Transactions of the Institute for Informatics and Automation Problems of NAS RA.
Collected reports of participants of JAF-23.

A POLYNOMIAL PROGRAMMING LANGUAGE

Anatoly P. Beltiukov

Apropammh;hnm{dmnuhPueﬂ)hpmpoudlnwhﬂonlypo}ymmhlﬂm.
computable functions can be programmed. More precisely: any program in the proposed
hn;ungqmmpuﬂngafmdnnofwwdahmaﬂnluu}phbﬂ(‘dthwdu}uc).m
hmwmmwmmhmamhuddbymm
polynomial of the length of the Input word. Tt is convenient to use this langusge for
mmmmmammmmmmmmumpmw
formulas with polynomially computable realizations.

§1. INTRODUCTION

The main purpose of this work is to build a language that is convenient for defining
effective (polynomial time computable) realizations of constructively understood formulas.
This language can be used for example to ease proving results that are similar to [1-3].

We construct a language that is similar to Pascal. It is allowed to use natural numbers
and functions in the proposed language. Argtgnenfs and values of the functions may be
not only numbers but functions also. All arguments must be precisely specified (including
arguments of functional arguments and so on). Recursion is not allowed. Values ranges
must be specified for all variables. Nevertheless range frames may be computed while
entering corresponding routines. It means that range frames may be defined by expres-
sions. Basic operations in expressions are addition, sublraction, multiplication, integral
division. Defined functions may also be used in expressions. Variable arrays are allowed
(with computed indices ranges). Arrays may also be arguments and values of functions.
In this case array index range may depend on previous arguments.

The simplest language statement is an assignment operator. The function value is
defined by the expression at the end of the function definition body. Conditional state-
ment may also be used. Conditions are comparisons of numeric expressions (,,greater”

11

or equal”). Loops are allowed to be only ,.for"-type without changing the loop variable
within the loop budy.

Words of a finite alphabet are simulated by arrays. A word processing function has
two arguments: the word length and the vector of the word letters numeric codes. The
function value is an array with the result length in the first element. Note that the result
length is estimated by a polynomial of the argument length. Exceding data cells in the
output arrsy should be ignored.

memhmulz:ulhﬂiomilhwmmimtloaddﬂcﬂd&d&tat}mm
the language. Of course, the language may be upgraded in many other convenient ways,
§2. DEFINITION OF POLYNOMIAL PROGRAMMING LANGUAGE
(PPL)

First of all we describe the context free syntax of the language to be built. Below we
define the notion < type > that means ,expression which value is a type values”:

< fype >:i=

natural| < vartype > |

function(< name >:< type >) < type >
Here , natural” denotes the set of all natural numbers without any limitations: O 2
to infinity. Of course, it is not convenient to have a variable of this type because we
domtmmmsmmamltwiﬂmpy(lnanycmitisnotgoudfmm
computational complexity point of view). Therefore we have special data type class for
variable values. It is denoted < vartype > above. Of course, it would be very hard to
estimate computational complexity if we had variables with functional (algorithmic) types.
Therefore function types in the definition above are separated from the < vartype >. The
notion < vartype > (,,type of variables” or type of stored data) is defined as follows:

< vartype >:=

0.. < term > |

array|0.. < term >Jof < vartype >
Here < term > is an expression that is defined below. The values of this expression
should be natural numbers. To weompute” the types defined here we should substitute
this numbers instead of the terms. The type 0..n means the set of all natural numbers
from 0 to n. The type array|0..njt means the set of all finite functions that map the

12

set 0..n into the set . Any expression has its own type. The types of the terms in the
previous rule are ,narural” or have a form 0..a. Here is the definition of the < term >
notion:
< term >:i=< name > | < digits > |
(< term >< op >< term >)|
< term > [< term >]|
< lerm > (< term >)|
(if <term >< rel >< term >
then < term >
else < term >)|
program(< name >:< type >) < type >;
< definitions >
begin < sequence >< term > end
< op >u= +|subt| * |div
<rel >u=<|>|=
Here + and # are usual addition and multiplication of natural numbers correspondingly.
The value of the term (a subt b) is a — b if a is greater than b and it is 0 otherwise.
The value of the term (a div b) is the integral part of a/b. If b is 0, then a program
computing (a div b) ends abnormally. The value of ali] is the i -th element of the array a.
If the array a has no i -th element, the program ends abnormally. Computing the value
f(a) is exccuting the body of the algorithm f with a as the value of the argument of the
algorithm. The body of an algorthm
program (a : 1) u; d begin s e end
is the part 8 e, where s is a sequence and e is a term. To compute this part we should
firstly execute the sequence s and then we have to compute the expression e obtaining
the value of the computed function. The argument of this algorithm is the name a. The
definitions d of the algorithm can be described according to the following rule:
< definitions >::= |
var < name >:< vartype >;
< definitions >
The first part of the algorithm body (,,sequence”) is defined by the following rules:

13

< sequence -
< statement >; < séquence >

< stotement >:= |
< variable >:=< term > |

if <term ><rel ><term >
then < statement >
else < statement > |
for < name >: 0.. < term >
do < statement > |
begin < sequence >< statemnent > end .
< variable >:=< name > |
< variable > [< term >
The notion < variable > corresponds to expression that defincs a piece of the computer
storage that can accept some value. In the simpliest version of the language that we are
describing now it corresponds to a name or Lo an array element. Conditional expressions
if cthen a else b
are executed in the usual way. Executing a loop
fori:0.ndos
is executing n and then executing s for i = 0, 1, ..., n subsequently.

§3. CONTEXT CONSTRAINTS

Name definition is its occurence in a construction of one of the following forms:

var < name >:< type >;

Sfunction{< name >:< type >)

program(< name >:< (ype >)

for < name >: 0.. < term > do
In the first case the name is defined in the body of the defined algorithm. In the second case
the name is defined in the type of the function (for example: Junction(n:natural)0..n).
In the third case the name is defined in the type of the defined algorithm, in its variable
definitions, and in its body. In the last case the name is defined in the body of the loop,

Any terms that do not use undefined names are called wPPL-programs”. Note that
PPL-programs cannot contain recursive function due to the accepted syntax description.

14

All the used names should be defined with appropriate types.

Types of array indices (i in ali]), types of boundaries (n in 0..n), types of arithmetical
operations (+, subt, «, div) and relations (<, >, =) should be natural or of the form
0..a.

Types of right parts of assignments (¢ in v := ¢} should correspond to the types of the
variables in the left parts (v in v :=). Note, that when an array index (or a variable
value) is out of the allowed range, the program staps abnormally.

The type of a metion argument must correspond to the function type.

The type of the returned value must correspond 1o the type of the computed function.

Loop value names (i in for i : 0..n do s) are not variables and therefore they are not
allowed to be assigned in the body of the loop (s). Program parameters, a in

program(a : t)u;d begins eend
are also not variables and may not be assigned in .

For convinience we require functions to have no side effect: variables that are defined
outside the function definition may mot be assigned in the function body.

§4. A PROGRAM EXAMPLE
Here we show a short example of wellknown sort program (a version of , bubblesort”):
program(n : natural)
Junction(f : function (k : 0..n) natural)
Sfunction (k : 0.n) natural;
begin
program (f : function (k : 0..n) natural)
function (k : 0..n) natural;
var b: 0.n;
var a : array(0.n] of 0..n;
begin for i:0.n do ali] :=i;
for i:0..(n subt 1) do
for j:0..(n subt (i+1)) do
if f(ali]) > f(al(+1)])
then begin b := alj];
alj] := a[(j + 1)};

15

aij+1)):=b
end
else;
program (k : 0.n} natural;
begin f(alk]) end
end

end
This program processes & pair: a number n and a natural function f, that is defined

on the numbers 0,..,n. Note that in the defined language we use a function with a
functional value to express a function with two ore more arguments (f(r,y) = J=)@),
ie f(z)=g, flz.,y) = gly)). The result of the program is a function
program (k : 0..n) natural; begin f(a[k]) end
that has precisely all values of [but in nondecreasing order. To compute this function
the program generates a substitutional array a using common ,,bubblesort™-like routine:
for i:0..(n subt 1) do
for j:0.(n subt (i +1)) do
if f(alil) > flal(G+ 1))
then begin b := alj];
alj] :=al(j + D
af(j+1)]:=b
end
else;

§5. WORD FUNCTION COMPUTATION DEFINITION
Let S be a finite alphabet that consists of d -+ 1 letters. Let us consider a function
J that maps all (nonempty) words in S into the set 0,1. To compute [we will use n
program of the following form:
program (n : natural)
function (w : array[0..n] of 0..d) 0..1;
begin

end

16

Here the pair (n,w) describes an input word, n is its length, and w is its content. The final
value of the computed function is 0 or 1. For example, the following program recognizes
palindromes in the alphabet 0,1:
program (n: natural)
function (w: array(0.4) of 0..1) 0..1;
begin
program (w : arrayl0.n] of 0.1) 0..1;
var r: 0.1;
begin
ri= s
Jor i:0..(n div 2) do
if wli] < w|(n subt)] then r := 0;
else if wli] > w((n subt i}] then r := 0; else;
r
end
end

£§6. THE MAIN RESULTS
Note that we cannot compute an exponential function by a PPL-program. For exam-
ple, the construction

var z: 1.b;

=
fori:0..n do
zi=2*%

fuils when the value of x becomes greater than the value of b. We cannot define 5, lIn-
bounded” variable to use a similar construction for exponentiation. More precisely this
fact can be expressed in the following theorem: :

Theorem 1. All word functions computable by PPL-programs are polynomial time com-
putable,

Proof: The proof idea is to exclude all intermediate functions and estimate numbers of
sleps in the loops. ‘Ibexcude[unctionca[litismnvmiantboaddnewsyn@xmction

17

fing the notion < term > by the following . block™:
< term >z= (< definitions > begin < sequence > < term > end)
with obvious sense. We can use these blocks to replace function calls of the form:
progrem (< name >: < type >) <itype >;
< defminitions >
begin < sequence > < term > end

(< term >)
because the last < term > can be substituted instead of the < name > occurencas in

the program body. The process of these substitutions is finite because all functions have
finite types and this operation decreases these types. After this process being completeti
the program will consist of nested loops with polynomial bounds that gives desirable
computing time estimation.

Theorem 2. Any polynomial time computable word function can be programmed in the
proposed language.

Proof: The proof idea is the following. First of all, estimate the space and the time
that are required to compute the given function by polynomials of the input array length.
After that one can easily simulate the Turing machine that computes the function by a
PPL-program with a single work array (that simulates the machine tape), two variables
(simulating the head position and the inner machine state correspondingly) and a single
wlor"-loop (to perform the computation process) using directly the definition of Turing
machine computation.

§7 CONCLUSION

We can add some new data types to the language: structures (records, direct products),
unions (variant records, direct sums).

The proposed language is supposed to use for studying deductive systems of construc-
tive weak arithmetics. This language fits for constructing ,,polynomial time computable
realizations” for systems of weak arithmetics with various induction schemes, such as in
[1-3].

REFERENCES
L. A. P. Beltiukov, Intuitionistic formal theories with realizability in subrecursive

18

classes // Annals of Pure and Applied Logic, 89, 1997, p. 3-15.

2. A. P. Beltiukov, A strong induction scheme that leads to polynomially computable
realizations // Theoretical Computer Science, 322 (2004) 17-39

3. A. P. Beltiukov, A Weak Constructive Second-Order Arithmetic with Extraction of
Algorithms Computable in Polynomial Time // Journal of Mathematical Sciences.
Publisher: Consultants Bureau, An Imprint of Springer Verlag New York LLC.
ISSN: 1072-3374 (Paper), 1573-8795 (Online). DOI: 10.1007/510958-005-0351-4.
Issue: Volume 130, Number 2. Date: October 2005 Pages: 4571 - 4573

12 October 2005

Udmurt University, Izhevsk, Russia
E-mail: belt@uni.udm.ru

19

