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DIOPHANTINE FLAVOR OF KOLMOGOROV COMPLEXITY

Yurl Matiyasevich

The paper consists of three parts. In the first part a short introduction is given to some
main notions and results in the theory of Kolmogorov complexity. The second part is a
similar introduction to some main results in the theory of Diophantine computations. The
third part is devoted to the Interplay between Kolmogorov complexity and Diophantine
equations, In particular, a new Diophantine definition of Chaltin’s 0 is given.

§1. SOME DEFINITIONS IN THE THEORY OF KOLMOGOROV COM-
PLEXITY

The notion nowadays widely known as Kolmogorov complezity was in fact first intro-
duced by Ray J. Solomonofl [8] and then by Andrei N. Kolmogorov [4). This Section
gives only information required for reading Section 3, more complete information, includ-
ing bibliographical data, can be found, for example, in [5).

The main underlying motivation of Kolmogorov (or descriptional) complexity is the
desire to measure complexity of individual combinatorial objects. Without loss of gen-
erality, we can deal only with words in a fixed two-letter alphabet, say, B = {0,1}.
[nformally, a word in this alphabet is “simple” if has has a short description. In this sense
the 1-million-letter word described as

The first (after the point) 1000000 binary digits of the number = (1)

is “simple”.

Here there is some kind of cheating. On the one hand, the short word (1) is from
an alphabet which has much more than two letters; we can agree to use only a binary
alphabet for descriptions. On the other hand, a lot of knowledge is hidden behind (1). In
fact, in order to be able to write down the required word with one million letters, one has
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of a descriptson mode.

Formally, a description mode is just a binary relation D between words, ie, D €
B x B .-\"m'd.-lbmﬂdaducripﬁondntwdil'{mdimwﬁ‘mmmh
mode D) if (A, W)€ D.

thamﬁdm-hwdmpmwm'mmty_m,mm“
used in different situations. One can say that D is a method of archiring or a method of
mmpnm'nyandmpuﬁveh*uythat.-lismmhixn[ll’wgw_“ummw
form of W All this terminology is used alternatively in this paper. .

We shall always presuppose the following properties of any description mode 1):

(i) Every word has at Jeast one description.
(i) (4, W) eD&(4, W) e D= W =W"
(iii) D is recursively enumerable .

These three conditions are quite natural. Condition (i) expresses the universality of
compression method so we can put everything into an archived form. Condition (i)
guaranties the uniqueness of the decompression so we don’t loose information during
archiving. At last, condition (iii) implies that both compression and decompression can
be performed on a computer.

Clearly, any relation having properties (1)~(I1I) defines a computable function A (de-
compression) from the set Pp = {4 : IW (4, W) € D} € B* onto the set B*.

A possible additional condition of prefir-free description mode can be imposed:

(iv) Theset Pp = {A : 3W (A, W) € D} is prefix-free, i.e., no word from Pp is a prefix

of another word from Pp.

This conditicn looks less natural than conditions (i)-(iii). In fact, it inevitably results
in less efficient compression because not every word can be used as archive. One justifi-
cation of the use of this additional condition is as follows. We can imagine that A is o
computer program which prints the word W (using no input). In typical programming
languages all program starts and finishes by a kind of coupled begin and end, thus one
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program cannot be proper beginning of another program and hence the condition (iv) is
automatically fulfilled. But the real justification of the use of condition (iv) is the fact
that one can prove more interesting theorems about prefix-free description modes than
about general description modes,

Themmpluﬂpr(WjofadewﬂhmapedtoaﬁmduﬂipﬁonmodeDis
defined as the length of the shortest compressed form of W:

Kp(W) =min{|A| : (A,W) € D}

where [A| is the length of the word A.

In this definition the complexity of a word depends not only on it but also on a
description mode which is in a sense irrelevant to the word itself. We could try to use “the
best” description mode. Formally, a (prefix-free) description mode D is called optirnal if
for every (prefix-free) description mode I there is a number ¢ such that for every word W

Kp(W) < Kp(W) +ec. @)

The first question to answer is: does an optimal (prefiz-free) description mode ezist?
The positive answer to this question forms the basis for the whole theory.

Theorem (A.N.Kolmogorov[4]-R..J.Solomonoff[8]). There are optimal description modes.

Proof: Enumerate all description modes

Ads Ay Doy
(viewed as partial functions from B* into B*) and define
Dope = {(1™0A, A(A)) : A€ B*&m €N},

O

Optimal prefix-free description modes also exit, the proof (based on the same idea) is
technically a bit more complicated.

Now we fix a parlicular optimal (prefix-free) description mode Doy and define Kol-
maogorov (prefiz-free) entropy of a word W as the complexity of the word W with respect
to Dopy (the word “entropy” is used to emphasize that the complexity is measured with
respect, to fixed optimal description mode).
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So now theccmpkxilyuf.l\mli.smw by the word itself but up to additive
constant only. Thus any number can be the entropy of a given word, and
results about Kolmogorov entropy should involve either infinitely many words or mfinite
words, the complexity of which can be characterized by the growth of (prefix-free) entropy
of their initial finite fragments.

| an infinite word is decidable (i.e., the set of positions of “17 is a decidable set), then
(he entropy of its initial fragment of length | grows essentially as log(1). For example, the

verbal description of a 1-milliard-letter word
The first (after the point) 1000000000 binary digits of the number = &)

is longer than the description of a 1-million-letter word (1) by 3 letters only.

The condition of the decidability can be weakened. If an infinite word is recursively
enumerable (i.e., the set of positions of “1” is recursively enumerable), then the entropy
of its initial fragment of length ! still grows still essentially as O(log(l)). Namely, a
description of such a fragment can consists of the couple {mg, m;) where mg and m; are
the numbers of “0” and “1" respectively (mo +my = 1).

The entropy of any word cannot be essentially greater than its length (because we can
use the word itself as its archived form; in the case of prefixed-free entropy additional
log(l) bits would be sufficient for the property (iv)).

If the entropy of initial fragments of length [ of an infinite word W grows as ! (up to an
nddhive constant), then this word W can be considered as completely random sequence
of bits. Gregory J. Chaitin [2] introduced a particular method of constructing an infinite
word of so big prefix-free complexity. This word can be defined as the sequence of binary
digits of some real number 2. This number can be interpreted as the probability that
a randomly selected Turing machine stops (for a suitable probability distribution on on
Turning machines). Of course, digits of this number do not form a recursively enumer-
able set. However, there is an effectively computable increasing sequence {0y, 42, ..., ... of
rational numbers which converges to ).

§2. MAIN RESULTS IN DIOPHANTINE COMPUTATIONS
A Diophantine equation is an equation of the form

P(zy,...,2m) =0, (1)
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where P is a polynomial with integer coefficients and the unknowns Z1,...,Zm ATE SUpP-
posed to be natural numbers,
A family of Diophantine equations is an equation of the form
Plat;. oy 0 By e o) =0
where P is a polynomial with integer coefficients, the variables of which are split into two
groups:

o the paramelers a;, ... ,an

o the unknouns zi, ... ,Zm
Consider the set 2t such that
{al,...,n,.}ESm-ezﬂzl...:,,.{P(a,.....c,.,zl,...,zm)=0}. (5)

Sels which can be defined in this way are called Diophantine, the above equivalence being
called Diophantine representation of the set 27, We have:

Trivial fact. Every Diophantine set is recursively enumerable.

Main result (DPRM-theorem). Every recursively enumerable set is Diophantine.

The latter result is known as DPRM-theorem after Martin Davis, Hilary Putnam,
Julia Robinson, and the present author; full proof of the DPRM-theorem can be found
nowadays in many books, for example, in [6].

Leonard Adleman and Kenneth Manders [1] restated the DPRM-theorem by intro-
ducing the notion of Non-Deterministic Diophantine Machine (NDDM for short).
A NDDM is specified by a parametric Diophantine equation () and works as follows: on
input ay, ..., a, it guesses the numbers z,,...,2,, and checks (); if the equality holds, the
n-tuple (@, ...,a,) is accepted.

NDDM
input v guess
=T Pay, .. ;00,21 Bm) =0 "—zh—’zm—-
YES NO
accept (aj,...,a,) reject
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DPRM-theorem says that NDDMs are as powerful as, say, non-deterministic Turing
machines, that ise\m'nﬂrmopiznhkby a Turing machine is recognized by some NDDM,
and, of course, vise versa.

DPRM-theorem was obtained as an improvement of an earlier DPR-theorem (3] stating
that every r.e. set has an exponential Diophantine representation

{axivey n,)e!m4=13:;...:...{E(a,.....u...n.....r..,]nn}

whmEbmcmanWamli.ammmmmdﬁmmi:mmb
traction, multiplication and exponentiation.

Besides DPRM-theorem, DPR-theorem was improved in another directions, nnd this
improvements turned out to be vital for application in Kolmegorov complexity. Nam. £
we can demand that the representation is single-fold which means that the ='s, if they
exist, are unique for every fixed values of the a's (a proof of this improvement of the
DPR-theorem can be found, for example, in [6]).

The question whether these two improvements of DPR-theorem could be combined

remains open.

"Open Problem. Is it true that every r.e. set has a single-

|fold Diophantine representation?

' AN /N
DPRM-theorem. Every re. Every r.e. set has a single-fold
set has an Diophantine represen- exponential Diophantine repre-
tation (5). . sentation (6)

Fd IS Fd LS

DPR—theorem._E\ray r.e. set has an exponential Diophan-
tine representation (6).

Besides single-fold representations, we need one more way to specialize Diophantine
representations. Hilary Putnam (see, for example, [6]) suggested the following trick: Given
a Diophantine cquation

T(p.q.x1y. .., Tm) = 0
we can construct another Diophantine equation of the form

S(plyll" -tyn) =g
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such that the former equation has a solution in Zyy--.+Zm for the same values of the
parameters p and q for which the latter equation has a solutions N YiyeosyUn

muickwknpmﬁdedthatthemqmmlymmﬁwm
values.

3. DIOPHANTINE FLAVOR OF KOLMOGOROV COMPLEXITY

Without loss of generality, we can replace the two-letter alphabet B = {0,1} by
another two-letter alphabet C' = {1,2}. There is a natural one-to-one correspondence
between the words from C* and natural numbers: we can treat words in the alphabet C
s numbers written in positional notation with standard weights of digits 1, 2, 4, 8, ...,
but with non-standard digits 1 and 2, that is, number 0 is the empty word, number 1 is
the word “1", number 2 is the word “2”, number 3 is the word “11", number 4 is the word
#12", number 5 is the word “21”, and so on.

Kolmogorov complexity is machine-independent notion (in condition (iii) we demanded
only that a description mode should be a r.e. relation without specifying particular tool
for its enumeration). In particular, now we can use the NDDM for the definition of a r.e.
relation and give

Definition P. A Diophantine description mode is a polynomial P such that

(i) for all w the Diophantine equation
Pla,w,zy,...,2:) =0 (6)
has a solution in natural a, z;,...,z;
(i) Pla,w',z},...,2}) = Pla,w",},...,2}) = 0= w = u.

A number a is called compressed form of a number w as soon as the equation (6) has a
solution in zy,...,2x, and the the Diophantine complezity Dp(w) of a number w with
respect to such a P is defined by

Dp(w) = min{|a| : 3z, ...z:P(a,w,zy,...,z;) = 0}. (7)

Using Putnam’s trick, we can specify the form of the Diophantine equation (6) either

as
Q@a,z1,...,3) = w , ®)
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or

R'\u-.r; ..... .n'l =g {9} :

for some polynomials Q and R. Respectively, we can give two other definitions.
Definition Q. A Diophantine description mode is a polynomial Q such that

(i) for all w the Diophantine equation (8) has a solution in natural @, x,, ... xy

(ii) Q{u_rf___,_,zi)20&'0[“-3{.----::)20* _
Q0T+ 24) = Qo e 2

Respectively, the Diophantine complexity Dg(w) of a number w with respect to such a f o
is defined by
Dg(w) = min{la| : 3z;... 2eQla, 71y .. .o 72) = w). (10)
Definition R. A Diophantine description mode is a polynomial R such that
(i) for all w the inequality R(w,Zy,...,2) 2 0 has & solution in natural zy,..., z;
(i) R\ Z},-.-»Zh) = R(w", ..., 2%) 2 0= w = uw".

Respectively, the Diophantine complexity Dr(w) of a number w with respect to such a P
is defined by
Dg(w) = min{|R(w, x1, ..., 3&)| : R(w, xy,...,2) > 0} (11)

Definitions Q and R show that either decompression or compression can be done simply
by calculation of the value of some polynomial having one explicit argument (a or w) and
several “hidden arguments” (z,...,Zx), the only restriction on the latter consisting in
the non-negativity of the value of the polynomial.

A Diophantine description mode T' (in the sense any of the above three definitions) is
optimal if for every Diophantine description mode 7" there is a number ¢ such that

Dr(w) € Dpv(w) + e

Theorem. There are optimal Diophantine description modes.
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Of course, this theorem immediately follows from the existence of optimal description
modes and the DPRM-theorem. However, a direct proof can be given based on a universal
Diophantine equation Ula,w,k,y,...,y,) = 0 having the following property: for every
polynomial Pla,w,z,,...,Ty) there ezist a number kp such that

Wil a, w,kp,ys, ... 00) =04 32;... 20 Pla, 24, ... ., Z) = 0. (12)

Fixing particular polynomial, we get Diophantine entropy E{w) of a number w as
ite Diophantine complexity with respect to this polynomial. Since the existence of &
universal Diophantine equation can be proved by purely number-theoretical methods (see
[6] for such a proof) so the whole theory of Diophantine entropy can be developed in the
framework of Number theory.

The above considerations were nothing else but straightforward translation of the main
definitions and results in Kolmogorav complexity into the language of Number theory. The
question is whether we can obtain some results more specific for Diophantine equations.
This is in fact possible, and results of such spirit are given below.

Theorem 1. For every optimal Diophantine description mode R(w, zy,...,z;) there exist
a polynomial Ryes(w, 2y, ..., z) such that .

mh’{nrwl Tigenny Iﬁ) : R(w! Liyeees zl'j = 0} = min{RFu(w! Tgyeony zk}} {13J
and hence

DR(W) — mln{lﬂpu(wl Z0y» -|zﬁ)|}' (14)

Note that condition (13) implies that polynomial Rys(w,y,...,%,) assumes only
non-negative values, and every natural number is a value of this polynomial, that is, it
satisfies condition (i) from Definition R. However, we cannot assert that condition (ii) is
satisfied as well.

Proof: Consider the trivial Diophantine description mode @ = w. Since R is optimal,

min{|R(w, zy,...,Zm)| : R(w,z1,...,2m) = 0} = Dp(w) < |w| +¢ (15)
for some constant ¢ and hence
min{R(w, z1,...,%m) : R(w,z1,...,2,) 20} Scqw+c - (16)
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for some positive constants ¢ and co. Put

z) = (me+ D1+ (v + @R, m) - nf) -1 (7

Rp_,:w.::» .=
If zg = R{w, T1ev-» i), then Roou(t, 30, .-+ ) = Riw, 2,02 Tu) and hence
min{ R{w, T1,. s ) Rlw,xy,.-0 z) 2 0} 2 min{ R0, 2o, - .., )} (18)

On the other hand, if zp # R{w.zyy. -, Za)s then Rpu(w, 2o, ..., 34) 2 w0 + ¢ and
together with (16) we get

min{ R(w. T1.---» ) : Rw, 3y, ... 7) S0} S min{ Ry (w, 20,...,m)}.  (19)

The two inequalities (18) and (19) imply the desired equality (13). o

It is not clear whether this theorem can be extended to non-optimal Diophantine
description modes.

G. J. Chaitin gave several definitions of his unpredictable number ©2, and one of them
was connected with Diophantine equations. Of course, the binary digits of this number
don't produce a Diophantine set (it was indicated above that all r.c. set have very low
Kolmogorov entropy), so something more involved than solvability of Diophantine equa-
tions should be used for a definition of 2. That is why instead of the question “Has given
equation a solution?” Chaitin considered more difficult question “Has given equation in-
finitely many solutions”. Also, needing by technical reasons single-fold representations,
he was forced to deal with exponential Diophantine equations rather than with ordinary
Diophantine equations.

Theorem (G.J.Chaitin [2]). There is exists an exponential Diophantine equation
C(k,21,-++,2m) = 0 such that the k-th digit of Q is equal to 1 if and only if the equa-
tion has infinitely many solutions in zy,..., Zm.

For a long time this remained an isolated fact showing that in Number theory there
are quite chaotic objects. Recently a similar result was obtained by Toby Ord and Tien
D. Kien. They considered exponential Diophantine equations always having only finitely
many solutions and asked the question “Is the number of solutions odd?".

Theorem (T. Ord and T. D. Kieu [7]). There is exists an exponential Diophantine equation
O(k, 21, .-, 2m) = K(k, 21, ..., 2m) which fureweryvaluegfk has only finitely many solutions
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in zy,...,zm and the k-th digit of 2 is equal to 1 if and only if the equation has odd number
of solutions.

It turned out that this results can be generalized to the case of many other questions.

Theorem 2. Let € be any infinite decidable set with infinite complement. Then we can
construct an exponential Diophantine equation M(k, z;,...,2.) = 0 such that for every k
the equation has finitely many solutions in z;, ..., z, and the k-th digit of Q0 is equal to 1 i
and only if the number of solutions of the equation belongs to the set €.

Proof: We define a computable sequences of numbers in the following way. Let ag = 0;
let az;4y be least element from the set of € which is greater than ay; at last, for & positive
k let ag 'h;.- least element from the complement of the set € which is greater than ag;_;.

Let €2, €2y, .. ., ... be (constructed by Chaitin) computable increasing sequence of ratio-
nal numbers which converges to £1. Let wy, ;. be the k-th binary digit of Q,,. Lel mgx =0,
Kip = wik 80d Kmp = Kmeik + (Wm-14 — Wwme)? for m > 1. The sequence g, 51,...
is computable, is increasing, and has some limiting value x; (due to the convergence of
the sequence €1y, (1, ... ). Depending on whether the k-th digit of Q is equal to 1 or to
0, the number ry, is odd or even and respectively the number a,, belongs to € or to its
complement, '

The relation between k, m and ¢ expressed by formula
s SE< Oy (20)
js decidable and hence it has a single-fold exponent.i:jd Diophantine representation
Kmk St < Kmyik ¢ 323.. . 2n{M(k,m,1, 23, ..., z) = 0}. (21)

The exponential polynomial M (k, zy, Z2, %3, ..., %) constructed in this way has the re-
quired properties. It has exactly a,, solutions, namely, for the value of 2, we can take
any of the numbers 0,1, ... , a,, — 1, the value of 2, is determined in a unique way from
the condition a,, , < #z < ay, ,,,, and the choice of the remaining unknowns is unique
thanks to single-foldness of the representation (21). m]

Open Problem. Could we improve any of the above mentioned definitions of £ via the
number of solutions of exponential Diophantine equations to similar definitions via the number
of solutions of genuine (i.e., without exponentiation) Diophantine equations?
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