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Abstract

The dissipation and decoherence (for example, the effects of noise in quantum
computations), interaction with thermostet or in general with physical vacuum, mea-
surement and many other complicated problems of open quantum systems are a con-
sequence of interaction of quantum systems with the environment. These problems
ere described mathematically In terms of complex probabilistic process (CPP). Par-
ticularly, treating the environment as a Markovian process we derive an Langevin-
Schrédinger type stochestic differential equation (SDE) for describing the quantum
system interacting with environment. For the 1D rendomly quantum harmonic os-
cillator (QHO) L-Sh equation hes a solution in the form of orthogonal CPP. On the
basis of orthogonal CPP the stochastic density matrix (SDM) method is developed
and in its framework relaxation processes in the uncountable dimension closed system
of "QHO+-environment” is investigated. With the help of SDM method the thermo-
dynamical potentials, like nonequilibrium entropy and the energy of ground state are
exactly constructed. The dispersion for different operators is calculated. In particular,
the expression for uncertain relations depending on parameter of interaction between
QHO and environment is obtained. The Weyl transformation for stochastic operators
is specified. Ground state Winger function is developed in detail.

Introduction

Recently a great number of papers [1] concerning the " quantum chaos”, i.e. with the quantum
analogues of classical systems possessing the dynamic chaos features, have been published.
The investigations are conducted along different directions, such as analysis of distribution of
energy levels; definition and calculation of quantities, which are responsible for the presence
of chaos (corresponding to the classical Lyapunov exponents and KS-entropy)in the quantum
systems; study of localization and delocalization of wave functions around the classical orbits;
etc. Although in most cases mentioned above one is faced with the necessity to describe
a quantum system statistically, so far there was not paid much attention to a stochastic
behavior of the wave function itself.

Many problems of great importance in the field of the non-relativistic quantum mechanics,
such as description of Lamb shift, spontaneous transitions in atoms, etc., remain unsolved
due to the fact that the concept of environment (which as a rule is random) has not been
considered within the framework of the standard quantum mechanics. It is obvious that a
quantum object immersed into the thermostat (or more fundamentally the physical vacuum)
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equation (SDE) 5 derived. But the equation is obtained by the method which is extremely
difficult for spplication even in case of comparatively simple type D{’ interaction between the
system and the en . 5o that some new ideas are needed [3]-/5]. Moreover sometimes
ithxcmum-mmﬁdamenwhmimulmndmmmm.nmh
closed systems (for example, when a classical analogue of the quantum system has the
features of the dynamical chaos) [6]-81.

To describe the cases mentioned above, recently a radically new mathematical sci
{tm-o(nochmkqmmumpmcm{TSQPmmM}.m ) e o 1A
Jdeseribe the non-relativistic quantum system, in general case strongly interacting with the
randomly environment [9]. Note, that the wave function of closed system "quantum object +
vhermostat” at that time is described by I-Sch type SDE. On the base of TSQP stochastic
density matrix method was developed permitting construction of all the thermodynamic

potentials of quantum subsystem.
In the present paper relaxation processes in a closed uncountable dimension sys-

tem "quantum oscillator and thermostat” are investigated within the framework of non-
perturbational method. In particular, it enables to describe the evolution process inside
thermostat. Exact representations are found for both widening and shift (analogous to the
Lamb shift} of the ground state energy level of the immersed into the thermostat (physical
vacuum) QHO as well as the entropy of an ground state are calculated.

1 Formulation of the problem

We shall consider the closed system "quantum object + thermostat™ within the framework
of Langevin-Schrodinger type SDE

10V e = AV, (L1)
where 1D evolution operator J{ is assumed to be quadratic over the space variable:
1001
ke o Eﬂ’(l):’. (12)

l;e e;tpredcus (1.1)-(1.2) the frequency Q(¢) is stochastic function of time. Let them have
t orm:

Q1) = 0 + V2e/ (1), (1.3)

where 0y = const and f(t) is independent Gaussian stochastic process wit mean
and 6— shaped correlation function: e

< J()J(t) >= 8t -1), < f(t) >=0. (14)

Constant ¢ is characterized the power of stochastic force f(1). Th i
asymptotic solution W, (n|z, ) in the limit of t — —oc; b A

Vau(nlz, t) = e~ +1/DMtg ),

1 172 2
o(njx) = (r_m@ ) e~ox f’ﬂ.(,/siz). (1.5)
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where ¢(n|z) is the wave function of a stationary oscillator and H,(z) is the Hermitian
polynomial. Thq formal solution of the problem (1.1)-(1.5) may be written down explicitly
for arbitrary €)(t). Tt has the following form:

Vaulz, 1{e}) = Zzeap{irtat (7). (16)

where the function y(y, 7) satisfies the Schridinger equation for 2 harmonic oscillator on the
stochastic space-time {y,7} continuum:

o a
where
v=2, &)= r{t)e"), 7= 0] 7(t) =y j L
+ A J @y

The function £(1) is defined from the classical homogenous equation of motion for the oscil-
lator with the frequency (t) s
E+ (e =0. (1.8)
Taking into account (1.6) and well known solution of autonomous quantum harmonic
oscillator [10] for stochastic complex processes which are described closed strong interacting
system "quantum object+environment” we can write following expression:

Vualmla, ; {€}) = (ﬁ{;’% )"

o Txe R D
exp[-:(n-l- i)ﬁg!r—,€a+s%%:’-.--2ﬂ—mz’]ﬁn(@r—;-j). (1.9)

The solution of (1.9) is a random complex process defined on the extended space == R'®
Rygy, where R' is one dimensional euclidian space and Ryg) is the corresponding functional
space. It is easy to show that the mentioned complex random processes are orthogonal.
Taking integral over the space R! we get:

+00
| Vel s €D ml  6)) d = o, (110)

where the symbol * means the complex conjugation. The relation (1.10) shows that the
closed odd dimensional system "quantum oscillator-+environment” is described in terms of
the full orthogonal basis of quadratically integrable functionals of the space L?. The last
fact js very important for the further strong mathematical constructions for the statistical
parameters of the system.

2 Stochastic density matrix method

The quantum system is impossible to isolate from the environment. This is t.:principa] prob-
lem if taking into account that even for the ideal isolation nevertheless any system is located
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Remember that many important features of atomic

o the fundamental ‘ﬁm N evels, spontaneous transitions, etc., are explained by vac-
quantum systems are to some extent irreversible. For
of ieveversible ‘h:a umd.‘ Hwn.\m .applkmlou of thi e

S jon [11] is often is rep-

bised o qﬂmxeﬁ“:mlrjs the cases when the system before the interaction
ﬂ“:"u on thermodynamic equilibrium state and after the interaction was applied,
::-1:\vlutiunbaduha‘ tic wmtumdwmﬂﬂKM"wb
: i perties of irreversible quantum system without
quanﬁtiumdthcmuol'immimchma!. This method is based on
from orthogonal complex random processes. Below it is referred

Definition 2.1. The stochastic density matrix is defined by the expression: :

Pz 1 (€)1 15 (€D = f; wi™ ol (8 {1 15 {€)), (21)

where pgl(,.g;{g}p',r’;{g‘}) is partial stochastic density matriz and defined by help of
bilinear form:

Az, 1 (€12, €5 {€)) = Vel (D (ml, 5 {ED). (22

In the expression of (2.1) w},"" has the meaning of the initial distribution over quantum states
with energies Em = (m+1/2)Q0, until the moment when the generator of random excitations
is activated. Integrating (2.1) over euclidian space and taking into account (1. 10), we obtain
the normalization condition for the weight functions:

a0
Tuf™=1 w20 (23)
m=0

Below we'll define the mean values of various operators. Note that when averaging on
extended space = the order of the integration is important. If the integral is taken first on
R! space then on Rygy, the stochastic density matrix becomes equal to unity. This means
that in the extended space all conservations laws are valid, in other words the stochastic
matrix in this space is unitary. Else il we take the integration in the inverse order, we
get another picture. After the integration on Ryg) the obtained density matrix describes
quantum processes in Euclidean space R'. Its trace is not unity, in general. This means
that the conservation laws are not valid already. This can be explained by the fact that the
system hubminnmslymequﬂlbﬂummmdanermhmﬁoniupammmham
been significantly changed.

Below we'll be interested in quantum subsystem processes, hence the integration first on
R(g) and then on R! is supposed.

Definition 2.2. The expected value of the operator A(z,t|{§}) in quantum state with the
index m is:

A= Jim { A SnelSnadd?]}. Nal)=Snifspar]. @4
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The mean value of the Wﬂ(z,!;{c}j over the whole ensemble of states will respectively
be qiven by:

_ 1 r - T .
A= lim { 5o [Spiadpad ), N(t) = Spa [Spieyom] (23)
The operation Spye; in (2.3) and (2.4 ) Is defined by functional integral representation

Spio{K(z t{E}z 1 (€} = @ f K(z.t: {¢}\7,t; {€}) D{€}, (2.6)
and correspondingly the operation Spe is defined as a simple integration

Spe{K(z,{€}i2. ¥ {€})} = @ [ K(z,t:46} .t €'} d. @7)
If one ﬁiqhes to have the quantity describing irreversible behavior of the system, it is neces-
sary to change definition of ent /

Definition 2.3. The von Neumann entropy, the standard measure of randomness of statis-
tical ensemble described by density matriz , which is defined as:

Sw(6t) = ~ g Sp{png), (28)

where N(t) = Spup and p = Sp(gy{pas}.

The definition (£.8) of entropy is correct Jor quantum information theory and also is
agree with the Shannon eniropy in the classical limit.

Often it is interesting to know entropies of isolated quantum state (partial entropy)

e, t) = —N—:mSp_,{p"“’ g™}, (29)

where N(t) = Spsp™ and p™ = Spie o).

Definition 2.4, The entropies can be defined another forms. The total entropy may be
caleulated by formula

Sale,t) = ~ s Spa{ Svte [ ]}, (2.10)
and the partial entropy correspondingly by formula
S60) = ~ e Spia [p2 ) (211)

Belore proceeding further to the calculations of the physical parameters let us write down
the general form of the partial stochastic density matrix:

o g o Lo f de  fodp
P52 (=, t; {€} 1, ¢ {€}) = W“‘P{“(’"*’ i)n"[zm_;{ 3(—@]-'-

i[ri(t) ry(t') 1 1 1 T o
3l ~ ] - 2%l (g e,
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 the expression (2.11):
e e : SO = Bm SO0 (3.1)

The solution of equation (1.8) may be presented to the form:

&U) = ﬁ‘P{lﬂn‘)v t<typ=—o0,
£t} = {

st e {] (01}, t> 1o (32)

. | is some mpu funclion. -
‘b?\on::::whliwtion (3.2) in the (1.8) we can define the following nonlinear SDE for a

function ®(t): v

6407+ 0 VIS =0, to) = &olta)/Gulto) = ¥, (3.3)
where & = d/®. The second equation in the (3.2) expresses a condition which guarantees
continuity of the function &(f) and its first derivative at the t = #,. The function ®(f) is
o ribed & complex-valued random process due to the initial condition. As a result the SDE
(3.3) is equivalent to a set of two SDE for real-valued random processes. Namely, introducing

real and imeginary parts of &(t)

d(t) = w(t) +iuat),
we finally obtain the following set of SDE for the components of random vector process
i = @{uy, ua):

iy =—-u+ ul — Q3 - qfiﬂl], { us (to) = RC[E{JUoV&('u)I =0, (3.4)
{ s = —2ujug, uz(to) = ImfSo(to) /So{to)} = Do '

The pair of random processes (uy, ua) are not independent, because their evolution is influ-
enced by the common random force J(t). This means that the joint probability distribution:

Pylif, t]io, to) = (.IEI. Su(t) — u«)). ug = ui(fo),

is a non-factorable function. Proceeding from the known evolution equations (3.4), we obtain
by the standard method the Fokker-Planck equation for Py (see for ex. [12] or [13]) which

has the form:
9&’3'1 = LaR (3.5)
” & d d
Lo(us, ug) = 3a +(ud =3 + 93}5-“-; + 2u1u,3u-; + duy, (3.6)

with the initial and border conditions:

Py, ugi0)],_, = 6 = o )8(ua = ua),  Polu, uai l}|"m_.m—-' 0. (3.7
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Proceeding from (2.8), (2.9) and (2.10), we can write down the expression for nonequi-
librium entropy of ground state:

LY o, 20T
Sife,t) = 2t L_a (3.8)

where
Na(t) = Spi{La(t: €}, Nualt) = BaSpia{Lu(t: {€}). (3.9)

In (3.9) the following notation have been made:

reny  Olua(t)) f 1, up>0,
Lt (6 =~ ap(~(a +1) Juer). o= {y 4Z0
Now we are ready to calculate the [unctional traces in expression (3.9). Using the distribution
Fy it is easy to construct continuum measures in the expressions for Ny(t) = N,(t)|o=p and
Noa(t), which define the entropy of non-equilibrium quantum systems. These integrals may
be caleulated with the use of the generalized Feynman-Kac formula (see for example [9]). So
as give the following representation;

+00 400

Nalt)= [ [ —b000)Qulis, g ), (3.10)
where the function Q,(uy, u;, ) is a solution of the eq_ual.ion:

Qo = LDQnr —(a+ 1]“1Q¢| (8.11)
which is satisfied the following initial and border conditions:

Qo ugit)|,_, = 8s — ugy)6(ug ), Qalun us 8] i roa—

If in the expression (3.10) the substitution a = 0 is put, the normalization constant Ny(t)
will be obtained. If we can calculate the quantity Qa(uy, up; t) then obviously we can be able
calculate the function D, (u, uy,t) = 0aQalu1, ua, t). 1t is easy to obtain the equation for

the latter by differentiae the equation (3.11) with respect to a:

Do = LoDo — (a+ 1)uy D, — 1,Qa, (3.12)
correspondingly with conditions:
Dﬁ(“l! Uz, t)lmz 0. Dn(uh uz; tJl!Iﬂl—H»m_' 0.

Introducing the designations Do(uy, ug;t) = Da(uy, u5;£) L.-o’ we obtain the representation:

+oo +c0
Nool0) = Noal)= | | =) Do, s ) (313)

Now the expression for the equilibrium entropy can be obtained:
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PN =-5+ ‘\%Lﬁ (3.14)
where

\ ' = [0 732
NZ(A) = Jim No(t). NZ(A) = Jim Nooft), A= (Qo/€)%

Note that at the fimit t — +ac the solutions Qaluy, vz t) and Dyluy, uzit) tum to their

jonary ‘uy, ug) and Dif(u, ua). :
nat\iate thfﬁ; ?oznt:'eu;mn entropy (2.8) coincides with the entropy expressions in (2.10)

: 3 weak, i.e. thene & L
; interaction with the environment is i\
‘h?o‘::: in view the expressions (2.5) and (2. 12) by a little transformation for the average

energy it can be defined:

£ = Jim { oy SpeSria[Aori] | (318)

where operator Ho is determined from (1.2) by averaging of A over all:

& 1 .
Bn = —%5'13 + 3 . (3.16)

Substituting (3.16) in (3.15) after simple algebra we obtain for the ground state energy:

EQ(\) = %(1 + K)o, (3.17)

with the expressions:
l 00 400 1 ﬁ2+ﬁ+‘\ !
K{:\]ﬂmi -!_\/u-_!{—l+ 12 Ay }Q‘ﬁ‘(ﬁ.ﬁhﬁz)dnldﬁ:.

b it | g Uy
N2(A) = j /‘,—ﬁ—;Q;‘(,\:ﬂx.ﬁz}dﬁldn,, i=om =5 (3.18)
0

-0

In the expressions (3.18) the function Qo(fh, &a; t) is a solution of the equation:

ﬂ%‘#g = {% +(@ -+ z\)%; + ﬁhﬁaa% + 31y }Qu(fh Jigt),  (8.19)

which in the limit of stationary possesses is equal Qff (A: iy, ) = limy—ico Qol(ily, fig; 1), The
energy of n-th quantum state in the thermodynamic limit is calculated similarly:

ESYN) = (n+1/2)(1 + K(N))R. (3.20)
As evident from expression (3.20) after the relaxation all energetic levels are equidistunt.
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4 Uncertain relations, Weyl transformation and Wigner function for the
ground state

According to the uncertainty relation, in quantum system the coordinates and momentums
can't have arbitrary small dispersions. This principle is experimentally verified many times.
However at the present time as’a result of recent quantum technology development the
necessity in the overcoming of this fundamental restriction and taking the control over the
uncertainty reletion arises,

The dispersion of the operator A is determined by

84it) = {pu(o2)~spu(d)]'} " (w1)

Now using the expression (4.1) it is easy to calculate the dispersions for the operator 4; in
the extended spece = = R' @ Ry, at the time point t:

ALl = N—&E{SMPR}(PE?W)_[SESPM (Pi2)] ’}m- (4.2)

Now, with help of expression (4.2) we can calculate the dispersions for the coordinate £ and
momentum 7 :

a4t) = (s 77%—,15@,@,&,; day daa) (43)
-0 0
88) = {gems TT”“;;,,"‘; Qu(, i) oy dng) - (4.4

The product of dispersions for the operators at time point #p, when the interaction with
the environment is switch on describes the standard Hisenberg relation [ﬁi(t)Aﬁ(l)]L_h=

1/2. It is interesting Lo calculate the uncertainty relation for large time values in the equi-
librium Jimit. By averaging ¢ — co we obtain:

VA=(A)45(A)

Al = lin [As0a50] = Y2, (4.5)
where the following notations have been made:
+00 400
A0 = [ [ s, ) dos
-0 0
400400 _,
0= | [ oo, mdnan, )
-0 0

where Q3(A; @y, 1) is the stationary limit of solution of equation (3.11) at e = 0.

It is easy to check that the relations (4.5)-(4.6) differ substantially from the Hisenberg
uncertainty relations. In particular, it allows to control the fundamental relation (4.5) using
the power parameter A, which characterizes the fluctuations of the environment.
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Definition 4.1. We cali the expression

Wi 2ot (61 = 35 0 Welmlps 2, 6D (&)
mad

function and correspondingly Wee(mip,x. 6 {§}) the partial stochastic

ochastic Wi : mip, . :
;hww;md::ﬁhp@ﬁMdNFﬁrﬁtpﬂﬂdlﬂdhﬂw‘“wprﬁudw”‘rmi
‘1.“‘{7"1:},.:‘ 5 {E}} = ‘T,e""q'mim][: — l:'.-'?].l', {E})‘:k(mllx -+ t‘.fz}": {e}] &l" :."s]

Using the stochastic Winger function it is possible to calculate the mean values of the

physical quantities. which correspond to the operatars A: %
- :
A=a= Spia{a(p.x b (EDPlp. 2.6 €D} dpé, (4.9)
—-— -

where stochastic function a(p, 7, £ {§ }) is defined by Weyl transformation of operator A
alp.z.t{ED) = 7 U o (ml(x = v/2), 1 {ED AV (mi(z + v/2), 1 {§]) dve (4.10)

-

Note that the Weyl transformation of quantum operator 4 after averaging over the
random process Spm{u[p.:,t;{t}}} can be used in order to obtain the classical quantity
corresponding to the quantum operator A. This function is the classical limit & — 0 (the
system of units h = 1and c=1 is used, so the limit A — 0 actually corresponds to infinite

action limit):
A = clag(p,z,0) = HSP{EI{“(PJ. t{€h}-
Now we can construct the Winger function for the ground state:
WOz, pit) = Spigy{ WaeelOlp. 2.8 {ED)} =

+of 400 ) .
2\@ _£ -! "‘/—;-:ﬂp{-u%)?—ﬁgi}(?(ﬂl.ﬁ:n)d;dﬁg. (@)

It is casy to see that function (4.11) make sense coordinate  and momentum p simultancous
distribution in the phase space at the time t. Particularly with the help of this expression may
be investigated the relaxation processes and average distribution in the limit of stationary
processes. Note that such as in the regular case the integration of function Wye(nlp, z, t; {£h
by phase space is normalized per unit:

400 420
| | Waclnlp.zt: {€}) dpdz = 1. (4.12)

Finally it is important to note that for averaging function (4.11) it is not to hold expression
type of (4.12).
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Conelusion

There are three different reasons which may cause a chaos in the basic quantum mechanical
object, i.e. the wave function. The first reason refers to measurements performed over a
quantum system [4, 5]. The second reason consists in the more fundamental openness of
any quantum system resulting from the fact that all the beings are immersed into a phys-
ical vacuum [14]. In the third place, as it follows from the recent papers [6, 7, 8], a chaos
may also appear in the wave function even in a closed dynamical system. Many of the fun-
damentally important questions of the quantum physics such as the Lamb shift of energy
levels, spontaneous transitions between the atom levels, quantum Zeno effect [15], processes
of chaos and self-organization in quantum systems, especially those where the phenomena
of phase transitions type may occur, can be described qualitatively and quantitatively in
a rigorous way only within the nonperturbative approaches. The Lindblad representation
[16, 17] for the density matrix of the system "quantum object + thermostat” describes o
priori the most general situation which may appear in the nonrelativistic quantum mechan-
ics. Nevertheless, we need to consider a reduced density matrix on a semi-group {4], when
investigating a quantum subsystem. This is quite an ambiguous procedure and moreover its
technical realization is possible only in the framework of a particular perturbation scheme.

A crucially new approach to constructing the quantum mechanics of the closed nonrela-
tivistic systemn "quantum object -+ thermostat” has been developed recently by the authors
of [6, 7] from the principle of "local correctness of Schrédinger representation”. To put it
differently, it has been assumed that the evolution of the quantum system is such that it may
be described by the Schrédinger equation on any small time interval, while the motion as a
whole is described by a SDE for the wave function. In this case, however, there emerges not
a simple problem to find a measure for calculating the average values of the physical system
parameters. Neverlheless, there exists a certain class of models for which all the derivations
can be made not applying the perturbation theory [7].

In the present paper we explore further the possibility of building the nonrelativistic
quantum mechanics of closed system "quantum object + thermostat” within the framework
of the model of one-dimensional randomly wandering QHO (with & random frequency and
subjected to a random external force). Mathematically the problem is formulated in terms
of SDE for a complex-valued probability process defined on the extended space R' @ Ryg;.
The initial SDE is reduced to the Schrédinger equation for an autonomous oscillator defined
on a random space-time continuum, with the use of a nonlinear transformation and one-
dimensional etalon nonlinear equation of the Langevin type defined on the functional space
Ryey. 1t is possible to find for any fixed {£} an orthonormal basis of complex-valued random
functionals in the space Ly(R') of square-integrable functions. With the assumption that the
random force generator is described by a white noise correlator, the Fokker-Planck equation
for a conditional probability is found. From the solutions of this equation on an infinitely
small time interval a measure of the functional space Ry can be constructed. Then by aver-
aging an instantaneous value of the transition probability over the space Ryc), the mean value
of the transition probability is represented by a functional integral. Using the generalized
Feynman-Kac theorem, it is possible to reduce the functional integral in the most general
case, where both frequency and force are random, to a multiple integral of the fundamen-
tal solution of some parabolic partial differential equation. The qualitative analysis of the
parabolic equation shows that it may have discontinuous solutions. This is equivalent o the
existence of phenomena like the phase transitions in the microscopic transition probabilities.
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Muwnwhwijwl pyuunwiht ppugplbpp L
Gpwlg nbywywpiwG hGwpunpmpmGGhpp

U Qlnpquub
Udthnthmd

UlupnuiG m ghlnhbpbunnpmip, YnfuuignbgmpmGp phpdnununnp ljun pinhwGmp
niwpnid phqhluljml Jwinuifh b, suhnuiGhpp L pug plwnwhi hudwlwpgbph wyy
puipry wpnpbdlbpp, Jepghl huziny pyuGuwghl hwdwiwpgbph Gpuwlg zpgwhwph hinn
Yinfuwqnbgmpjul wpymbp &0: UWyu wpnpbdGbpp dwpbdwwhlnpba Ghwpwgmimd &6
Ynidwjbpuy hwdwGwlwihl pGpwgpltiph jhqun] (WMe): Uufwynpuwbo Gljupuegphny
2ngwluypp, playbu Uwpynyywl plpuwgp, pywlwnwihl hwdwhwpgh zpgwluwiph
htun thnjuwgnbgmpyul GYwpugpmpyul hwlwp wpnwih hip LwGdt]a6-Cphnhlighp
whuh  wwuwhwywl ghpbpbighw)  hwjwuwpmd  (M92L). 8nyg L wnpjwd, np
wuwinwhwlwl 1D pjubnuwhl Ghpnupiwy nwnwiolp (@US) L-Cphn hunjuuwpiuG
zpgwlwylbpmyd mbh monuiGbp' oppngnGwy GAC whupny; Oppngnfim; G2C-h
htliph Jpw qupqugud b wwwwhwiwl junmpju dwwnphgujh dbpnn (MIuU),
npp JppwlwyGbpmd huwnmwpdud £ whwyibih jwihnquiwGnpywui thwl hwimljwpgh
BRLS+Cpgwipph hinwgnnmpmbp: MU dipngh oqimpjunip phpinghGuwdhijwlpub
wnunbfighunbpp® GiwG nzhwwuwpwlzhn EGnpnuhugh L kGl p6wlh tGhpghwgh,
G2qppun Yunngywd b6: {wygwd b6 owbpwnnpibph nhuwbpuhwGbpp: UluuGunjnpuybu
w(lnpnzmpjmGtph wnlympmGGph hwéwp, Ywhigud £US-h  ppwljuiph  hhn
thnfuqnlignipjwi wwpwidbnphg, nnwgjwe b wpunwhwpnmpmGibp: Npoydwd & dbyh
dLunhinjunipjnilp wunwhwlhwl oubpuwnnpGhph hunfwp: 2hiGwywG YhEwlh hqlbph
Pporlyghwl nuniGwuhpdud £ dwipuiuub:



