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ON THE REPRESENTATION OF RECURSIVELY ENUMERABLE SETS
IN WEAK ARITHMETICS®

S. N. Manukian

wg:_e,,&mmmlzndm:uﬂnlyemmh‘; ..u:( | numbers are
introduced; arithmetical systems A, and A; complete signatures, correspondingly,
0, !4}‘“{0_.__}".@63@ Itbprmdthnnmo-dlmmahn-lnﬂthmuulu:
formula in A; (correspondingly, 42). It is proved that a two-dimensional arithmetical set is
inductively representable In €3 if and only If it is expressible by a formula of a special kind
in A;. Algebras 02,0, of two-dimensional recursively enumerable fuzzy sets are intro-
duced; theorems are proved establishing relations between these algebras and arithmetical

systems A; and Az

§1. INTRODUCTION. In this paper some relations between weak arithmetics and
algebras on recursively enumerable sets are considered. The term ,.weak arithmetic” is
interpreted here in its direct sense as ,subsystem of Peano's arithmetic” ([4], 5], [16],
{17]). The contents of this paper may be considered as a continuation of the investiga-
tions described in [11] and [12]. Let us recall that in [11] and [12] the algebras © and
©° on two-dimensional recursively enumerable sets of natural numbers are introduced; it
is proved in [12] that all two-dimensional recursively enumerable sets of natural numbers
are inductively representable in ©; it is proved in [12] also that a two-dimensional recur-
sively enumerable set of natural numbers is inductively representable in ©° if and only
if it is expressible by a formula in M.Presburger's arithmetical system ([1], (4], [5], [15])
(which is complete in the signature {0,',+,=}). Below some subalgebras ©,,0,,8; of
©° are introduced and the arithmetical systems A; and Ay complete in the signatures,
correspondingly, {0,',=, <} and {0,",=} are considered; it is proved (theorem 2.1) that
the relations between ©, (correspondingly, ©;) and A, (correspondingly, As) are the
'This research is partially supported by INTAS grant 2001-447
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same a8 relations between the algebra 6° and M.Presburger’s system; namely, every two-
dimensional recursively enumerable set of natural numbers is inductively representable in
6, (correspondingly, ©,) if and only if it is expressible by a formula in A; (correspond-
ingly, A3). It is proved (thecrem 2.2) that a two-dimensional arithmetical set of natural
numbers is inductively represeritable in ©; if and only if it is expressible by a formula of
a special kind (i.e. so-called , positive formula®) in Aj. It is proved also that the sets of
elements inductively representable in the algebras 8, 67, 6;, ©3, ©; are different (theorem
2.3).

Below some results concerning recursively enumerable fuzzy sets are given which may
be considered also as a continuation of investigations described in [11] and [12]. Let us re-
call that in [11] and [12] the algebras Q and 2° on two-dimensional recursively enumerable
fuzzy sets are introduced; it is proved in [12] that &ll two-dimensional recursively enumer-
able fuzzy sets are inductively representable in Q (up to the equivalence); a slatcment
is proved (theorem 5.1 in [12]) establishing that two-dimensional recursively enumerable
fuzzy sets inductively representable in ° may be considered as fuzzy analogues of sets
expressible by formulas in M.Presburger’s system. Below some subalgebras 0, (), Q3 of
{2 are introduced; it is proved (theorems 4.1-4.2) that the relations between the algebras
1, and arithmetical systems A;, A; are similar to the relations between the algebra 0°
and M.Presburger's system. Some properties of the system £ and its relations with the
system Ay are established in the theorems 4.3-4.5. It is proved that the sets of elements
inductively representable in the algebras 0, 0°, 0, £, 23 are different (theorem 4.6).

The theorems proved below show algebraic properties of weak arithmetical systems as
well as their relations with the corresponding systems of fuzzy logic. These theorems give
possibilities for investigations of algebraic transformations of the sets representable in the
mentioned systems.

The formulations of the theorems 2.1 and 4.1 were published in [13].

§2. Let us give (cf. [12]) some definitions used below. The n-dimensional arithmetical set
is defined as a set of n-tuples (21, 23, ..., 2,), where all z; are natural numbers 04 EAR
The notion of algebra is interpreted as ,universal algebra ([2], [6]) with a fixed set of
basic elements”; so, every algebra is defined by a main set M, by a set of operations
J1, fa,... on M and by a set of basic elements a;,a, ... in M. In every algebra considered
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mwmdwmmdmemolhﬁcdmmm We say that an
ement & € M is inductively representable in & given algebra (M, /i, fo. 01,05 if
it can be obtained by the operations fi, fa... from the basic elements ay,05... We say
:wmnmfmmnfmam.\lhwm by some functions f}, ..., fi
on @ set M7 such that M € M, if there exists a term ({1}, (4], [5]) containing no other

: I,}.mbob_wﬁ_....ﬁ.noothenuhblu.mpt:,.n.....:..wdn:hlm
it expresses the value f(z1, 2, verr T} fOT €VETY Iy, 22, .., Tn € M, We say that an algebra
W = (AL f1, f2r-- 01,02, ) 58 subalgebra of an algebra W' = (M, f{, f3, .. 0}, 0}, ) i
the following conditions hold: M C M'; every function f; is expressible by a finite subset
of the set {f{. f3...}; every element a € M inductively representable in 1" is inductively
cepreseatable in W, We say that ¥ is a proper subalgebra of W if W is a subalgebra of
W’ and there exists an element a € M which is inductively representable in W’ but not
in W (c£[6)).

In all the algebras considered below in the sections 2 and 3 the main set M is the set
of all two-dimensional recursively enumerable sets of natural numbers 0,1,2, (TRES) ({1},
(5]). In all the algebras considered below in the sections 4 and 5 the main set M is the
set of all two-dimensional recursively enumerable fuzzy sets (TREFS) ([7]-[13]).

We shall use the following operations on the set of all TRESes (cf. [11], [12]).

The set-theoretical sum AU B and set-theoretical intersection A N B of TRESes A
and B are defined in the usual way.

The composition Ao B of TRESes A and B is defined by the following generating rule
(g.r.): if (z,y) € A and (y,2) € B then (z,2) € Ao B.

The trunsitive closure » A of a TRES 4 is defined by the following g.r.: if (x,u) € A
then (z,y) € » A; if (z,y) € * Aand (y,z) € » A then (z,2) €+ A.

The arithmetical sum Ao B of TRESes A and B is defined by the following g.r.: if
(x,u) € A and (y,2) € B then (z,y+z2) € Ao B.

The inversion A" of a TRES A is defined by the following g.r.: if (z,4) € A then
(y,z) e A

We shall consider as basic elements the following TRESes (cf. [11}-{13]): R -
{(y)y=2+1} Q= {(z)| 2 <v} Zo = {(z,0)| 2 = 0}; 8 = {(«,0)| 2 # ).

Now let us define some algebras (cf. [11], [12]) on the set of all TRESes. The al-
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gebra © is defined by the list of operations (U,N,2,#,9,71) and by the list of basic
elements containing only one element R. The algebra ©° is defined by the list of oper-
ations (U,N,5,9,”" ) and by the list (R, §) of basic elements. The algebras ©;,8,, 6,
are defined by the same list of operations (U, N, 5, ) and by the following lists of basic
elements: (R, Q, Z,) for 8y, (R, g’, Zy) for 83, (R, Z;) for ©s.

The algebras © and ©° are introduced in [11] and [12]. It is proved in [12] that every
TRES is inductively representable in 8; a TRES is inductively representable in 6° if and
only if it is expressible by a formula in M.Presburger’s system.

Now let us consider some arithmetical systems. We use the language of first order pred-
icate calculus ([1], 4], [5]) containing the logical symbols &(conjunction), v(disjunction),
S(implication), —(negation), ~(equivalence), ¥(generality), J(existence). By #’ we de-
note the successor function # = z + 1. By z® we denote the term z”-/, where the
symbol ’ is repeated k times. By Subst(F;z;,7;,..., 241,13, ..., 1;), where F is a for-
mula, 7y, s, ..., Ty are varisbles, t;, 1, ..., #; are terms, we denote the formula obtained by
the admissible substitution of the terms t;,1;,...,1; for the variables z;,z;, ..., z; in the
formula F. The system A, in the signature {0,’,=, <} is defined by the following sxioms:

Vz(z = z);

Vayz((z=y) D (z=zDy=12));

Vaw(z =y > 7 =v);

Vavyvz((z=y) D (y <z D z < 2));

YavyVz((z <y) D (y=2zD z < 2));

Y(=(z =0) > Hy(z=y);

Va(z < '); Yz-(z < 0);

VaVy(z <yVz=yVy<z);

vavy((z < y) O ~(y < z));

VavyVz((z < y) D (y <z Dz < z)).

It is easily seen that the system A, is equivalent to the system Ay, considered in [1]
and to the systems (A) and (B) considered in [4]. It is proved in [1] and [4] that the
corresponding systems are complete in the mentioned signature; hence it is true also for
Ay

The system A3 in the signature {0,',=} is defined by the following axioms:
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Ye{z ==k
vevpvs(lz=p) D (@=20¥= =)k
vorylz =y 27 =V
e[z =0}
vovy(e =y D% =)
and hy the scheme of induction
vave. wl((Subst(F; z; 0)&¥=(F 3 Subst(F;x;x))) 3 Va(F));

tmﬁ‘“mmfora\m'famuh!’in the mentioned signature and for every list of
variables . 1, v, ... w. It is easily seen that the system A; is equivalent to the system Ag
considered in [1]; it is proved in [1] that it is complete in the mentioned signature; hense
it is true also for Az

We say that an k -dimensional arithmetical set A is expressed (or is expressible) in
the system L by a formula F containing no other free variables, except =y, ry, .. 1,
if for every given constant terms fy,tz, ... ti the following condition holds: the formula
Subst(F: Ty, T3, s Tai 1, 12, -y tie) 18 deducible in the system L if and only if the k-tuple
(113, 7ig, -y i) OF the values of the terms ty, 2, ..., i belongs to A.

A formula F in the signature {0,',=} is said to be positive if it contains no other
logical symbols, except 3, &, V, ~, and all the negation symbals contained in it relate only
to elementary subformulas (t = s), where the terms ¢ and s together contain no more
than one variable.

Theorem 2.1. A two-dimensional arithmetical set is inductively representable in @, (cor-
respondingly, ©2) if and only if it is expressible by a formula in A; (correspondingly, A3).

Theorem 2.2. A two-dimensional arithmetical set is inductively representable in Oy if and
only if it is expressible by a positive formula in Aj.

Theorem 2.3. Every next algebra in the sequence 8, ©°, 9, 8,, ©; is a proper subalgebra
of the preceding one.

§3. In this section we shall give the proofs of the theorems 2.1. - 2.3,

We say that the set ® of formulas in the logical system L admits the elimination of
quantifiers (c[. [1], [4]) if for every formula F' € ® there exists a formula F; € ¢ which is
quantifier-free and equivalent to F in L.

We say that the logical system L admits the elimination of quantifiers if the set of all
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formulas in L admits the elimination of quantifiers.

Lemma 3.1. The systems A; and A, admit the elimination of quantifiers.

The proof is actually given in [1].

Lemma 3.2. The set of positive formulas in the system A; admits the elimiriation of
quantifiers.

The proof s ectually obtained from the considerations in [1]. Indeed, it is easily
seen that the algorithm of the elimination of quantifiers in Ag (which is equivalent to Aj)
described in [1] gives for every positive formula in Ag its quantifier-free positive equivalent.

We shall consider the following TRESes (cf. [12]): the set V of all pairs (z,y) of
natural numbers; the set £ = {(z,v)|z = y}; the sets Wi; = {(z,9)|(z = k)&(y = 0}
for all natural numbers k, I; the sets Z; = {(z,y)|z = k} for all natural numbers k; the

empty set 0.
Lemma 3.3. All the sets V, E, Wiy, Zy, O are inductively representable in 8.
The proof is given by the following equalities: V = Z5" 0 Z5; B = Ro (R1); Wy =

Zo0(Z5); Wiass —WHOR,W;,.,.H=R“oWgJ;ZM—R‘IoZ.,O=R"nR.

Note. It follows from the given equalities that £ and O are inductively representable
also in ©,6°,6,,6,.

Lemma 3.4. Every next algebra in the sequence ©,6°,6,, ©3,0; is a subalgebra of the
preceding one.

Proof: It is sufficient to consider conditions concerning basic elements, ©° is a
subalgebra of © (cf. [12]) because § = +R ; ©; is a subalgebra of ©° because
Z=((BEoE)n (EoE)™) o (QU E); O, is a subalgebra of ©, because § = QU (@~Y);
B is obviously a subalgebra of 6.

Corollary. All the sets mentioned in the lemma 3.3 are mductnmly representable also in
6,6°,6,,0,.

Lemma 3.5. Every two-dimensional arithmetical set inductively representable in 8, is
expressible by a formula in A;.

Proof: (cf. (12, lemma 3.3) The basic sets £,Q, Z, in ©, are expressible in A,
bytheformu]as,oormapandingly,y::’.z(y,z=0&y=y. If sets A and B are
expressible by the formulas, correspondingly, F(z,y) and G(z, y) with free variables = and
¥, then the sets AUB, AN B, Ao B, A~! are expressible by the formulas, correspondingly,
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Fiz.y)V G-\.-.y':.Fu;;,y\kG{:.y}. 32(Flz, 2)eG(= ), Flw.7) (where = is not

) and G(x.¥))- This completes the proof.
36. Mmm'mm“twthuhhA! *

in F(z.¥

Lemma
inductively representabe in ©.

Proof Let an arithmetical set be expressible by & formula F(z,y) in 4, with free
variables r and y. Without Joss of generality we may suppose (see lemma 3.1) that F(z, y)
is quantifier-free and contains only the logical symbols &V, ~. We can reduce Fiz,y)
1o a disjunctive normal form and eliminate in it all the negations (indeed, the formula
(¢ < ), where t and s are any terms, may be replaced by (s < ) V (s = t); the formula
(s = t) may be replaced by (s < t)V(t < 8)). So we may suppose that F(z, y) is obtained
by & and V from elementary formulas. Clearly, every elementary formula in F(x, y) may
be reduced to one of the forms (z = ™), (2 < #), G <), (0 =), (2 = 00), (0 <
y®), (= < OW), (0 < p),(=® < 0),(0 = 0®), (0 < 0®), (0* < 0) (or to a form
obtained from the mentioned ones by replacing ¥ by z and = by y). The sets expressed
by these formulas are obtained in ©, as follows (where it is supposed that the members
7 in the expressions (Ro Ro7..o R) are repeated k times). The set {(z. )iz =y®}is E
when k = 0 and (Ro Ro...o R)~" when k > 0. The set {(z,p)lr <y™} is Q when k =0
and Qo (Ro Ro...o R)™" when k> 0. The set {(z, 1)z < y)} is Q when k = 0 and
(Re Ro...oR)oQ when k >0 . Theset {(z,)|0 =y*} is Z5" when k = 0 and O when
k> 0. The set {(z.v)lz = 0W} is Zy. The set {(xy)|0 < y®}is Vo R when k = 0
and V when k > 0. The set {(z,¥)lz < 0®} is O when k = 0 and Z U Z3 U w2
when k > 0. The set {(z,)/0%) < y} is V o R when k = 0 and (VoR)o(RoRo..0R)
when k > 0. The set {(z,y)}z® < 0} is O . The set expressible by a formula containing
no variables is either V or O . The transformation of a formula, when  is replaced by v,
and y by z, corresponds to the operation -1 applied to the set expressed by this formula.
The logical operations & and V on the formulas correspond to the operations N and U on
the sets expressed by these formulas. This completes the proof.

Lemma 3.7. Every two-dimensional arithmetical set inductively representable in ©, is
expressible by a formula in Aj.

Thepwofi.sthemmuthatoflmmna.ﬁuﬁthlhefoﬂowingc}w instead of Q
in ©, the basic set § in ©; is considered; it is expressed by the formula ~(z = y) in A
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Lemma 3.8. Every two-dimensional arithmetical set expressible by a formula in A; is
inductively representable in 8,

Proof: Let an arithmetical set be expressed by a formula F(z,y) in A; containing
only free variables z and y. Asht.heprou{oﬂemmn&&wem&ysuppmthntF{r,y}is
quantifier-free, contains only the logical operations &, /,~, and is reduced to a disjunctive
normal form. So F(z,y) can be obtained by & and V from elementary formulas and their
negations. Every formula of the mentioned kind can be reduced to one of the forms: (z=

¥™M), =z = y™), (0 = y®),~(0 = y), (z = 0¥), ~(z = 0®), (0 = 0B), ~(0 = o®))
(or to forms obtained from the mentioned ones by replacing y by z and = by y). The
sets {(z,y)|z = ¥}, {(z,1)0 = y®}, {(z, 1)}z = 0%} are obtained in ©; in the same
way as it given for ©) in the proof of lemma 3.6. The set {(z,y)|~(z = y™)} is § when
k=0and So((RoRo..R)™) when k > 0 (here and below it is supposed that R is
repeated k times in every such expression). The set {(z,y)|~(0 = y®)} is V' o R when
k = 0 and V when k > 0. The set {(z,y)|~(z = 0®)} is B~ o 7 when k = 0 and
ZUZU...UZ o ((RoRo...0 R)™ o (R~ 0 7)) when k > 0.The remaining part of
the proof is the same as in the proof of lemma 3.6.

Lemma 3.9. Every two-dimensional arithmetical set inductively representable in O is
expressible by a positive formula in A,.

Thepmofiuthesmnaasthatoflmnma&&andlemm&?; it is easily seen that the
proofs of lemmas 3.5 and 3.7 give a positive formula for every set belonging to ©s.

Lemma 3.10. Every two-dimensional arithmetical ‘set expressible by a positive formula in
Ay is inductively representable in ©;.

The proof is actually given in the proofs of lemmas 3.6 and 3.8; it is easily seen that
the proofs of lemmas 3.6 and 3.8 give a set inductively representable in ©; for every set
expressible by a positive formula in Aj.

“The proofs of the theorems 2.1 and 2.2 are now obtained immediately using the lemmas
3.5 - 3.10.

Now let us give the proof of the theorem 2.3. We shall consider some auxiliary notions
and establish some properties of them.

An one-dimensional (correspondingly, two-dimensional) set of natural numbers is said
to be cofinite when its complement to the set of all natural numbers (correspondingly, to
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theg:d;ﬁpaindnsmdmbm)isﬁnim
Let A bem-m-dimm@ﬂﬂaﬁlhmﬂi:dﬁ. By @a(A) we denote the P
atz<mysn(ny) €4 (obviously, oa(d) < (= +1)? for ever

points {r,y) such
+wo-dimensional arithmetica! set A). We say that A is Q-oriented, if
lim_ S5 =0,

p——00

Obviously, if 8 (wo-dimensional arithmetical set is O-oriented ( dingly, 1.
oriented), then its complement is J-oriented (correspondingly, O-oriented).

We say that A is strongly 1-oriented, if there exist such natural numbers &I that
for every point (z.y) sotisfying the conditions = 2 k,y 2 I Clearly, ev-
ery strongly J-oriented set is 1-oriented. We say that A is ertremal ( ndm-
strongly extremal), il A is either 1-oriented or O-oriented (correspondingly, either strongly

and J-oriented. if

(z,y) € A

{-oriented or (O-oriented).
The statement established in the following lemma is actually formulated in [1] (without

proof).

Lemma 3.11. Every one-dimensional set expressible by a formula in A; or A4, is either
finite or cofinite.

Indaed.ifnnono-dimenlimalaetiaa:pmdblebyn[nnnnluin A, or Ay by a formula
F(x) containing at most one free variable z, then we may suppose without loss of general
ity that F(x) is quantifier-free and is obtained by & and V from the elementary formulas

. = 2 u
and their negations. It is easily seen that every elementary formula or its negation in A
s . l
or As containing no more than one variable expresses either finite or cofinite set. Hence
it is so also for F(z), because the following statement holds: if a set A is either finite or
cofinite, and a set B possesses the same property, then AU B and AN B are also cither
finite or cofinite.

Lemma 3.12. Every two-dimensional arithmetical set expressible by a formula in A, i
extremal. i

Proof: l.f.-lT a two-dimensional set is expressible by a formula F(z,y) in A; containing
only free variables x and y. Similarly to the preceding lemmas we may suppose that
F(z,y) is quantifier-free and is obtained by & and V from the elementary formulas and

ns
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their negations. It is easily seen that every elementary formula having the form t = s,
whmtandamdiﬂ'mtermsinAg,exprminAganO-orientedset,andeva
negation of an elementary formula having the mentioned form expresses in Az an 1-
oriented set, hence they are extremal. (Clearly, the formulas £ =  and =(t = t) express in
Aj the sets, correspondingly, V and 0, so, they are extremal). Hence the set expressible
by Flz,y) is extremal, because the following statement holds: if A and B are extremal
then AU B and AN B are also extremal. This completes the proof.

T'hestatemmtesﬁhﬁﬁedhythefoﬂ@lmmhdmﬂumaﬂdammtfmmuhud
in [1] (without proof).

Lemma 3.13. The set @ is not inductively representable in 6,

Proof: If @ would be inductively representable in 6, then it would be expressible by
a formula in Az, but it is not so because

A
,,_u,_m,fw?:ﬂi& =%
hence § is not extremal.

Lemma 3.14. Every two-dimensional arithmetical set expressible by a positive formula in
Ay is strongly extremal.

Proof: Similarly to the preceding lemmas we may suppose that the considered set is
expressed by a positive quantifier-free formula F(z,y) in A, with free variables z and y
which can be obtained by & and V from its subformulas having the form ¢ = s or —(t = s);
in the last case [ and s together may contain no more than one variable. But it is easily
seen that the set expressed in A, by a formula ¢ = s, where £ and s are different terms, is
O-oriented, the set expressed by a formula t = ¢ is ¥, and the set expressed by a positive
formula ~(t = s) is either O (when ¢ and 5 coincide) or strongly 1-criented. So all the sets
expressible by the mentioned formulas are strongly extremal. Hence the set expressible
by F(z,y) in A2 is strongly extremal, because the following statement holds: if A and B
are strongly extremal then AU B and AN B are also strongly extremal. This completes
the prool.

Lemma 3.15. The set S is not inductively representable in Bs.

Proof: If § would be inductively representable in O3, then in would be expressible by
a positive formula in Az but it is not so because 5 is extremal but not strongly extremal.

Proof of the theorem 2.3: Using lemma 3.4 we may conclude that it is sufficient to
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'1
consider only conditions concerning elements inductively representable in the given alge.
bras. Clearly, the algebra 8° is a proper subalgebra of © because, as it hpmwdin{l‘z],‘-
am-minducﬁwb'mmiﬂe'i’m“‘“h“”he- The algehra
8, is a proper subalgebra of ©° becouse, for example, the set Vo (EoE) is inductively
representable in ©° but not in ©;. Indeed, this set is the set of pairs (z,y) such that =
i’m,mmmgmwmdyismyamnumba:i!'thismmidbeinducliwl_vm
sentable in ©; then it would be expressible by a formula F(z, y) in A;, hence the formula
32F(z,y) would express in 4, a set of even numbers, but it is not so, because this set is
neither finite nor cofinite. The algebra ©; is a proper subalgebra of ©; because the set
@ is inductively representable in ©, but not in ©;. Finally, the algebra ©, is a*proper
subalgebra of ©;, because the set S is inductively representable in ©; but not in ;. This
completes the proof.

Corollary. In the following sequence of operations on TRESes: ~', 1, U, 0,0, no next
operation is expressible by the preceding ones.

Indeed, this statement concerning = and © follows immediately from the theorem 2.3.
In order to prove this statement for =*,N,U, o let us consider the algebras py, py, ps, 2
defined by the list of operations, correspondingly, (~*), (~*,n), ("', V), (!, N, U, o) and
by the list containing only one basic element R. Let us denote the sets of elements
inductively representable in py, p2, p3, ps, correspondingly, by Jy, Jy, Ja, Jy. 1t is casily seen
that Jy is infinite, and Jy, Jy, Jy are finite and contain, correspondingly, 2, 3,4 clements.
This completes the proof.

Note. The complement of a set inductively representable in the algebra © is in general
not inductively representable in it. Of contrary, the complement of any set inductively
representable in ©°, 8y, ©; is always inductively representable in the corresponding alge-
bra. However ©j returns us to the mentioned property of ©, because the complement of
a set inductively representable in ©3 is in general not inductively representable in it.

§4. Let us recall some definitions concerning fuzzy sets ([3], [14], [18]) and recursively
enumerable fuzzy sets. The n-dimensional recursively enumerable fuzzy sel is defined ([71-
[13]) as a recursively enumerable set of (n + 1)-tuples having the form (1205 o0es Bns £
where all z; are natural numbers, and ¢ is a binary rational number 3; such that 0 < & <
1. The connections between this notion and the general concept of fuzzy set ([3], [14],
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[18]) are described in [12] (see [12), pp.86-87). We consider below only two-dimensional
recursively enumerable fuzzy sets (TREFS). We say that a TREFS W covers the TREFS
V if for every (z,y,£) € V, where £ > 0, there exists such § = £ that (z,y,0) e W. We
say that TREFSes W and V. are equivalent if W covers V., and V' covers W. (This notion
of equivalence is used in [7}-[8] and [11]-[13]; it is different from the notion of equivalence
considered in [9]). If A is a TRES then the fuzzy image of A is defined as the TREFS
W consisting of all the triples having the form (z,y.0), and of the triples (z,y, 1) such
that (z,y) € A. A TREFS W is said to be standard if all the triples having the form .
(z,y,0) belong to W. A TREFS W is said to be n-discrete for some natural number n if
in every triple (z,y,£) € W the third component & has the form 7= Where0< k<2". A
TREFS is said to be discrete if it is n-discrete for some n. For every TREFS W we define
ils eg-level where 0 < gy < 1, as the set of pairs (z,y) such that (z,y,&4) € W. Clearly,
every £p -level of a TREFS is a TRES. The g -level of a TREFS W will be dencted by
W/(eo); we shall say that g is the indez of the set W(go] in W (cf. [11], [12)).

We consider the following operations on TREFSes (cf. [11], [12]).

The sum W +V of TREFSes W and V is defined by the following g.r.: if (z,y,6) e W
and (z,,6) € V then (z,y,min(1,e +8)) e W + V.

The product W-V of TREFSes W and V is defined by the following g.r.: if (z,y,e) eW
and (z,y,0) € V then (z,y,e-6) e W -V,

ThamspoaitiouWOVnfTREFSesWand!/isdeﬁnedbythefollawingg.r.: if
(z,y,¢) € W and (y,2,6) € V then (z,2,£-8) c Wo V.

The additive-transitive closure W of a TREFS W is defined by the following g.r.:
If (z,y,€) € W then (z,y,6) € &W; if (z,,6) € &W and (y,2,6) € &W then
(z,2,min(1,e + 8)) € ®BW.

The multiplicative-transitive closure @W of & TREFS W is defined by the following
gr: if (z,y,€) € W then (z,y,6) € ®W; if (z,y,6) € @W and (v,z,6) € ®W then
(z,2,e 6) € ®W.

The arithmetical sum W oV of TREFSes W and V is defined by the following g.r.: if
(2,y,6) € W and (z,2,6) € V then (z,y+2,£-8) e Wo V.

The inversion W' of a TREFS W is defined by the following g.r.: if (z,3,2) € W
then (y,z,£) € WL
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“.‘,Mwm.,memummmm the TREFS H consist.
ing of all the triples (2.3,0) and (2., 4); the fuzzy images R,Q.Z,. S of the TRESes,
correspondingly, R.Q. Ze. 5.

Let us define some algebras on the set of all TREFSes (cf. {11], [12]). The algebra Q2 is
defined by the list of operations (+,+,0,8,8,9,™" ) and the list of basic elements (R, H).
The algebra 0 is defined by the list of operations (+.2,9.7) and the list of basic
clements (R.Q, H). The algebras 0, 2;,0; are defined by the same list of operations
(+,-,¢,—1) and by the following lists of basic elements: (R, Q, Zp, H) for Q; (R, 8, Zy, H)
for Q: (R, Zo. H) for D

The algebras  and Q0 are introduced in [11] and [12}; it is proved in [12] that dvery
TREFS is inductively representable in © (up to the equivalence); a TREFS is inductively
representable in Q° if and only if (up to the equivalence) it is discrete and all its & -levels
are expressible by the formulas in M.Presburger's system.

Theorem 4.1. A TREFS is inductively representable in {; (correspondingly, £;) (up to the
equivalence) if and only if it is discrete and all its g -levels are expressible by the formulas in
the system A, (correspondingly, Az).

More precisely: every TREFS inductively representable in €, (correspondingly, 02,)
is discrete and all its £o -levels are expressible by the formulas in the system A,
(correspondingly,Az); if a TREFS W is discrete and all its £ -levels are expressible by the
formulas in A, (correspondingly, Az) then a set V' can be constructed which is equivalent
to W and inductively representable in £, (correspondingly, (1).

The formulation of the following theorem was suggested to the author by
Yu.V.Matiyasevich.

Theorem 4.2. (Yu.V. Matiyasevich) A TREFS W is inductively representable in €, (corre-
spondingly, £22) (up to the equivalence) if and only if W is n-discrete for some natural number
n and there exists a formula F in A, (correspondingly, A1) such that F' contains only free
variables z,z,y, and for every k, where 0 < k < 27, the level W[£] of W is expressible by
the formula Subst(F; z;0%) in A, (correspondingly, Aa).

Theorem 4.3. If a TREFS is inductively representable in Q5 then it is discrete and all its
£q -levels are representable by positive formulas in Aj.

The statement similar to that given by Yu.V.Matiyasevich holds also in the case of
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(1.

Theorem 4.4. If a TREFS W is inductively representable in (2 then W is n-discrete for
some natural number n and there exists a positive formula F in Ag such that F contains only
free variables z, z,y, and for every k, where 0 < k < 27, the level WIE] of W is expressible
by the formula Subst(F; z; 0™)) in A,.

The question, whether the statements reverse to the theorems 4.3 and 4.4 are true or
not, is open. We shall prove only the following statement.

Theorem 4.5, If all £; -levels of a discrete TREFS W are O-oriented and expressible by
positive formulas in A; then a TREFS V' can be constructed which is equivalent to W and
inductively representable in (2.

Theorem 4.6, Every next algebra in the sequence (2, °, 0y, (0, (s is 2 proper subalgebra
of the preceding one.

§5. In this section we shall give the proofs of the theorems 4.1 - 4.6.

Lemma 5.1. The fuzzy image of every TRES inductively representable in 6, (correspond-
ingly, in © or ©s) is inductively representable in ©; (correspondingly, in Q; or ;).

Proof: The proof is similar to that of lemma 4.2 in [12]. Indeed, if some TRES A is
inductively representable in ©; (correspondingly, in ©; or ©3) then there exists a process
of obtaining the TRES A in ©, (correspondingly, in ©; or ©3); considering fuzzy images
of all sets taking part in this process we obtain the constructing process of the fuzzy image
of A in £ (correspondingly, in 2, or Qs), because the fuzzy images of basic elements in
6, (correspondingly, in ©; or ©;) are basic elements in 0, (correspondingly, in ©; or s3),
and the operations U, N, #,~* on TRESes correspond to the operations +, -, *,~! on their
fuzzy images.

Corollary. The fuzzy images V, E, Wy, Zy, O of the TRESes V', I, Wi, Zy, O are induc-
tively representable in ;, £2; and Q.

Note. The set O is empty, but its fuzzy image O is not empty; it contains the triples
(z,,0) for all natural numbers z and y.

Lemma 5.2. If a TREFS W is inductively representable in ©; (correspondingly, in ),
then it is discrete, and all its £o-levels are expressible by formulas in A, (correspondingly, Az).

Proof: The proof is similar to that of lemma 5.2 in [12]. Indeed, it is sufficient
to prove that every TREFS W inductively representable in £, (correspondingly, ;)
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is discrete, and all its 2 -levels are inductively representable in ©, (correspondingly,
&) mmmhn,mmmm.mﬂilMMnm
m—wdlwi’m‘ Clearly, if W is m-discrete, and V' is n-discrete,
then W is m-discrete, W + V is max{m,n)-discrete, W oV and W - V" are (m + n)
_discrete. Obviously, all the =p _levels in the basic elements in {1, (correspondingly, 12;) ave
inductively representable in ©, (correspondingly, ;). Now, ifa TREFS U is WV, where
W and V are inductively representable in @ or 2, and all their e5-levels are inductively

table in ©; or 83, then every non-empty gp -level of U can be represented in the
o (O 6V ) SOVl VIaD U UV 16V ). where 8,6, ok, e
indexes of all levels in W and V' such that §-n = &0, 1 S¥ S Hence Uleo] is inductively
mpraanahleintheomespondil!&dgemw; or &,). Similarly, if U is W + V' | where
W and V satisfy the mentioned conditions, then every non-empty level Ulgg] can be
represented in the form (WE] 0 Vim] U (Ws] N Vima) U .. U (W8] N0 Vim]), where
81, B2, ccos Ges T TH2y oy Ty BTE indexes of all levels in W and V" satisfying forall i,1 €1 < ¢,
the following condition: & + 7% 2 1 when g0 = 1, and & + 1 = o when & < 1. If U
is W -V, then every non-empty level Ulzo| can be represented in the form given above,
where & - 15 = £ for 1 1 < t. Finally, if U is W=, then every level Ulso] is (W]eg) !
This completes the proof.

Proof of the theorem 4.3: It is easily seen that all & -levels in the basic clements
of Q are expressible in A; by the following positive formulas: (x = 2)&(y = yl.y =
2. (x = 0)&(y = v), (0 = 0)&(z = 2)&(y = y). Using the expressions given in the proofs
of lemmas 5.2 and 3.5 it is easily seen that if all & -levels of TREFSes U and V' are
expressible by positive formulas in Ay then the sets U + V,U - V,U o V,U~" possess the
same property. This completes the proof.

Proof of the theorem 4.4: Let the TREFS W is inductively representable in 2. Using
lemma 5.2 and theorem 4.3 we may conclude that W is n-discrete for some n and all the
levels W|go] are expressible by positive formulas in A;. Now let us construct the formula
F which is the conjunction of formulas ~(z = 0%) v F}, for all k such that 0 < k < 2",
where every Fi is the positive formula in Az expressing the level W[ of W. It is easily
scen that the formula F satisfies all the conditions of the theorem 4.4. This completes
the proof.
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Lemma 5.3. If a TREFS W is discrete and all its £g-levels are expressible by formulas in
A, (correspondingly, A;), then there exists a set V which is equivalent to W and inductively
representable in (; (correspondingly, in ).

Proof: Thepmofi.sm'mihrtothntoflemmn53in{l2]. Let W be an n-discrete
TREFS such that all its ey-levels are expressible by formulas in the system A, (corre.
spondingly, Az). Obviously, if some sets A and B are expressible by formulas in A; or
Ajg, then it is so also for the set A — B . Let us construct the TREFS W* such that

We(1) = w(1), W] = W[E] - (WESJuW[E2 u...uw[1))
for all k such that 0 < k < 2" — 1, W*[0] = V. It is easily seen that the TREFS W is
equivalent to W, all its gg-levels are expressible by formulas in A; (correspondingly, A;),
and all the sets W*[£]NW*[5] are empty when k > 0,1 < 0,k # I. Now let us construct
the TREFSes U, for all n > 1 such that Uy = H,Upyy = U, - H ; clearly, U, contains
only triples (z,y,0) and (z,y, J: for all natural numbers z,y. Let us construct also the
TREFSes Y, ;. for all n > 1 and k > 0 such that ¥,,» contains only the triples (z,y,0) for
all z,y, and ¥, 44y = Yo 4 + U, ; clearly, ¥, contains the triples (z,y, 2 for all natural
numbers z,y and for all g such that 0 < ¢ < min(2", k). Finally, let us construct the set
V as the sum of all sets having the form Vj; - ¥, x for 0 < k < 2", where V! is the fuzzy
image of W*[£]. It is easily seen that the TREFS V satisfies all the conditions of lemma.
This completes the proof.

The proof of the theorem 4.1 is now obtained immediately using lemmas 5.2 and 5.3.

Proof of the theorem 4.2:  Let us suppose that a TREFS W is inductively representable
in £ (correspondingly, ;). Using theorem 4.1 we may conclude that there exists a
TREFSVwhichisequivalmttow,n-diamtefmsomen,andnﬂtheeu -levels of V are
expressible by formulas in A (correspondingly, A;). A formula F satisfying the conditions
of theorem 4.2 is now constructed in the same way as it is described in the proof of the
theorem 4.4.

NowletmsuppmthatnTREFSWisn—diumeteforaomenmdtherewdstaa
formula F in A, (correspondingly, Aj) with only free variables z, z, y, such that for every
k, where 0 < k < 2", the level W[-£ of W is expressible by the formula Subst(F; z;09)
in A, (correspondingly, Aj). So, every g-level W(eo), where 0 < g < 1, either is empty,
or is expressible by some formula Subst(F’; z;0%) in A, (correspondingly, 4;). Hence all
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he o -levels of W are expressible b formulas in 4; (correspondingly, As). Using the
theorem 4.1 we may conclude that a set V' can be constructed which Is equivalent 10 W
and is inductively reptmtahkinﬂ: {correspondingly, ;). This completes the proof.

anshﬂlprmvmm!lemmﬂmuduwwmmt&

Lemma 54. Emwmﬁonﬂﬁnkewcoﬁnhemsakmm
sentable in B

Proof: If » two-dimensional arithmetical set A is finite then it can be represented as
amo{mE.Seﬂ'u for some k and L. If A is cofinite then it is expressible in A; by a
unﬁionofformnlﬂh!ﬁ!'&‘b'fom"(3=0(“\-""{v=0‘"‘}fmmkmd;;m

conj
it is expressible by 8 positive formula in A;. This completes the proof.

Lemma 55. If a formula F containing at most two free variables has the form (¢ =
§)&(t, = &) , where ¢ and s are different terms in Az, f; and &, are any terms in A;, then
sither F is equivalent to t = § in A, or it expresses in Az 3 finite set.

Proof. Let F be a formula in Ay having the form (t = s)&({t; = &) containing no
other free variable, except = and y, and let t and s are different. If #; and s, are equal,
ort; = & is equivalent to t = s, then F is equivalent to t = s. Let us suppose now
that F is not equivalent to & = &. Hence t, is different from s;. Clearly, in this case
every formula t = & and #; = $; may be reduced to one of the forms: (r = y), (#® =
¥, (0 = y®), (0% =y), (z = 0%), (=® = 0), (x = z™), (v = ™), (0 = 0®). 1t can be
easily seen now that the set expressed by every conjunction of two non-equivalent formulas
which have one of these forms and satisfy the mentioned conditions, is either empty or
contains only one point (z,y). This completes the proof.

Lemma 5.6. If A and B are two-dimensional arithmetical sets such that A is inductively
representable in ©3 and (O-oriented, B is inductively representable in ©,, then the set A —~ B
is inductively representable in 3,

Proof: If the sets A and B satisfy the mentioned conditions then they are expressible
by the formulas F and G in A; containing no other free variables, except x and y. We may
suppose that F is positive, F and G are quantifier-free and F is reduced to a disjunctive
normal form. The set A— B is expressed by the formula F&~G; we denote ~G by H. So
A— B is expressed by the formula F&H; we may suppose that F and H are reduced to a
disjunctive normal forms, hence the formula F&H may be transformed to a disjunction
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T

. of formulas having the form

" (5.1) RUFRL. bR LH EH K. 8 H,
where all F; and H; are elementary formulas in A; or negations of elementary formulas,

" and the set expressed by Fi&Fyc..&F, is O-oriented. It is sufficient to prove that the
formula (5.1) is equivalent to some positive formula in A,. Clearly, it is so if some F; or
H; has the form —(t = t) (in this case the set expressed by (5.1) is empty); if some F; or
H has the form (t = t) then this subformula may be dropped from (5.1). So, we may
suppose that every Fy and every H; in (5.1) have the form (t = s) or —(t = 5), where ¢

; and s are different. But in this case at least one F; has the form (t = s}, because the set
expressed by Fi&Fak...8 F), is O-oriented. We may suppose that F; has the form (£ = s).
The formula (5.1) is equivalent to the following one
(5.2) R & (R ER) e F&Fs).. (R &P )& (Fy & H, )& FideHa) .. & Fi&cH))
8o, it is sufficient to prove that every formula Fi, (Fi&F), (Fi&H;) is equivalent to a
positive formula in A;. Obviously, F; is a positive formula. Every formula (F&F;) and
(F,&H;) has one of the form (& = s)&(t; = s;) or (t = 8)&—(t; = 5;) (where £, and s, are
different). But (t = 8)&(t; = s;) is a positive formula. The formula (t = s)&~(t; = ;)
is equivalent to (t = 5)&~((t = s)&(t; = s,)). Using lemima 5.5 we may conclude that in
the considered case the formula (t = 5)&(t; = s,) is equivalent to ¢ = s or expresses in A,
a finite set. In the first case the formula (t = 5)&—(t; = s,) expresses in A; an empty set.
In the second case the formula —((f = 5)&(t; = s,)) expresses in A; a cofinite set, hence,
using lemma 5.4, we may conclude that the formula —((t = s)&(t; = s)) is equivalent in
Aj to some positive formula. This completes the proof.

Proof of the theorem 4.5: If a TREFS is n-discrete for some n, and all its £o-levels are
(-oriented and inductively representable in B3, then using lemma 5.6 we may conclude
that the construction described in the proof of lemma 5.3 gives a representation in 2 of
some TREFS V equivalent to W. This completes the proof.

Note. The construction described in the proof of lemma 5.3 may be applied to the
TREFSes whose &o-levels are O-oriented, but in the general case such a proof does not
hold, because the difference A — B of sets inductively representable in ©3 is in general
not inductively representable in ©5. For example, it is so, when A = V, B = E.

Proof of the theorem 4.6: Using theorem 2.3 we may conclude that there exist TRE-
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C. which are inductively representable, correspondingly, in ©,8°,8,.0,,
but not in 6%, 84,62, Let us consider the fuzzy images W'y, Wa, W5, W, of the sets,
cmSPOﬂdm!l‘ Gy, G, Ca: Cs- Using theorems 2.1, 2.2, 4.1 and 4.3 proved sbove, as
well as theorems 3.1, 4.1 and 5.1 proved in [12] we may conclude that the TREFSes
Wy, Wa, Wy, Wy are inductively representable, correspondingly, in £.9°, 0y, 9; but not in
0°. O, 3, 0. This completes the proof.
Thethwwvdoho\tshu%'thﬂ!hefmymindm\.d}. representable in 0,
and mvbemidemdu fuzzy analogues of two-dimensional sets expressible in the
systems A; and Az ﬁerdﬂ!m&mhduﬂivdywminmm‘hmd
are now in general not so clear. The problem concerning an exiet

Ses l:‘: " CJ‘ CJ-

means of the system Az
jogical description of sets inductively representable in {25 remains open.
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