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WEAK ARITHMETIC FOR FUNCTIONS OF EXPONENTIAL SIZE

Henri-Alex Esbelin

It Is known that substitution of polynomials to variables does not modify the complexity
of relations of various sublinspace classes, the most Important of which are the class of
rudimentary relatlons, the class of rudimentary relations with counting, and LINSPACE.
Substitution of functions of exponential size is not allowed (in general). However, it Is
ible to develop some arithmetic for such functions in this framework.
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§1. INTRODUCTION

This paper is mainly devoted to the problem of comparing functions of exponential size
using lincar space, that is using operations (to be precised) over functions of polynomial
size. It is & bottelneck in modular arithmetic: D. Knuth wrote 1. Methods are available
to test overflow, ..., but they are so complicated that they nullify the advantage of modular
arithmetic” (p291 in [Kn98]). The methods of this paper were initiated by A. Woods in
[WoB6|. For other applications, see [Al01] and [BEPP99).

Definition 1.1 Let us denote by 2 (resp. %) the smallest class of relations over integers
containing the graphs of addition and multiplication (seen as ternary relations) and closed under
boolean operations (-, A, V,—), explicit transformations (i.e. adding, cancelling, renaming,
permuting and confusing variables), variable bounded quantifications (i.e. (Vz) <y Meaning
dz(z <y — ...) and (3z)., ... meaning Vz(z < y A .-+)), (resp. and closed under counting
operation, i.e. if R lies in 9%, then z = j{i < z; R(i,zy,...,z,)} lies also in %*). Relations in
R are called rudimentary.

Let us consider here and subsequently two functions with non negative integer variables
and values, fi(z,...,%,) and fy(z,...,7,) less than o™, where a is a positive integer
and such that the relations z = fi(z, ..., z,) mod (p) are rudimentary; is the relation
Jilzy, .0y %) < fa(21, ...y 2) Tudimentary? The main result is the following:

!This work has been supported by Intas 2000-447
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Thearem 1.2 Suppose that £,(F) < ¢™ for i = 1,2, where a is a positive integer. Suppose
that the graphs of the functions f,(%) mod (p) are in RUD?. Then the relation /(%) < fu(#)
lies in RUL®.

Notice that the rudimentarity of the graphs of the f; functions does not ensure the
rudimentarity of the relations z = fi(Z;,....%;) mod (p). Thanks to Hese's theorem
(see [He01]), simple exemples of functions satisfying the hypothesis of theorem 1.2 are
f(z) = b*, with positive constante b.

In the first section we give an algorithm for solving the problem. The second section
is devoted to its complexity. The third section provides some applications. This paper
is not selfcontained: as for prerequisites, the reader is expected to be familliar with the *
complexity in the framework of classes of relations defined with bounded quantifications

(for an extended overview, see [EM98]).

§2. ALGORITHM

The first property we use reduces the problem to comparing parity of derived functions,
Let us denote by a mod () the remainder in the division of a by b.

Property 2.1 Let X and Y be integers in [0; I1), where II is an odd positive integer. Then
X <Y iff (X <% and § <Y) or, in the other cases, (X —Y) mod (I) and X — Y are of
opposite parity. Moreover, X < I iff 2X mod (II) is even.

The easy proof is left to the reader. _

In order to make use of modular arithmetic, we choose I asoneal’theﬁp, =11,
where py is the i + 1-th prime number (hence excluding po = 2 to get an odd 11). We now
explain how to get the parity of Z mod (I1,) from the remainders of Z modulo the p;. For
any integer X and any positive integer n, let us denote CRR,(X) = (X mod (P Mi<scn:

In the other way, let us consider a given n—tuple (ay, ..., @), where a; are non negative
integers less than p; — 1. From the Chinese Remainders Theorem (CRT for short), there
is a unique integer X in [0;11,) such that CRR.(X) = (ay,...,an); we denote it by
[(@1, ...y ) |y, - As a consequence, we have [CRR,(X)|;, = X mod (I1,,). From the CRT'
again, we know that CRRE,(X) = (ay, ..., o) iff 11, divides X — |(ay, ..., ). The d la
Lagrange solution of CRR,(X) = (ay,...,a,) leads to the following:

Definition 2.2 Define @, the non negative integer less than p, such that (ci.lll: = nr.) mod (p).
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- _II,
Denote Za,-;.- s TRC,(a1,...,0n). Then CRR\(TRCo(ay, ... 0n)) = (a1,.mes Gl

Mce TRC..(C.'RR.(XHJ: ~X mod (I1,) . 53 g T it by pulX).

It is easy to verify that p,(X) is less than n. Hence, if X < II;, we can compute g (X)
performing all the operations moduls p.;, which is greater than [:
Property 2.3 if X < T1,, then p(X) is equal to

((TRC(CRRy(X)) — X) mod (pyay) % ()™ mod (pi41)) mod (ps1)

where (1) ™" mod (py.y) is the positive integer /3 less than py; such that (811, = 1) mod (prsy).

We are now able to present an algorithm comparing f; and f; from their CRR
representation, provided fi(Z) < IIj; it uses as a subalgorithm the computation of
(Z mod (I1,)) mod (2) from CRR(Z) which is postponed.

Algorithm 2.4 Compute (2f;(Z) mod (II;)) mod (2) and (2£,(Z) mod (T1;)) mod (2):
if they are different, conclude following 2.1.
if not, compute ((f1(Z) = f2(%)) mod (I1;)) mod (2) and (/3(Z) — f2(Z)) mod (2), conclude
following 2.1.

And now the subalgorithm:

Algorithm 2.5 For 1 5istgeta.-=zmod(p,)andsohrememaﬁoud.gx=
oy mod (p;) with & unknown in [0; p;);

compute (TRCI(CRR/(Z))) mod (pas) as Eaf mod (i)

compute pi(Z) as ((TRCY(CRR\(Z) - Z) de (Pm) x (I;)"*mod (pi41)) mod (prs)

compute (TRCY(CRR,(2))) mod (2) as Em%) mod (2)

compute (Z mod (L)) mod (2) as =

(TRG(CRR,(Z)) mod (2) — p1(Z) mod (2) x TI; mod (2)) mod (2)

§3. COMPLEXITY
Computations in the previous algorithm are mainely iterated sums and iterated prod-
ucts (namely the IT;) modulo 2 and modulo py4;, the length of which are less than [. These
are bounded recursions, motivating the introduction of the least class of the Grzegorezyck
hierarchy. :
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Definition 3.1 Let us denote = (21, %)- We denote & is the smallest class of functions
bounded recursion (f(£,0) = ¢(F). f(F,i+1) = h(Z.4, fIZ,49), /(F) < 3(F.1)). We dencte
€ the class of relations which characteristic functions are in €7,

ui,m-mprmtnnnhened\uduudthetm 1.2, where € take place of %!
Indesd, from Chebyschev’s theorem, a constant number A exists such that [1,, > 24%awin),
Hence fi(¥) < I, for all but a finite pumber of values of x;. With the choice { = ry, the
mwmmmm-inm.wmmsminﬂ. We give now the main ideas of the
proof of the complete result.

Proof of the main theorem. It comes from the two following properties of RUD*:  *

Theorem 3.2 Let f(xo, ) define a function, the graph of which is in RUI¥. Suppose
that there exists a polynunul function ¢ with positive integers as cocfficients, such that

f(zg, T) < &lzg, T). Then Z f(i, I) defines a function, the graph of which is in RUDE,
Proof: From the CRT, the equality z = Z (1, ) is equivalent to:
=

=39

(2 < (1 + z0)@(xo, F)) A (VE) 214 togs((1+20)0(=0.00)) (3 = Z: fl'-i")) mod (¢)
=0

Notice now the equality Z(f(t.i'}mod{c}) = Zj hxg{i < o3 (f(i, ) = h) mod (¢)}.
This last summation is in RUD‘ (see lemma 4.5 in [EMQG}). which completes the proof.

Theorem 3.3 Let p be a prime number. Let a; define a sequence of non negative inte-
gers, such that the ternary relation z = a; mod (p) is in RUD*. Then the ternary relation

(z = Hn.) mod (p) is in RUD,
Proof: Thanks to Hesse's theorem, a primitive root g for p is computed in RU D? using
the formula (¥n)_,_, (¢"*' # 1 mod (p)) and the discrete logarithm {(a) of any a is com-

l=n
puted in RUD? from its definition (¢"® = o) mod (p). The relation (: = Hu,) mod (p)
[
n
is equivalent to [(z mod (p)) = 3 _ (), hence is in RUD?, which completes the proof.
=0

§4. CONCLUSION
Using theorem 1.2, it is possible to solve arithmetical problems concerning functions of
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exponential size from their CRR representations. Let us recall the a la Newton solution
of CRRA(X) = (ay,...,0,), which leads to the following mized radiz system (MRS for
short):

Definition 4.1 For any non negative integer X, there exists a umque sequence of non
negative integers (c;(X))ien Wfth finite support such that X = Ec.(X)lI. and ¢(X) <
Piss — 1 for all i. For non zero X, Jet AX) be Inf {k; X <11} = .5':;;1.»{:’:;1:.r # 0} + 1 the
length of the MRS representation of X

As an easy consequence, | = A(X) iff I,_; < X < II;. The usual algorithm for com-
puting (e:(X))ien from CRRy(X) when X < I, is the so-called mized radiz conversion
(see-lKn!Ni]):

Algorithm 4.2 For 0 <i <1 —1, let 70,4 = Xmod(p41)

For1 <k <i-1,fork <i<n+1,letT(k,i] = Tk — 1,9 - Tlk~ 1,k 1]

Tl k] gives cx1(X). 2

This algorithm is of high space complexity because of the necessity of storing each row
of the T table at time. Let f a function satisfying the hypothesis of 1.2. We introduce now
another method, based on the modular arithmetic ideas. The first algorithm compute the
length of the MRS representation of f (%) from CRR,, (f(7)):

Algorithm 4.3 For 0 < i < z,, compute CRR.,(IT;).

Use algorithm 2.4 to compare f(2) with TI;. The first i such that f(®) < I is A(f(2)).

We abbreviate A(f(Z)) to A. Now it is possible to compute the digit of highest weight
ex-1(f(2)):

Algorithm 4.4 For 0 < k < p, — 1, compute CRR;, (kT1,_;) and compare kII,_; with
/(%) using algorithm 2.4. The last k such that K1 < f(2) is cr-1(f(@)).

As en(X) = ca (X mod (Ilny1)) and CRR, (X mod (In41)) = CRR,(X), it is easy
to compute each ¢, (f(Z)). It is straightforward to verify that all of these operations are
possible in RUD!.

A theoretical consequence of 1.2 concerns the question of the collapsing of the first
classes of the relational Grzegorezyk hierarchy defined in [Gr53]: replacing the successor
function by the set, of polynomial functions in the definition of € leads to €?; the equality
between €7 and €2 is an open question. It is known that RUD! = € implies RUD® = &2,
Theorem 1.2 emphasizes the similarity of the expessive power of RUD! and [

mod(py4;),
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