.

Case 1 : there is 7 such that it is player I which has a w.s. in G,(A). By the above
Remark (a), this is also a w.s. in G(A). Thus G(A) is determined in case 1 without need
for a large cardinal.
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Caa 2 not case 1. Then by open determinacy (R.8.c) it is player J which bas a wy,
q.“hmﬂkum:hi:isumhruchmuun.thnishmwcq. (@

g, in G,
denotes the first uncountable ordinal and cardinal )

Now we assume the {large cardinal) ,.axiom of sharps™: it is then easy to choose the
family Oy 7 < 51 and to provide an uncountable subset C of w; so that for each s € 2%«
the statement

O ,(s.8)=0
takes constant value for all &7 in C such that p,(a,7).

One then says that C is indiscernible w.r.to the strategies @5, y <w;. Or w.r.to the
statement O (s, %) =0, for each s € 2~ .

Remark. We did not state the axiom of sharps; and its above consequence is , easy”
only for the reader familiar with the axiom. In the opposite case, the reader can admit
this step - temporarily since section 7 will provide for the detail that is missing here.

Such a set C yields a w.s. O for player ¥ in G,(4) : suppose | 2n + 1 is a position
in this game; let @,y be any sequence from C such that p,(a,7). Set O(z [ 2n 4 1) =
0,(z | 2n + 1,&). The indiscernibility of C ensures that this definition does not depend
on the choice in C of &,7. The latter fact ensures that strategy @ is indeed winning for
player I : assume on the contrary that z is a play of G in which player I applied " , yet
: is won by player J . Thus <, is a wellordering; let : 2[2i — q; be its isomorphism
onto its order type 7. And let (£, )ice be a sequence from C with same order type as
(0)i<.- The indiscernibility of C implies:

Yn<wz@n+1)=0g(2 [ 2n+1, (&, )ica)-
Thus (2, (€a,)icw) 18 & play of Gg, in which player I applied his ws. @,. Yot by

construction we ensured that the play remained legal for player I hence is won by him,
which is a contradiction.

We proved that G(4) is determined in the two cases that exist, assuming the axiom of

sharps in the secund one. The proof applies to all analytic games G(A), by interchanging
the role of the two players if it is A that is analytic in place of its complement.
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§5. ADDENDUM TO MARTIN'S PROOF

Let us redo Case 2 of the proof in the preceding section. So we assume this case: hence
for every 7y < w) player I has a ws. 0, in G,(A). All what Martin used about 0., to get
O was the existence of & set C of w; indiscernibles w.r. to this family (0',). Here we are
#oing to provide in addition & specific construction of 0, : in next section this addendum
yields finite state determinacy and in section 7 it vields an equivalent S of the axiom of
sharps, which is easier to state.

Let G be any game which is open for player I; if player £ has a w.s. for G then he
has a canonicol one, based on backtrack analysis from the set of positions where player 7
already won. Below we define this canonical strategy but not in the above said, usual way.
When G = G., this will define T.,.

We need the notion of erdinal height of a binary relation 1. We recall it with notations
that suit various instances used later. We add on top of the class of ordinals an element
denoted oo, Let X be any subset of dom t; when 1 is indicated by the context, ||X||
denotes the ordinal height of the relation 9 | X :

Notation

o || X|| := 0if X is empty and {|X|| := co if 9 | X is not well founded
o otherwise, oo > ||X|| which is the smallest ordinal iy with an application h : X — v
such that for z # y in X, zyy — h(z) < h(y)
Remark. ForzEX.aetX,r{yEX;mb:mdy#z}
(8) X1l = supeex [1Xl|+1
(b) ||X<l| equals h(z) for the map h of the above notation : it is the ,»height of z” (for
the relation 3 [X}.InmeXequalsthefuﬂdomainofwwdote.itabn”zl{.
Notation

(a) We say that a position ¢ in the game G is legal (for player I ) if it is not already
won by player J (in the sense: player I wins any full play extending t. If G = G(y)
this is the former notion of legality)
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{b) mmps*-wdeuthmGMﬂmwﬁm:hpmw
won by player J iﬂhemain«imimlpnﬁtm. Gy is also denoted G,.
(c) m.\"demteu,.(..{.-: - is a w.s. for plaver I in Gip }. We use the preceding
notation [|X}|
o when X is X' for some t
amdw.r.tollnrdlﬁm:miﬁycr.

Remark. Thus ||X*|| = o iff there is an infinite chain 7y C 73... of w.s. 7 for player J
in Gep -
Furmveniencewemmnhnin(?ph}rl is only allowed to play 0 or 1 ~asin
G(+). And that t is of odd length (so it is player I which plays the next move).
Proposition 9.
(a) |IX7|| = oo iff player [ hasaws. in G,
() [1X]] = mingX* O 1X*HD +1

() ler @ (8) = O ff [IX 0| < [IXYH]), O (1) = 1 otherwise. 0 is a ws. for player I
from every position t such that X <00.
Proof P.9
(a) results from the above Remark, since the union of an infinite chain of w.s. 7, for
player I in Gy, becomes a w.s. in Ge.

(b) Observe that 7 € X! — 7 =7 U7 Where 7, € X* 7% then it is easy to prove
by induction on ||X7|| that
(1X¢)] = min()i X%, Ol [1X% 1) + 1. When 7 =<> this is (b).

{c) Set o(s) := ||X*|| ; from (b) follows that

o (oal) s of odd length — o(s) := min(o(s™0),0(s"1)) + 1. And s of even length
— o(s) := sup,o(s"a) + 1, where s"a ranges over all legal one move extensions

of 5.
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o (0a2) The strategy O satisfies oft™(zln + 1)) < o(t"(z]n)) for every n and every
play "z in which player I uses g from position ¢.

Then there is & finite stage n such that o{t"(zin)) = 0, hence player I already won
the play at this stage. Hence (c).-

P.9 proved

Remark.

Condition (0al) defines the well-known canonical assignment of ordinals to the winning
positions of & player with an open winning set. And (0a2) is then the usual definition of
the canonical w.s. of this player : the one by bactrack analysis. It is equivalent to the
definition via || X*|| which we took; but cnly the latter suits the sequel.

Next we fix G to be G,(A) and we Jet 0., denote 0 in this case. A position in the
game is then of the form ¢t = (s5,a) where Ps(8,7) holds. And we denote A*(7)s the
corresponding set X* :

A)a= {r: Ip<wrisaws for player I in G(y) played only p times from
position (s,&)}. From now on &,y denote ordinals such that P.(&,7).

Remark 10.

Thus 0.,(s, &) = 0 iff

) 14 )all < 147 )l

And for a subset C of w, to beindisoemiblew.r.tothea., ’s is to give constant value
for each s to the above statement.

§6. PROOF OF FINITE STATE DETERMINACY
We continue the preceding section returning to the assumption that A is FS accepted
and that the normal form < used to define (G(7), .,) is the 2-oblivious linear one of
L.7.
Lemma 11. Whenever s is of odd length and i € {0,1}, then A‘A'('r}, only depends
on & [ LAR%(s) and on LAR(s). More precisely assume that LAR*(s) = LARY(s'), that
p#(B,7) holds and & [ LARO(s) = 7 | LAR°(s"). Then
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fort € 24,8 < 7. the Jegality of (s"t,a"§) and that of L8 0is
a) F,0<1 same question

b) A* ) =47 ‘0)s

Proof L.11 (a) results of the 2-obliviousness of <,. (b) is easy consequence of (a).

L.11 proved

Recall that the w.s. O for player I is defined by : O(s) =0 iff

+) 114l < 114° (sl

whenever &, belong to C.

Claim 12. O is 2-oblivious : if LAR®(s) = LAR(¥) then O (s) = O (&)

[ndeed, the assumption implies that <,| LAR(s) =<, LARY); then since C is
infinite we can choose inside C a sequence of elements @&, 3. as in the preceding lemma :
p,(8,7) and p,(3,7) both hold. And by preceding lemma, the value of (+) is unchanged
if (', 3) replaces (s.d).

Thus we showed that if player I has no w.s. in G(A) then player ¥ has a 2-oblivious
one. Now since A is FS accepted, so is the complement of A. Hence we can interchange
the role of player J and player I : if it is player I which has no w.s. in G(A) then by
the same token player I has a 2-oblivious w.s. . This implies 2-oblivious determinacy :
one of the players has a w.s. of the form 0 : a+— w(LAR*(s)) for some function w. As
remarked in the preview, it implies FS determinacy.

Remarks

(a) The proof is easily extended to the case of a (deterministic) Turing acceptor A ; it
yields a strategy O that is 2-oblivious in the sense : O (s) only depends on LAR(s)
and on the full configuration of A upon reading s (Nota-Bene : A may have erased
s while reading it, so we are not always in the trivial case where s belongs to that
configuration). This no longer implies effectiveness of 0 except in much more special
cases. But it yields the maximum extension of ,,oblivion” : extension to all games
G(A) such that A is boolean combination of rank two Borel sets. [ndeed :
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o oblivion (in the sense of keeping only 2 bounded memory of the succession of
stales used to accept) bacomashlsebeyondthenbmm;

o and these are exactly theTminga.mptedonsi!yuuallwthe'I\mgmachine
to have an arbitrary infinite word written on a tape and used as an oracle.

(b) We point out how the use of sharps is eliminated from our proof. Remember that
we used the family of strategies o ~ wonly” for 4 < w;. But here we first blow 7
up to the much larger ordinal and cardinal : A == 3(w). The Erdos Rado partition
theorem ,A — (w;)} for every N < w” implies the existence of an uncountable
subset C of A such that the relation

1A% %)s)| < 1A ()all

takes constant value on C, for each s in a given finite set E. Fix E so that LAR?(s)
takes all possible values on it. Then since the 0., 's are 2-oblivious, it follows that
the above property holds not only for s € E but for all 5 € 2¢. That is : C is
indiscernible w.rto the 0 .’s. The rest of the proof simply uses this set Cc A
instead of CC wy,

§7. A SIMPLE EQUIVALENT OF THE AXIOM OF SHARPS
We return to the general case of an analytic game as in section 4, and give complements
to understand the nature of Martin’s averaging procedure, and the nature of ,,sharps”,
(Believe it or not, this is a useful step to understand the perspective opened by the
new proof of FS determinacy !)

Definition Subset C of w; is closed if the sup of any countable sequence of ordinals
from C still belongs to C. It is cofinal if it is so in wy.

Let us say that a property on w; is true in average iff it holds on some closed cofinal set
C. It is easy to prove that every countable intersection of closed cofinal sets is again closed
cofinal : in other words being true ,,in average” is closed under countable conjunctions -
a very good property. But is the average value in this sense defined # Let us discuss and
illustrate this question for a particular property.
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the average strategy O = [ 0, by O (s) := averuge value of 0y(s. &) ( when

We define
&, ranges over w; and satisfies p,(@,7) ). We consider this in case where lh(s) = |, s0
Ih(@) =0:

s O (sl=1 if there is & closed cofinal C on which 0, (s) = 1,

e 0‘{s}=0ifthmisadwaimﬁmlConwhich0,u}=o_

This is well defined iff : *) at least one of the two cases happens, and **) at mast one.

Remarks

(a) The truth of (**) isan immediate consequence of closure of closed cofinal sets under
intersection. But (*) is not obvious :

(b) using the axiom of choice one can obtain a set X C w; such that neither the property
r € X, nor its negation are true in average

(¢) duetothe canonical construction in section 5 of the 0, s, the statement ,,0.(s) = 0
" js not ad hoc and pathological as the set X of (b). Yet cven in this favorable case,
the existence of the average is non obvious.

(d) In fact, to guarantee that all the statements of the form ,,0,(s,d) = 0" have an
average value, the theory ZFC is not enough : we need the additional axiom S
defined below.

Notation 13.

o For any set X C w=* and any ordinal ~, the stretching of X along 5 is the set
denoted X (7) of all sequences & € 9=~ which in the order of 4 have same order type
as some i € X. And ||X(7)|| denotes the height of this set relative to the relation
rYy:=ycCez

(Thus || X (¥)]| < oo means that X () is well founded in the sense of having no ,,infinite
branch” s; C 83 C ... And || X (7)s]] denotes the height of & for the relation ¢ - see
N.4)
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o We let 5 be the statement -

foranymmumblembseu)f",)f' of w™ and for any 7 € X9 X! there is 2 closed
cofinal subset C of w; suchthatwhmmrd<1maﬂinalsof€wiﬂ1&afsameorder
type as m — hence & € X%(~) N X1(+) - the statement

1X°()all < 1X* ()]
has constant value,

Remark 14.

ILiX ()|l < oo for each 7 then we say that X has well founded stretchings. Any
instance of S where at least one of X° X has an ill founded stretching is superflucus as
an axiom added wZFC:foritismytopmvethisinstanceﬁ'om ZFC and with a set C
simply of the form {y;6 < < w } for some § < w;.

The map : v — || X()|| from ordinals to ordinals (plus oc) is called the stretching
map of X. When X varies over countable subsets of w<* and especially the relevant ones
which have well founded stretchings, it is a natural way to define maps over w; that
are as effective as possible (from X taken as a parameter or woracle”; and in spite of
the non effective nature of w;). Thus case 71 =<> of S says that any two such maps
are comparable modulo some closed cofinal set ; and the general case of S is a similar
property.

We are going to see that this partition property S of w; implies analytic determinacy.

Fact 15

(a) For every t € 2<“ there is X C w<* such that A(y)s = X(7)a for all & < ~.
(b) In fact, X is recursive in ¢ and in the map : s =<, (of the normal form of A).

Proof F.15 Let 0 be a recursive enumeration of 2<¢ such that all sequences of length
< p are enumerated before the ones with length p. We Tepresent any strategy 7 € A(y)s
by the sequence & (i, »;, 7(6(%))i<z») where p is the number of moves of player I which
T must answer, where 7(6(i)) denotes the answer of  after player I played the sequence
0(i) and where ;1; < v; < 7 if the bit answered by 7 after player ¥ played (i) is 0 — while
7> I > ¥4 in the opposite case. Let X be the image of A'(w) under this representation.
R.8.d readily implies that (a-+b) are satisfied.
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F.15 is proved.

Theorem 16 smﬂﬁmmﬂ
Proof T.16
Hanembd[mm!liﬂsectionthﬂ the only use of sharps was to prove in ,,Case 2" the

existence of a cofinal set CC wy that is indiscernible w.r.to the winning strategies @ + of

player I .
Where € 7((s,8)) =0

E) 14" °(all < 14" ()all-

So here we only needs to construct C by use of S. With R.14 and F.15, 8 impliu}nr
each s € 2° the existence of a closed cofinal set C, over which the above statement (E)
has constant value. By intersecting the countably many sets C, we obtain a closed cofinal
set C over which all these statements have constant value. Thus set C is indiscernibles

w.r.to the @ ¥'s.
T.16 proved

We now recall the original definition of ,sharps”, but the next result will dispense the
reader unfamiliar with it to worry : he can safely consider that this axiom coincides with
S. Only if he wants to understand the motivation (the , intuitive reason of truth®) for this
axiom S, and why it has a bold effect on the whole universe of sets although it looks as
a plausible statement concerning only wy and countable objects X7, X' - only then must
the reader learn about the constructible universe of sets L and about the original form of
the axiom of sharps.

Definition 17

o For every p € w”, L(p) denotes the smallest transitive submodel of the , universe of all

sets” V that contains all ordinals, contains p and satisfies ZIFC.

& The axiom of sharps says that for every p € w* there is an uncountable subset of w
which is indiscernible w.r.to every first order formula with parameter p, interpreted in
this universe L(p) of ,,all sets constructible from p"

o ,,p" exists” is the above axiom for a fixed p.
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We recall that a subset B of 2% is El(p) iff it is the projection of some closed subset of
2“xw” that himself is recursive in p. This is also equivalent to say that the complement
of B has a normal form with & map 8 —s<, ththmursiminp.Andasetisana!rtic
iff it is Z}(p) for some p.

Corollary 18.

o S is equivalent to the axiom of sharps

o In fact let S(p) denote S restricted to the sets X, X' which are recursive(p); then
S(p) is equivalent to the axiom: ,,;* exists”, as well as to Zi(p) determinacy.

Proof C. 18 That the axiom of sharps implies S is & routine argument .... for people
familiar with this axiom. Now S implies analytic determinacy which (by the hard theorem
of Harrington which gives & converse to Martin's analytic determinacy result) implies the
axiom of sharps. This is easily refined to S(p) and * : use F.15.b in addition to 15.a

C.18 proved

§8. WHAT’S NEXT 7
1. Final form of our proof of FS determinacy. In case A is co-analytic last section
provided a w.s. 0 for player I defined by : O (s) =0iff

+) there s a closed cofinal subset of wy on which [|4% %(y)g]] < [|4**()all.

When A is in addition FS accepted and in (+) we use its oblivious normal form, then the
proof in section 5 applies unchanged to show that this strategy O is 2-oblivious hence FS.

In this form our proof remains highly non effective, but all its steps have become rather
canonical - including finally the averaging step.

2. The nezt challenge The Gurevich Harrington theorem gives an upper bound on the
number of states needed by an FS processor which computes a w.s. O in an FS accepted
game G(A) : namely |LAR)|, the total number of values of LAR(s). It has been proved
that this bound is an optimal one. Thus " may need 100! states if acceptor A has 100
states. It shows that in general the number of states of ¢ is too large to be permanently
stored in a real world processor,
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Buti[.gmpwﬁhnlmummhmmhm&dbysu“m‘,mu“
mwmm\dmdlﬁ.{ﬂ(a]: this does not exceed the real world computers
capacity ! Hmwhi}ennding:thq'mumthecmt value LAR{z!n) on a tape and
(quasi instantaneously) compute LAR(zin+ 1) from LAR(z|n). Then since the Gurevich
Harrington proof provides a ws. O of the form w{LAR(z|n)) for some finite function w,
a real world processor P could perhaps exist, that registers the current value of LAR(z|n)
and computes from it w(LAR(z/n)) which for even n is the desired reaction for P. Such a
processor which permanently (re-)computes an automaton O without storing it, we call
s virtual automaton. This leads to the problem of ,,P-time realizability of FS strategies™

is there a polynomial p(x) such that for every FS acceptor A with N states we can
find a ws. O in G(4) and a function L such that

s O (s) is computed from L(s) by a Turing machine bounded in time and in size by
p(N): and

o L(s7™0), L(s™1) are computed from L(s) in the same way.

Nota-Bene : here the machine A is allowed to be non deterministic ; but the accepting
family is of the form F C @Q instead of F C P(Q) and the accepting condition is changed
to: InfzN F is non empty. The change does not alter the class of FS accepted sets but
allows (the binary code of) the acceptor A to be of size N2,

This problem is the sharp and purely mathematical form of a frequently encountered
problem in Computer Science : in case an automaton depends on too many states to be
stored entirely, can it nevertheless exist as a virtual automaton; and how to compute the

latter 7

Remark 19. The Gurevich Harrington proof and its improvement by W Thomas have
an obvious superiority over our proof: namely ,oblivious” is better than ,,2-oblivious".
But in the above perspective of computing virtual automata, this superiority becomes
a deadly drawback : to optimize the number of states needed by an FS w.s. is very
impressive but of no use if this number is , unfeasible”. And it is practically certain that
in order to reach this useless optimum, the proof has to sacrifice other goals and become
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unfit for the study of virtual automata. Wheress our construction of O depending on
LAR?(s) provided by the above (+) offers a track that is not harmed in advance, since it
allows to use more than the minimum LAR(s). In fact,

o Girard (unpublished) elaborated a proof of analytic determinacy where Martin’s
averaging procedure is replaced by a subtle variant called , equalization”.

o Berardi [B] has studied equalization in a case where it becomes effective.

o We conjecture that in the FS case an oblivious version of Girard's proof can be
made, much as we did for Martin’s proof. And that it leads to a variant of the
definition (+) of O that remains canonical but that in addition becomes effective
and sufficiently efficient to have a bearing on the computation of virtual automata

In conclusion, the present work comes with a series of ideas, methods and results, as a
base of future research on the P-time version of FS determinacy and on other challenges
of effective determinacy.

APPENDIX

We promised a proof of R.8.b: if player I has a w.s. 7 for G(A) then there is a
countable ordinal -y such that player I has a w.s. for G, (A).

Denote T' the set of all legal positions in G,,(A) which can be reached when player I
is applying 7. On T' define a tree relation (:= partial order with initial sections linear
and finite): (s, (ct)icn) B(s', (0f)icns) iff the second position extends the first one and
i1 > Ofy_;. An infinite branch of this tree T would give & play z € 2* won by player I
in G(A) since player I applies 7, and would give an infinite descending sequence (o, )pcu
for the order <;. This is a contradiction since z € A «——<, is well ordered; so T has
no infinite branch. In other words ||T|| < oc where ||T|| is the ordinal height of 7" with
respect to the relation 1 := R. Tet 7 he this ordinal; here is a w.s. 7* for player I in
G.(A) : use 7 to choose z(2n); and let o, be the height in T' of the position reached
before move 2n. That is : &, = [|(z [ 2n, (@1)ica)]|-
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