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ON THE REPR.ESENTA'TION OF ARITHMETICAL AND STRING
FUNCTIONS IN FORMAL LANGUAGES

M. H. Khachatryan

In LA and LW are introduced; the linear upper and lower bounds for Shannon's functions
are obtained.

§1. INTRODUCTION. In this paper primitive recursive arithmetical functions and
primitive recursive string functions are mnsideréd; a natural correspondence between
arithmetical functions and string functions in a given alphabet is defined. Formal lan-
guages LA and LW for the representation of primitive recursive arithmetical functions
and primilive recursive string functions are introduced. The following problem is inves-
tigated: what is the change of complexity of representation of a function in a formal
language when we pass from a function expressed in one language to the corresponding
function expressed in another language? Shannon’s function describing these changes are
defined; linear upper and lower bounds are established in main theorem proved below.

§2. Let us recall some definitions given in [5), [6], [7]. We consider a finite list of different
symbols A = {a;,a,,...,a,} , where p > 1: such a list will be called alphabet, and the
symbols a1, 3, ...,a, will be called letters of A. A string (or word) in A is any finite
sequence aj, a;,...a;, of letters in A. The empty string having no letter is also considered;
it will be denoted by A. The number { is said to be length of the string a;,a;,...a,,; the
length of A is 0. The length of a string P will be defined by |P). The set of all strings in
A (including A) will be denoted by A*. The alphabetic number @(P) of the string P in
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4 is denoted by the following equalities:
w(A) =0
(04, Big04) = He + -y PF . F 0 sl

1t is known (see, for example, [7]) that such enumeration of strings in A defines &
one-to-one correspondence between A" and the set N = {0,1,2...} of all natural num-
bers. By apn (or, shortly, an) we denote the string in A having the alphabetic num-
ber n. The concatenation of strings P = 8,050, and Q = a;,0,,...a;, is the string
G By B B B -0, I8 Wil be denoted by PQ.

n-dimensional arithmetical function (or, shortly, arithmetical function) is defined as
any mapping of N into N (where N™ is the n-th Cartesian degree of the set N =
{0.1,2...}); n-dimensional string function in the alphabet A (or, shortly, string function)
is defined as any mapping of (4°)" into A" The notion of primitive recursive function
(or primitive recursive arithmetical function) is defined in a usual way ([5], [6], [7).

Let us recall this definition. Primitive recursive functions are functions obtained from
the basic functions 0, If(zy,22..%x) = 7 (where k 2 1,1 ST < k), s(x) = x + 1, by
the operators of superposition and primitive recursion ({51, (6], IT]). The correspond-
ing definitions are as follows. We say that a k-dimensional arithmetical function f (i.e.
depending on k variables) is obtained from arithmetical functions g, hy, hy, ..., hy by the
operator S of superposition and denote this statement by f = S(g, k1, hay ooy ), if the
functions g, hy, ha, ... b depend on, correspondingly m, &, k, , k variables, and the foliow-
ing equality holds for all natural numbers xy, xa, ..., Ta:

J(@1, 22, oy Te) = g1 (£2, 22, oo ), B2 (21, 22y oy Ta), ooy A1, 22, -y 7).

We say that an (m+ 1)-dimensional arithmetical function f is obtained from arithmeti-
cal functions a and 5 by the operator R of primitive recursion and denote this statement
by f = R(a,B), if a and 3 depend on, correspondingly m and m + 2 variables, and the
following equalities hold for all natural numbers zy, xa, ..., Tm, ¥

J(@1, 22,000y T, 0) = (21, Ty ey Tm);
F(x1, 22, o0y Ty § + 1) = B(21, 222y ¥, S (21, 22, ooy Ty 7)),

Below we shall consider some special forms of superposition and primitive recur-
sion, namely, operators of Shl-superposition, Sbr-superposition, Sel-superposition, Ser-
superposition (or, shortly, operators Shl, Sbr, Sel, Ser) as well as a generalized form of the
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operator R of primitive recursion, The mentioned operators of superposition are defined as
follows. Every operator of Sbl—, Sbr—, Sel—, Ser-superposition is applied to any functions
911, B, ... hm, depending, correspondingly on v, ky, ky, ..., kn variables, where m < v ;
its value is a function f depending on v — m + k variables, where k = maz(ky, ky...km),
and satisfying the conditions which are given below for every mentioned operator:

(1) The function f) = Sbi(g, hy, hy,..., hm) given by the operator of Shl-superposition
satisfies the following equality:
T 2y, 23, ooy Tymii) =
glhy( Thby sy Tl 423 oo T )s P2 Ty 41, Tk by 42, ooy T,
Men (T by b1y Thky 42y o001 Th)s Tt 1, Ths2, +rey Tt -

(2) The function f® = Sbr(g, by, ha, ..., hs) given by the operator of Sbr-superposition
satisfies the following equality:
Ty, 22y ooy Ty ) =
9(h1 (71, Z3..38, ), ha(Z1, Ta... Ty ), ooy Ren (T1, 29 B ), Tt 1, Tisa, vey Ty i)

(3) The function f® = Sel(g, hy, hy, ..., hy) given by the operator of Sel-superposition
satisfies the following equality:
1(zy, 7y, ..., Zymik) =
9(Z1, 22 Tyrmy B1 (Tumhky 41) Bty 42, -s Tummetk)s
Ma(Zy-mt kg +1) Tometk—kzt3s -+ Tu—mtk)s
o (Zy— etk 413 Tk~ 423 -+ Bu—mtk) )-

(4) The function f® = Ser(g, hy, b, ..., h) given by the operator of Ser-
superposition satisfies the following equality:
JO(21, 23, .0rs Zun ) =
9(%1, 2200 Ty 1 (Tomi s Tu-ms2s ooy Tumiky )s Ba(Tome1s Tomi 2 ovor By )s

hﬂl(zmll zﬂ—M!r"-:zv—Mi-))'
Clearly, the operator § can be considered as partial case of operators Sbl, Sbr, Sel, Ser;

itiuobtainedﬁumeveryofmmﬂonedopantmwhmu=mandk1=b;='..=k,,,.
The generalized form of the operator R is defined as follows. Let o be an arithmetical
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mmmw!mﬁﬂﬂ.mﬂjhmmtwmwiqu
cariables, where k > [ + 2. Then the function / = R(a, 5) obtained from a and 3 by
me;mmlhediurmdtheopmwﬂdepmdtm(k+l)mhbhmdbdeﬁmdbyme
following equalities:
Jlx1, 2200 Tia, 0) = @{F0e T2 e 11
Fz, Tae e T2 + 1) = B30 20 Tt 00 S (30, 20 B2 ¥))

Clearly, the usual form of the operator R is obtained from the generalized form when
k=1+2

Now let us define some relations between arithmetical functions and string functions in
agiven alphabet A = {ay, 02, ....a,}, where p > 1. Let f be an m-dimensional arithmetical
function, and F be an m-dimensional string function. We say that f is the function
representing F (or that F is the function representable by f) if the following equality
holds for all natural nurnbers Iy, T3, .., Tm:

F(oxy, aT3, ..., 0Tm) = af(T1, T2, ooy Tw)-

If a string function F is representable by an arithmetical function f, then we say also
that the functions F and J correspond one to another,

A string function F is said to be primitive recursive if and only if the arithmetical
function representing F is a primitive recursive arithmetical function (cf. [7]).

Let us define now basic string functions in the alphabet A as well as operators of
superposition and alphabetic primitive recursion (cf. [7]) on string functions. These
definitions are similar to corresponding definitions in the theory of arithmetical primitive
recursive functions.

Basic siring functions in A are following functions:

(1) The O-dimentional function such that its value is the empty string A; such a
function will be denoted by A.

(2) The function S;(P) = Pa;, where 1 <i < p.

(8) The function If(P,, Ps,..., P;) = P, where k > 1, and 1 < < k.

Clearly, all these string functions are primitive recursive. For example, every function
S5i(P) is representable by arithmetical primitive recursive function s;(x) = pr + .

The operators S, Sbl, Sbr, Sel, Ser on string functions are defined similarly to the
operators S, Sbl, Sbr, Sel, Ser on arithmetical functions.
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The operator R of alphabetic (string) primitive recursion is defined as follows. Let
G, H,, Hy, ... Hy be string functions depending, correspondingly on 1, ky, ks, .., k, vari
ables, where k; > 2 for all 4, 1 <4 < p, and maz(ky, ks, ..., ky) > 1 + 2. Then the function
F =RIG,Hy, Hj, ..., H,) obtained by the operator R from G,Hy, H;,..., H, depends on
(k~ 1) varizbles, where k = maz(ky, ks, .., k;), and is defined by the following equalities,
where Py, Py, ..., Py_3, Q are any strings belonging to A”:

F{'Pl ¥ 'Bh waey Pi-’! ’J\J = G(ﬂ' P2| sany ‘H}:
F(Py, Py, ..., P2, Qai) = Hi(Pe-bs1, Pty -Pica, Q, F(P,, B, ..., P2, Q)),

foralli,1<i<p.

Let us note that the operator of alphabetic primitive recursion defined in [7] may be
considered as a partial case of the operator R; it is obtained when k; = ky = ... = k=
142

It is known (see, for example, (7)), that a string function is primitive recursive if and
only if it can be obtained from basic string functions using the operators S and R . It
is easily seen that the operators Sbl, Sbr, Sel, Ser (correspondingly, Sbl, Sbr, Sel, Ser)
can be expressed by the operator S (correspondingly S) using arithmetical basic functions
(correspondingly, basic string functions). Similarly the operator R can be expressed
using the operator of alphabetic primitive recursion defined in [7], the operator S of
superposition, and basic string functions. So, the introducing of the mentioned additional
operators is nol essential for the describing of the classes of arithmetical primitive recursive
functions and primitive recursive string functions (though it is essential for the estimates
of complexity of corresponding formal expressions).

Now let us define the formal languages LA and LW for the representation of, corre-
spondingly, arithmetical primitive recursive functions and primitive recursive string func-
tions. Their definitions will be based on the notion of term, i.e. formal expression (having
a given dimension) in the mentioned languages. In the definitions of terms in LA and
LW we shull denole by D; the unary notation of the natural number i; 50 it is the string
@a...a , where a is a fixed letter in the alphabet of a corresponding language.

: M’l'"he notion of term in the language LA is defined inductively as follows.
1. 0 is a 0-dimensional term (this term expresses the O-dimensional function 0).

41



2 sisa ]-dimensional term (this term expresses the 1-dimensional function s(r) =
; 31,‘1(0.,0,). where k > 1, 1 £ 1 € k, is a k-dimensional term (every such term
wmkwmmﬁ‘:itwmhmmb}-iﬁ_

4 lfgisa v-dimensional term, and hy, Aa, ey hny Where m < v, are, correspondingly
..k~ dimensional terms, then Sbi(g, hy, ha, ihe). Sbr{g, hy by, ... hl).
hw), Ser(g.hy Bz, .. hm), are (v — m + k)-dimensional terms, where
k) (these terms express arithmetical functions obtained by the cor-

ky—, ky—, -
Su‘.'g. h;.h-;. .

k= mﬂ-flk;.k:
responding operators of superposition from functions expressed by g. Ay, by, ... A).

5. If g is an Idimensional term, A is a k-dimensional term, where k > 1+2, then R{g, &)
is a (k — 1)-dimensional term (this term expresses an arithmetical function obtained by
the operator R from functions expressed by g and h).

&. Some shortened expressions for terms will be introduced below.

There is no term except those obtained by 1-5 and their shortened variants.

The notion of term in the language LW is defined inductively as follows.

1. A is a O-dimensional term (this term expresses the (-dimensional basic function A).

2. S(D,), where 1 < i < p, are I-dimensional terms (every such term expresses the
1-dimensional basic string function S;(P); it will be denoted below by S,).

3. I(Dy, Dy), where k > 1, 1 < I < k, are k-dimensional terms (every such term
expresses the k-dimensional basic string function I; it will be denoted below by J}.

4. If G is a v-dimensional term, and Hy, Hy, ..., H,,, wherem < v, are, correspondingly,
ky—, ka—, ..., km-dimensional terms, then Sbl(G, H\, H, ..., Hn), Sbr(G, Hy, H,, ..., H,,),
Sel(G, Hy, Ha, ..., Hy,), Ser(G, Hy, Hy, ..., Hy), are (v —m+ k)-dimensional terms, where
k = maz(ky, ka...k) (these terms express string functions obtained by the corresponding
operators of superposition from functions expressed by G, Hy, Ha, ..., H,,).

5. If G is an I-dimensional term, Hi, Hy,..., H; are, correspondingly, ky—,ky — ..k,
dimensional terms, where k; 2 2, 1 < i < p, and maz(ky, ka, ..., k;) > [+ 2, then
R(G, H\, Hy, ... Hy) is a (k - 1)-dimensional term, where k = max(ky,ky, ..., k,) (this
term expresses the string function obtained by the operator R from G, H,, Hy, ..., H,).

6. Some shortened expressions for terms will be introduced below.

There is no term except those obtained by 1-5 and their shortened variants.
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Let us introduce also the following shortened expressions: S, Sb, Se, 51, Sr (corre-
spondingly, S, Sb, Se, Sl, Sr) in the language LA (correspondingly, LW). These
expressions are used in LA (correspondingly, LW) in the case when some letters in the
expressions Shl, Sbr, Sel, Ser (correspondingly, Sbl, Sbr, Sel, Ser) may be omitted
without introducing e misunderstanding in the interpretation of the considered opere-
tor of superposition. Indeed, let an operator of superposition be applied to functions
g:hyy by, ..., hyy depending, correspondingly, on v, ky, k3, ..., k, variables, Then it is easily
seen, that the letters b and e may be omitted in the expression of the considered operator
if m = v; the letters { and r may be omitted ifky = k3 = ... = k,,. Every shortened
mcpressioﬁis interpreted in thesamewuyasanexpremionobtained&omitbynddjng
omitted letters,

The complezily of a term t in the languages LA and LW is defined as the length jt]
of the string .

Let us note that the dimension of any term t in LA and LW is less or equal to
the length of (. This stetement is easily proved using the induction on the process of
constructing of terms in LA or LW.

Now let t € LW and r € LA be some terms. Wesqythatt}:etermatandrmupand
one1.0anol.herifthestringfuncﬁonmcpmsedbythetermtismpmblebythe
arithmetical function expressed by the term r. The sets of terms LA(t) and LW(r) are
defined as follows for any ¢ € LW, and any r € LA:

LA(t) = {r|r € LA, and r corresponds to t}; '

LW(r) = {t|t € LW, and t corresponds to r}.

Shannon's functions SHw 4(n) and SHw(n) are defined as follows:

SHwA) = et} 2y D

SHyw(m) = i A S”,(rg,i,f,h Ir]).

Clearly, these functions describe the comparative complexity of terms functions which
correspond one to another in the languages LW and LA. So, they describe, what is the
change of complexity whmwpaasfromonelanguagetoanothermdfmmmmsfuncﬁon
to the function corresponding to it.

Main theorem. For every natural number p > 1 (where p is the quantity of letters in the
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aiphabet A) there exist real constants ., ., 5, 5. 5, . & such that for every natural

number 1

dn = df < SHwaln) Scn+d5

dn+ & < SHaw(n) S cn +dg

Proof: Let a number p > 1 be fixed. Below the upper indexes p in the expressions o,
£.4.88 df, . &f will be omitted. Let us prove the estimate eyn+d; = SHy 4(n). It
is sufficient to establish this estimate (as all others) for n > no, where no is some constant.
MgmmimamholdsfurﬂZno,lhmdmiluuﬁmteinthcgmuﬂmrmbe
obtained by changing the additive constant in the considerad inequality.

Let n be any natural mumber. For any k& and any A-tuple of natural numbers*
.ix), where 1 < i < pfor 1 <1 <K, let us consider a term

tie.is =5(5:S(Siuy - S5 8(8,,0)...))

(as it is noted above, S, denotes the term S(D;)). Obviously, every term £, ;,,_j, exprosses
in LW a O-dimensional function such that its value is the string a;,, 0., ...0,. It is
easily seen that there exist some constants A and B depending only on p such that
{tiss.ia] € Ak + B. Now let us take such k that Ak + B < n < A(k + 1) + B (such
a k exists for every n > ng, where ng is some constant). The quantity of functions
expressed in LW by the terms t;, i, _;, is equal to p*, and all these functions are different.
Let us consider the minimal terms 7y, 4, 4, in LA expmaing the arithmetical functions

(i1, 2, -

(tivia.in € LW)&(|tiy 43,..a] < m). Now let us denote the quantity of letters in the
alphabet of the language LA by g.

For every natural number w the quantity of strings in LA having the length < w is
lessorequal to 1 + ¢+ ¢ + ... +¢% = q‘;ﬂ_“ . But the quantity of the terms ik
is equal to p* and all thesetm‘msmd:ﬁ'uunt Hence the maximum w of the lengths of
these terms satisfies the meqm;hty > .

Let us denote the value .S'Hw,‘(n) by m. Ul.’mg the definition of SHyy 4 we can conclude
> p* and ¢™*' > p*(g - 1), hence (m + 1)logg >

that m > w; so, we have

klogp+ loglq—1).
Using the inequality k& > # we obtain that mlogg + logg >
n-A-B

— " logp +loglg - 1).
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So, we have SHW,[!BJ =m > ¢n +d;, where ¢; = ﬂhgp.d; = fog(q-l] =
Alugyg logg

7:%325“ + B) — 1, and the lower estimate for SHy is proved.

The lower estimate eyn + dy < SH ay(n) is obtained in & similar way. Let us consider
l-dimensional arithmetical functions fi(z) = pz +ifor 1 < i < p: let r; be terms
expressing these functions in LA. Let n be any natural number. For any natural number
k and any k-tuple (i;,4;,...,4;), where | < i; < pfor 1 < I < k, let us consider the term
Tissain = S(Tiyy S(rigy 8(riy,0))...) in LA. Obviously, the term 7y, 4, _4,; expresses in
LA an O-dimensional arithmetical function such that its value is the alphabetic number of
the string a;,, 4y, ..., @;,. All these functions are different. It is easily seen that there exist

constants A, and B, depending only on p, such that [ry, ;, .| < Ajk+ B for any k-tuple

different. Now by conclusions similar to those, which are used in the proof of the lower
estimate for SHy 4, we obtain the required inequality for the function SH .

Let us prove now the upper estimate SHyy 4 (n) < ¢+d;. We shall prove this inequality
using course-of-values induction on n (cf. [5]). Namely, we shall prove that if ¢; and d;
satisfy some conditions then this inequality holds f_or a given n if it holds for all natural
numbers less than n.

It is sufficient to prove that for any natural number n and for every term ¢ in LW
such that [t| = n there exists a term @ in LA such that ® € LA(t) and |®| < ¢;n + dy.

Let us suppose that || = n , and the term ¢ is obtained by one of the points 1-3 in the
definition of the term in the language LW. Obviously, in this case the required inequality
holds for every ¢; > 1 and for every d; which is greater or equal to all the lengths of terms
expressing the functions pz + i for 1 < i < pin LA. In particular, we can take d; as the
maximal length of the mentioned terms, and ¢, = 1.

Now let us suppose that [t| = n , and the term ¢ is obtained using the operator Sbl
by the point 4 in the definition of the term in LW. In this case we have

t =Sbl(G, Hy, Ha, ..., Hp):

n=|t| = |G|+ |H|+ ... + |H,|+m+5.

Let us consider string functions expressed by the terms G, H,, Hy...H, ; let us denote
them by G, Hy,Hj,...,Hpm. Let us denote arithmetical functions representing these string
functions by g(y1, Ya-.-v), b1 (21, Za... 2k, ), ha(Z1, B2... Tk, ) rm (21, Z3... 2.
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Arith I!ﬁwwtmmmﬁmﬁmewthMLn
3 te by f{:t.:s‘_ . 3 ,-“‘, where k = m(k'ﬂkl“‘k‘}‘

Clearly, we have
ﬁ:hn"_;‘_‘ﬂ) - g(h;{:H.:.-\’u-h-:---ft}.’lz[fl-hﬂ-n-hn--qt;!.,.,

B Timb s Tamii+ 2 Tk)s Tt 1y T 2o Tommek)

By induction we conclude that the arithmetical functions g(w, ya...%), hy(zy, 23...33,),
Ba(1, 2. Zky) - Bem(Z12 T2 ) cAD be expressed in the language LA by the terms
r.71. ... Tm Such that |r] € &[Gl + da, In| S @lHh| + dy -, Ira| € || +d,.

Arithmetical functionfis expressed in the language LA by the term & =
SBl(r, ry, r3...7%) the complexity of this term is less or equal to .

alGl+ ds + calHy| + da+ .. + 02| Hu| +d2 + m + 5

It is easily seen that the inequality Sbl(r,r,ra..re) < can + dy holds if the positive
numbers ¢; and da satisfy the condition ¢z > da + 1.

The case when the term ¢ is obtained by operators Sbr, Sel, Ser are considered in
the same way.

Let us suppose that || = n, and the term t in LW is obtained by the point 5 in
the definition of the term in LW. In this case we have t =R(G, Hy, Hy...H,), where
the dimensions of terms G, H,, H...H, are equal, correspondingly, to I, ky, ky...ky; these
numbers satisfy the conditions k > [ + 2, where k = mazx(ky, ky...ks), and &; > 2 for all
i1<i<p.

We introduce the notations similar to those introduce in the preceding case. Namely,
let us denote by F the string function expressed by the term t in LW; clearly, F is
obtained by the operator R from the functions expressed by the terms G, H,, H,...H,.
By g, hy, ha...h, we denote arithmetical functions representing the functions G ,H,, H,,
H,. By induction we conclude that there exist terms r,ry,ry..r, in LA expressing the
functions g, hy, hy...h, and satisfying the conditions

rl < &a|G| +da, |r1| < ol ly| + da,y .., [rem| < 2| Hpnl + dy.

By f we denote the arithmetical function representing the function F, Obviously, the

function f satisfies the following conditions for all natural numbers z;, zy...x.4, y:
J (@1, T2 x4, 0) = g(xy, 2p...17);
f(@, 72 Tima, U + 1) = hi(Th-rt 1y Tambpp2e-Zaea U, S (21, T3.Zi 2, ),
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where 1 <i<p.
Let us construct a term ¢ expressing in LA the function f. We shall use the notations
and constructions given in [3]. It is easily seen that the following equalities hold for all

natural numbers z;, z;..2; 4,z :

[(z1,23... 253, 0) = gz, 23...7);
1

Iz, 22 29,2+ 1) = {Zl'fﬂrm{z +1,p)—Al)-
d=1

“B(Zky 41, Thy 2 Th2, [(2 + 1) /1], f(22, %20 702, [(2 + 1) /) }+

3Gl + 1, b)) hy(Zh by 41, Zh- by 2 Zi[(2 + 1Y =1, f (21, Z5.n T [(2 + 3/pl-1).
The expressions a*,a + b,a - b, 3g(c) - a + sg(c) - b we shall write below sometimes as,
correspondingly, (a exp b), sum(a, b), prod(a, b), cond(a, b, ¢). Let us consider an auxiliary
function f* defined by the following equality:
[ (z1, 20203, w) = lpI‘;wa Ps €xp f(zy, Z3...34-2, 2)),
where p, is the (z + 1)-th prime number (py = 2,p; = 3,...).
Clearly, f*(zy,%3...%5-3,2) = (f*(z1,23...25-3,)); , for every v > z, (where (y); is
the degree of p, in the expansion of y on prime divisors). We have the following equations

of primitive recursion for f*:
121, 2. 75-2,0) = a( );
f* (21,290 Th2, 2+ 1) = Blz1, B... 243, 2, [*(21, T9. Tp2, 7)),
where o and f are defined as follows:
a()=1;

ﬂ(xls L300 Tf-2y Z, 'I.I'J} =w- {Px Exp{cand{g{:;, Za.es 3{},

5
(3 It Pty 3n, o/, (@) - 50l )~ A} +
+ Pop(Zhyt 1y Ty 2-0. T, [2/0]1, (0)( 1) - TG(rm(2, )}, 2}).

Let us construct terms in LA expressing the functions a, 8, f*, f. The function o
is expressed by the following term & (where s is a term expressing the basic function
s(z) =z +1):

a=5(s,0).
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For constructing & term J expressing 3 we consider auxiliary functions &, &, m, n,
OO Pis P2 P Ps V.- - ¥ 1, 920 950 ¥4, @ satisfving the following conditions:

J1.
ou(Tety oty a2 - Ty 5 €)= M (Tt Faebisa - B (3, ) m(z, w)),
where 1 < A < p—1, miz,w) = [3/p) m=w) = (wp;
Op(Timtys1s Tamigsd - - Th=2s 35 w) = hp(Ta-ty+1s Tambye2 - - Ta-3, 81 (2, w), 8:(=, w)),
where & (z,w) = [z/pl=1, &z, w) = (w0)paym0
Un(Zetnsts Taoky $2 - - - Taes 5 W) = OA(Fie-ky #1: Teky 42 - - T2, 2, 0) - a2, w),
where 1 <A< p-1, galz.w) = 5(jrm(z, p) — A);
V(T 1 Thyo - + The2s 30 W) = Op(Tkby ity Timips2 -+ « T2, 2, 0) - (2, W),

where p,(z,w) = 30(rm(z,p));
9
AL T2 5 W) = Y OA[Tak+t Ta-i a2 - Taea 5, 0),
i=1

¢alzy, T3- . - Tz, 2, w, 1) = cond(g{xy, 22. .. ;) o1 (21, . .. Ty g, 2, w0), ),
pa(xy 2a. . Tuez, 3, w) = pa(mn, 7o Taca, (3, 0), BB(2, w), (2, w)),
pale1, 23 Tacg, 7, w) = O(p5(21, T2 Tnca, 2, 0), [ (2, w0), BB (2, ),
where 8(y, 2, w) = (p. expy);

Bl Ta. . Tpeas 3, W) = w4 (X1, 2. . Tpezy 3, 00).

Clearly, the functions sum, prod, cond, 6 can be expressed in LA by the terms §um,
prod, Gond, 6 having constant complexities; the functions &, &, 11, 1, py, Pa...py can
be expressed in LA by the terms 3y, &, i, s, A1, pa... B, having constant complexities
depending only on p. The term 3 expressing 4 is obtained by following constructions
(where by 61,83...5y, ¥h,¥a... ¥y P1,@2 3, $ We denote terms expressing the func-
tions a1,03... Gp, Y1, ¥a... ¥y, ¥1, 2,93, Pa):

Gy = Se(ry, fjt, i), where 1 SA < p—1,

&F - Se(r,, 31 . 32]1



¥s = Sllrod,,, 7)), where 1< A < p—1,

¥y = Sl(prod, 3,, 5,),

1 = Sl(5um, v, Sl(5um, ¥y . .. Sl(5um, 6,_,,%,)...)),
P2 = Sbr(zond,r, %),

71 = Sels, 2, 12, 12),

@4 = SUB, s, I, 1),

B = Sltprod, 3, IY),

Now the term () expressing f* is obtained as R(&, #). The term ® expressing f is
obtained using the following equality:

@, 23... 243,2) = (J"(21,%2. .. Tz, 2+ 1)),

by the following construction:

® = SI(7, Sel(, 5), I1),
where 2-dimensional term 7 expresses a function 7 such that 7(y,2) = (1),

We can conclude considering the structure of the term that the following equality
holds: |®| = |r| + |ry| + |ra| + ... + |ry| + a, where a is a constant depending only on p.
It can be easily proved that the condition ¢, > dz + a is sufficient for the considered step
of induction. NowifwatakedguthemnthllangthnltermuminginLAthe
functions pz + i for 1 £ i < p, and define ¢; as d; + a + 1, then the step of induction is
ensured in all cases. So, the estimate SHy, < en +d; is proved.

Now let us prove the estimate SHw < en +dy. We shall prove three lemmas for the
establishing of this estimate. Let us introduce a function v such that for every natural
number n (cf. [7]):

v(n) =a] = ayq; .. .ay;

n times
¥(0) = af = A,
where a; is the first letter in A. k
Lemma 1. (cf. [7],p. 216, lemma 1) Constants ¢ and d' can be found such that for every
term ¢ € LA there exists a term ® € LW satisfying the following conditions:
(1) for all natural numbers z;,zs. . . z,, the equality
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vz ) - ViEa))) = HTIE T2 -Zm))
mmmmm;amw,mw. by the terms @ and

(2) @ Scltl +4.
The proof is similar to that of the cstimate SHyw < cn +dy. If ¢ is one of the

pasic terms 0, I%, s, then the term & can be constructed as A, R R g
every ¢ > land & 2 1 satisfy the conditions of lemma. If ¢ is obtained using the
operator Sbl, Sbr, Sel or Ser, then @ is obtained in a similar way using the operator,
correspondingly Sbl, Sbr, Sel or Ser. Finally, if ¢ is obtained using the operator R
MR(!:.!?]Mwmm¢km‘dﬂR(Q:.@z.g.g‘““ﬂ.'hﬁ'

(p=1) temes

. and &, are terms in LW obtained by induction for, correspondingly, ¢, and l::Gil;
two-dimensional term Sb(/{, A, A) (this term expresses the function £(z,y) = A). It is

easily seen that
@] = [&:] + [®2] + 0

where a is a constant depending only on p. The remaining details of the proof are similar
to the proof of the estimate SHaw < cyn + dy,
Lemma 2. There exists a primitive recursive string function G such that G(1(m)) = am

for every natural number m.
The proof is given in (7] (see [7], p. 217). Indeed, if ¥ is a string function defined by

the following alphabetic primitive recursion:
v(A) = ay;
¥(Qa) = Qawsy, where 1< i< p—1;
¥(Qayp) = ¥(Q)ay,
then G is given by the alphabetic primitive recursion:

G(A) = A;
G(Qn;) = G(Q), where 2< i < p;

G(Qar) = Y(G(Q)).
Lemma 3. The one-dimensional string function 4(Q) = v(x(Q)) is primitive recursive.
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The proof is given in [7) (see [7), p. 217). Indeed, using lemma 1 we obtain that
there exist one-dimensional primitive recursive string functions Wy, Wy, ...,y such that
wy(vz) = v(pz+i) for 1 < i < pand for any natural number z. The function ~ is obtained
from them by alphabetic primitive recursion:

yA) =1

7(Qa;) = wi(+(Q)), where 1< i < p.

Now let us return to the estimate of SH 4w (n). The inequality SH w < eqn +dg will
be established for some constants ¢ and d; if for every term t € LA we shall be able to
construct a term Q € LW such that Q € LW(t) and | < eqlt] + de.

Let t € LA be any term. Arithmetical function expressed by t let us denote by
7(%1,%3, . ..,%m); the string function represented by 7 let us denote by ¥(@1,Q;...Qm).
It is sufficient to construct a term () expressing 1 in the language LW and such that
[Q] < e4lt] + dy, where ¢4 and d; are some constants.

Using lemma 1 let us construct the string function @ such that
wlv(zy), v(23), .. ., U(Zm)) = V(1(Z1,25. .. 2p)) for any natural numbers z,, z; . . . Z,, and
the function  is expressed in LW by a term ¢ satisfying the inequality |®| < ¢|t| + .
Using lemmas 1 and 2 we have

¥(Q1,Qa- . Qm) = ar(n(Q1), 7(Qs) ... 7(Qm)) =
= G(r(x(Q1),7(@2) ... 7(Qum)))) =
= Glp(w(r(Q), V(m(Q2)) .. v(x(Qm)))) =

= G(p(7(@1),7(Q2) ... 7(Qm))).
The functions G and 7 are fixed primitive recursive string functions. The function ¥
is expressed in LW by the term

ﬂ =S(G|S(¢|’-ra‘?| . !’?JJ’
m times

where G and # are terms in LW expressing G and +. But |G| and |3] are constants
depending only on p, the inequality |®| < ¢/|t| + d' holds, and the quantity of terms 17l
in £ is less or equal to |t| (because the dimension of every term is less or equal to its

51



jength). Heace 9| < ¢4/t] = dy. where ¢y and d; are constants depending only on p. This
compietes the proof of main theorem.

wﬁmﬂummﬁnzh&mdtﬁhmmmﬁhﬁh {2} and [4]. How-
ever. the definitions of the languages LA and LW used in this paper are different from
these given in [2] and [4]. The definitions given above are more convenient for further
generalizations, in particular, for investigations of analogous problems connected with
A. Grzegorezyk's classification of primitive recursive functions ([l 13).
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