the Institute for Informatics and Automation Problems of NAS RA,
Trensactions of the [nsiitut Cullected repurts of purlicipanis of JAFES

ON.LINE TESSELLATION AUTOMATA AS A TEXT MATCHING
PROBLEMS SOLVER

A.V. Kocharyan and K.V. Shahbazyan

The goal of this work Is to Investigate the possibilities of utilizing Oneline Tessellation
Automata (OTA) to solve a class of Text Matching Problems (TMP). We understand a
mﬂ:-ammdmmhh;mmtm.mumdmhnhiuﬂpm
The of two texts we understand as realizability of given EMSO-formula that
the relative properties of these texts. We consider a class of TMP for which a
ﬂxnpm”happudmobm OTA solving problems in linear time.

INTRODUCTION

The goal of this work is to investigate the possibilities of utilizing On-line Tessellation
Automata (OTA) to solve a class of Text Matching Problems (TMP). TMP is a gener-
alization of Pattern Matching Problems [1-5] where two wonds (sequences of letters in a
finite alphabet) are compared. We understand a TMP as a problem of matching two tests
(sequences of words in a finite alphabet). The comparability of two texts we understand as
realizability of given existential monadic second-order (EMSO)-formula that captures rel-
ative properties of these texts. We consider a class of TMP for which a uniform approach
can be applied to obtain OTA solving problems in linear time.

OTA is a cellular automata destined for recognition of matrix languages [6,7,8]. It is an
area of elementary finite automata where a wave of computations passes once diagonally
across the array (for exact definitions see [6,7,8], and in the same journal [9, section 1,3]).
It was shown in [6] that a matrix language is recognizable by OTA iff it is definable in
EMSO logic. So OTA's are equivalent to EMSO formulas.

We formulate our results in terms of OTA's. To this end we identify a pair of texts
(T}, T;) with a matrix, and a set of texts pairs with a matrix language. We suggest an

5

-~

algorithm that constructs OTA for & problem if notions of words end texts comparability
are separately expressed in terms of OTA's.

Notice that to recognize any (m,n) -matrix OTA performs m + n steps and the time
of one step depends only of the number of instructions to be done for one transition of
elementary finite automaton. So we obtain the automaton that solves TMP for two texts
T}, T3 on-line in [T} | + |T3| steps where [T} is the length of T.

This paper is a continuation of the paper [0] in the same journal, therefore we use
some definitions introduced in [9]. There OTA’s are anelysed es recognizers of netural's
sequences . Here OTA's are investigated as recognizers of properties of word sequences
- of the texts. A generalization of the Theorem 1 from [9] gives us the possibility to
construct OTA’s for a class of TMP. This is the class of TMP’s that can be formulated
by EMSO formula over the signature equipped by OTA -recognizable binary predicates.

The paper is organised as follows: first we give preliminary definitions, and then for-
mulate a generalization of Theorem 1 from [9]. Finally we illustrate the possibilities of

OTA on several examples.

§1. DEFINITIONS
1.1 Words and texts.

Let A be & finite non-empty alphabet. We denote the letters of A by symbols a, b, ¢
with subscripts , and words over A by symbols u,u,t,p.

A word u = a;...an, i8 & factor of a word v = by...b, iff there exists an integer j such
that a; = by, for 1 < i < m. A size w -window of v is a size w factor bis...bisw of v,
there are n — w + 1 w -windows in v. A word u is a serial episode (or subsequence) of v
iff there exist integers 1 < #; < i3 < ... <im <nsuchthata;=b, for 1<j<m. If
im — 11 < w then u is a serial episode of v in & w -window. A word u is & parallel episode
of v if each letter of u is a factor of v, i.e., iff there exist integers 1 < 45,42,,73m < 1
such that a; = by, for 1 < 7 < m. If [i = ig| < w then u is & parallel episode of v in a w
-wrindow,

A tezt over alphabet A is a sequence of words over A. We denote texts by T, S, V, U
with subscripts. :

Atext U = u,...,tm i8 8 factor of text V = v, ..., vy, iff there exists an integer j

55

cuck that iy = vses for 1 Si<m. A size w -usndow of V' is a size w factor vy, .., 4y
of V', there are n— w + 1 w -windows in V', A text I is a serial episode (or subsequence)
of V if there exist integers 1 S iy << <imSnsuchthaty; =y, for1<j<m
If i — i < w then U is an episode of V' in a w -window. A text U is & paruilel episode
of V iE each word u, is a factor of V, ie., if there exist integers 1 < 4,43, ..., im < 1 such
that 4y = 1y, for 1 < j € m. If it —is] < w then U is a parullel episode of V ina w
-window.

We denote by |U| =n + 1+ X] the legth of the text U, where |i] is the length of
the word 1,

Example 1. Consider the text V' = ,an alphabet is a finite non-empty set A" (blanke
are separators). Then the text ,non-cmpty set” is a factor of V. The text ,.empiy m d
is neither a factor nor an episode of V. The text ,finite set” is a serial episode of V in
3-window. The text ,,non-empty alphabet” is a parallel episode of V" in 5-window.

1.2. Binary predicates over words and related OTA.

We associate with each pair of words (u,v) over alphabet A a matrix M, . over
alphabet £ = {0, 1} such that if u = a;...a and v = b...b, then

1 if ai=0b;
0 if a;#b;,
Notice that the matrix M., is constructed on the base of letters identity predicate. It is
possible to consider in the definition of M, , any other binary predicate over letters of A
instead of identity. We propose this one because in Pattern Matching Problems we meet
mostly the identity.

We express notion of words comparability by binary OTA-recognizable predicates over
words.

Associate to each binary predicate P over words on alphabet A a matrix language
Lp = {M,y|P(u,v) = 1}. If there exists OTA Ap that recognises the language Lp, then
we call predicate P OTA-recognizable. In this case Lp can be defined also by EMSO
formula over the signature o = (8, S3, R) where R is unary predicate.

Here are several examples of OTA-recognizable predicates over words. It is straight-

i=1.,m, j=1..,n

Myu(i,)) = {

56

[orward to check their deterministic OTA-recognizability.
L. Identity predicate P.(u,u).

1 =
P“(t[‘ v) =] if u v,
0, if usfu.
We denote by Ap_ the OTA recognizing this predicate. It recognizes a matrix over
alphabet {0, 1} iff its main diagonal consists only of 1's.
2. Predicate , the word u is a factor of the word »”.

1, if u is a factor of v,

Proctor (1, 0) =
0, otherwise.

The corresponding OTA Ap,,,.,. recognizes a (m, n) -matrix M over slphabet {0,1} iff
there is such an integer i that the metrix composed of columns i,i+1,...,i+m—1of M
has only 1's on the main diagonal .

3. Predicate ,the word u is a serial episode of the word v”.

1, if u is serial episode of v,

Prepisode(t, V) =
{ 0, otherwise.

The corresponding OTA Ap,_,., recognizes a (m,n) -matrix M over alphabet {0, 1} iff
there are such integers 1 < i; < 43 < ... < i, < n that the matrix composed of columns
11,82, .-y im ©f M has only 1's on the main diagonal .

4. Predicate ,,the word u is a parallel episode of the word ",

1, if the word u is a parallel episode of the word v,

fmllsy) = { otherwise

The corresponding OTA Ap,,.,.., recognizes a (m,n) -matrix M over alphabet {0, 1} iff
M has at least one 1 in each row.
5. Predicate ,,the word u is a permutation of letters of the word v”.

1, if the word u is & permutation of letters of the word v,

P, (u,v) =
5 {0, olherwise.

The corresponding OTA Ap,,..,, recognizes a (m,n) -matrix M over alphabet {0,1} iff

67

M bas unique 1 in each row and in each column.
6. Let P be OTA-recognizable binary predicate over words. We define another binary
predicate over words W depending on P and window size w.
1, if there exists in v at least one size w window ¢
WE(uv) = such that P(ut) =1,
0, otherwise.
The defined predicate W is deterministic OTA-recognizable. We denote the correspond-
ing OTA by AWE .

7. In particular, predicates Wg . Wg,___ Wg__ Wg___ Wg__ aredetermin-
istic OTA-recognizable.

Ohserve, that if a matrix M, . is given, then any mentioned OTA solves corresponding
Pattern Matching Problem. The OTA's Ap,,., Ar. ... Ap..... olve the problems
known as pattern matching, episode matching, parallel episode matching [1-5]. These
automata solve the problems without precomputing. The correspondent window problems
11,2] can be solved by OTA's AWE,__, AWE___, AWE__ . These problems require
joint preprocessing of window size w and of OTA Ap to obtain OTA solving the problem.

For many problems of data mining it is interesting to count the number of such win-
dows t that P(u,t) = 1. The elementary automata of OTA are finite automata therefore
the counting is possible only if the number of windows is limited. To count arbitrary
number of windows a counter is necessary, that can't belong to OTA.

1.3. Matrix code of texts pair. Information matrix.

IfT =t),...,1, is a text then we call the word C(T) = sty % ... t,» over AU{x},+ ¢A
the code of T.

A matrir code of a pair of texts (I/,V) (denoted by MCyy) is a (|U},|V]) -matrix
over AU{s} such that the first row of MCyy contains C(V) and the first column contains
C(U'). The other entries of MCy, are arbitrary letters from A.

Let binary predicates P}, ..., P, over words be fixed. To any pair (U, V) of texts where
U=y,um, V = vy,...,v, we associate (m,n) -matrix /My, whose entries are r -bit
vectors IMuyy (i, 7) = (Py(u, v5)... P (uy,v5)), 1<i<m, 1<j<n. This matrix we call

an information matriz of the pair (I/, V). We use the information matrices as a tool for
defining the lznguages of texts pairs.

§2. GENERALIZATION OF THEOREM 1 [9]. EXAMPLES.

Let the solution of a TMP for texts pair (U, V) be represented as two following steps:
1. matching of words:

Given matrix code MCy,y, compute the values of predicates P, ..., P. to receive in-

formation matrix [Myy

2. rm;tching of texts:

Given information matrix TMy,y, compule the value of predicate P that gives the
solution of the TMP,

Then we can use the Theorem 1’ that states the existence of OTA D = D(P,. .., P.,P)
solving the TMP.

Theorem 1". Let P, ..., P and their complements P, ..., P, be OTA recognizable predi-
cates and OTA's Ap, ..., Ap,, Ap,, ..., Ap, be the corresponding recognizing automata.

Let P be a language of r -bit matrices, which is OTA -recognizable by OTA Ap.

There exists an algorithm 2 that constructs an OTA

D = (Ap, ..., Ap,, Ap,, ..., Ap,, Ap) such that

1) The input of D is MCyy - the (|U|, [V']) - matrix code of text pair;

2) D recognizes matrix code MCly for given pair (U, V) of texts iff Ap recognizes the
information matrix J Myy;

3) OTA D recognizes MCy,y on-line in |U| + |V| steps;

4) Two-dimensional cellular automaton D in this case degenerates into one-dimensional
cellular automaton, i.e., a systolic automaton. [ts length is min{|U|,|V'|}, its inputs are the
codes of texts C(U/) and C(V).

5) If Ap,, ..., Ap, Ap, ..., Ap,, Ap are deterministic OTA's then D is deterministic.

Proof: The proof of the Theorem 1’ is the same as in [9]. The only difference consists
in A automaton. For every pair of texts U = uy, ..., up, V = V1, sy Up 80d their matrix
code MCy,v this automaton constructs the cell-matrix M (see section 1.2 in [9]) so that
thecell M < k,j >= M, ,;, 1 <k<m, 1 <j<n. Then OTA £ imitates the run of

59

all A Ap, 8= 1,....r on the cells, i.c, on matrices M, ... At last OTA D realizes
composition of Aprai, £, Ar- o

Let us bring some examples of TMPs which we can solve by our method.

Let the number of predicates be r = 1. We can use any of 10 above mentioned
predicates in place of P, either of P , that gives us 100 combinations and therefore the
correspondent OTA’s to solve 100 different TMP's. Evidently we can extend the set of
predicates and simultuneously extend the number of TMP's.

Example 2. Given the texts U = uy,.... tm, V = 1y, .., U, problem consists in finding
whether the text [” is a parallel episode of the text V. ;

In view of Theorem 1’ the problem can be solved by automaton D Pa; Prcgicoie):

If V' =,,an alphabet is a finite non-empty set A", and I/ =, finite set”, or U =, set -
nite” (blanks are used as separators) then the problem has positive answer. If [/ =, empty
set " then the answer is negative.

Example 3. Given the texts U = uy,....thm, V' = vy,..,v, and a number w, problem
consists in finding whether in the text 1 there is a size w window T = vy, ..., tys_y such
that
1) every word u; of the text U is u factor of some word vy, of T, ie., fori = 1,...m, k <
Ji € k+w—1, the word u; is a factor if vy,.

2) the text vy,,..., vy, is a paralle]l episode of the window 7.

In view of Theorem 1’ automaton D(Pracier, Wi,) solves the problem.

If V' =,,an alphabet is a finite non-empty set A", and U =, ,empty set" then the answer
is positive for w > 2. If U =, non empty” then answer is positive for w > 1.

Example 4. Given the texts U = uy, ..., tm, V = vy, .., Un, problem consists in finding
whether in the text V' is a permutation of words of the text [/,

In view of Theorem 1’ the problem can be solved by automaton P Polst).

If V =,.an alphabet is a finite non-empty set A”, and U =, a finite non-empty set A
is an alphabet” then answer is positive.

§3. CONCLUSION

Authors have implemented algorithm € as a computer program that constructs OTA
D to solve TMP defined by predicates B, ..., P., P. Inputs of the program are determin-

60

istic OTA’s Ap,, ..., Ap, and Ap as programs that compute transitions of OTA’s without
storing the automaton. Output of the program is executable code of OTA D that com-
putes transitions of OTA D without storing D.

As it is mentioned in Theorem 1’ the two-dimentional cellular automaton D for a
TMP degenerates into c-ne—dhne;wional one, i.e., systolic automaton. Therefore our pro-
gram can be used to receive the definition of corresponding systolic array.

REFERENCES

1. L. Boasson, P. Cegielski, I. Guessarian, Y. Matiyasevich. Window accumu-
lated subsequence matching is linear. Annals of Pure and Applied Logic Vol.
113(2001),pp.59-80.

2. L. Boasson, P. Cegielski, . Guessarian, Y. Matiyasevich. Multiple Serial Episodes
Matching. CSIT 2005, pp.26-38.

3. G. Das, R. Fleischer, L. Gasienic, D. Gunopoulos, J Kirkkdinen. Episode matching,
Proc. 1967 Combinatorial Pattern Mutching Conf., LNCS 1264, Springer-Verlag,
Berlin (1997), pp. 12-27.

4. Z. Galil. String matching in real time. J.Assoc. Comput. Mac. Vol.28,(1981),
pp.134-149,

5. G. Kucherov, M. Rusinovitch. Matching a Set Strings with variable Length Don’t
Cares. TCS, Vol 178, (1997), pp.129-154.

6. K. Inoue and A. Nakamura. Some properties of two-dimensional on-line tessellation
acceptors. Information Sciences,vol.13, p.95-121, 1977.

7. K. Inoue and A. Nakamura, A Survey of two-dimensional automata theory. In Proc.
5th Int. Meeting of Young Computer Scientists.J Dasson and J.Kelemen (Eds.), p.
72-91. Lecture Notes in Compnuter Science 381, Springer-Verlag, Berlin, 1990.

8. D. Giammarresi and A. Restivo. Two-dimensional languages. In Handbook of For-
mal Laguage Theory, v.3, Springer-Verlag, N.Y.,1996.

61

The Finitestate Recognizability of sa
Shakbazyan, Yu. H. Shoukourian.
o B of In this journal

quences of Integers.

e - Institute for Informatics and Automation Problems

National Academy of Sciences of Armenia
E-mail: armkoch@ipia.sciam, shahb@ipia.sci.am

