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Abstract

Hypotheses identification for two objects having different distributions from two
given probability distrubutions was examined by R. Ahlswede and E. Haroutunian. We
Investigate a model with two objects having different distributions from three possible
distributions. The matrix of all possible pairs of ssymptotical interdependencies of the
realabilities (error probability exponents) for logarithmically asymptotically optimal
testing is studied.

Problem statement and Result.
In this paper we consider a generalisation of the problem of many hypotheses conserning one
object [1]. The usefulness of information-theoretical methods in statistics are reflected in
papers R. Ahlswede and 1. Wegener (2], E. Haroutunian [3], E. Haroutunian and P. Hakobyan
(4], in the tutorial of I.Csiszér and P.C.Shields [5].

Let X; and X; be random variables (RV) taking values in the finite set X. Let P(X)
be the space of all possible distributions on X. It is clear that the objects X and X3 can
have only different distributions from three given probability distrubutions (PD) G;, G; and
Gy from P(X). Let (x1,%3) = ((z], z}), (=3, z3), () %)) be a sequence of results of N
independent observations of the vector (X;,X;). The goal of the ststistician is to difine
which pair of distributions corresponds to observed sample (x1,%3). The test is a procedure
of making decision on the base of (x;,X3), which we denote by @n. For this model the
vector (Xy,X3) can have one of six joint probability distributions Gy, (x1,%3), I; # b,
11,13 = ]TE, where G;,J,(X)_,Xg) = Gh (x;)G;,(x,). We can take (Xth} = Y, AxX= .'P
and ¥ = (Y1, 2., Yn) € YN, where y, = (z1,22), n = T, N, then we will have six new
hypotheses for one object

Ga(x1,Xa) = Fi(y), Gya(x1,%a) = Fa(y),

G’-l(xhx?) = F‘-!(Y)! G&a(xhxﬂ) — Fi(Y}-

G, (%1,%a) = F(y), Gsa(x1,%a) = Fy(y), (1)
and thus we have brought the original problem to the identification problem for one object
with M hypotheses (M = 6), the solution of which we can obtain with results from [1].

Now the non-randomized test (y(y) can be given by division of the sample space YV on
six digjoint subsets A = {y: pn(y) =1, | = T,B}. The set AN consists of all vectors y

FaL @



92 mwmdmwhmmmm

have to be adopted. We study the probabilities of the erroncous acceptance
htmhdlpﬁnl.mnm m#l,

amitles) = FalA]) @

where the PD F}
of PD F; provided that Fix

The probability to reject PD F.., when it is true, is
(o) = T amit(on) = FalAR)- @
lwm

(‘Wduls error protnhihty exponents, called "reliabilities”, are defined as

Eni(¥) wE- %hsﬂnaw.\'). m.l=T108. L@

It follows from (3) that
Enmly) = ""E‘EHU- m,{=T8%. (5)

The matrix E(e) we call the reliability matrix of the sequence o of tests:

Eule) Emlp) Epl®) Ewl(e) Ep(v) Euele)

Enly) En(p) Exns(p) Ende) Exsly) Enely)

Elp) = Exi(9) Esa(®) Eaalp) Esu(e) Eus(v) Eselv)
# Eu(p) Eawl®) Eus(p) Ew(p) Egs(®) Eele)
Esy(v) Esp(®) Esalw) Esulv) Exs(v) Esele)

Eanly) EBealy) Esa(®) Feulw) Eenly) Eeelw)

Definition : We call the sequence of tests logarithmically asymptotically optimal (LAO)
if for given positive values of five diagonal elements of the matrix E the procedure provides
marimal values for other elements of it.

It is known from [1] that the type Qy(y) = HN(vly), where N(yly) is the number of
repetitions of the symbol y in ¥, and

(N +1)"Pexp{NHg, (Y)} < T8 (V)] £ exp{NHg, (Y)}. (6)
For given positive numbers Eyjy, ..., Egjs let us define
Ri(P) = {Qy: D(QIF) < Ey, 1=T3}, (7a)
Re(P) = {Qy: D(Qy|IF) > Ey, 1=T35}, (7b)
RN = RNQ¥(Y), I1=T0. (7e)
Ejy = Ejy(Eq) & By, 1=T35, (8a)
E:,'“ = E:NH(E{{J} _Q_ Qirérnt D[qupn)- m= T:B! m # ‘| l = m' (Sb}
Enjo = EnyelEuns Fa s Es) £ jint, D(@ylIFw), m =T, (8¢)

Ego = Ego(Eu, By Bys) & min gy (8d)
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Th divergences (Kullback-Leibler distances)D(G}[1Gy), D(QIIGL), @ € P(X), = T3,
i = 1,2 and D(Fy ||Fy), DQ||Fy), @ € P(¥), [,=T,6, i = 1,2 are defined as usual [5].
Now we can reformulate the theorem of [1) for this case

Theorem : If all distributions F;, | = T,6 are such that D(F}||F,,) < o0, [ # m, the positive
elements By, ..., gy are given and the following inequalities hold

Eyj; < min D(F||F;),
=25
(9)

Emim < !_%g_r Epu(Ey), Emm < '%D(EHF”.). m =13,
then:
a) there ezists a LAO sequence of tests, the reliability mairiz of which E* = {Ey} is
defined in (8) and all elements of it are positive,
b) if one of the inequalities (9) is violated, then there exists at least one element equal to
0 in the matriz E°.
It is clear that

DGy |G 1) = DIGRIGE) + DICAICE), muybi = T3, i = 1,2, my £ mp, Iy £ by,

where G{’, k = T.3,i = 1,2 is a PD Gy on i-th object. Using this equality we can derive
that

min D(Kil|F3) = min{D(GE|GE7), D(GE)|GL"), D(GoylIGra)],
min D(Fi||F3) = min|D(GEY(|G"), D(C3,4|Gys), D(Gsl|G13)],
min D(F||F3) = min(D(GE1GE), D(GE165")),
pin D(F|F) = min[D(Gs,(|G33), D(Gs2l|Gas)),

D(Fy||F5) = D(G||G).

For exemple the first eﬂuahtiv holds because
D(Gy4]|Gra) = D(GS”]|GSY)

D(G11|G12) = DG I|GE) + DG GEY), D(GaalGia) = DGV (IG) +D(GP|IGP),
D(Gs,|G12) = D(GS”||GE?) + DCP|IGE), D(Gsal|Gr2) = D(GP|IGY).
Proof of the Theorem: For y € 7¢){(Y) we have

FYy) = ﬁ1 Fatte) = ILFn(0)"89) = exp {-ND(@, | Fo) + Ho, ()}, (10

where Ha, (¥) = — 3~ Qy (y) log Qy(4) is  entropy of RV Y with type Qy [6]. Let us consider
the following sequence of tests o* given by the sets

B'= U W), 1=T3, : (11)
Qyer(™
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which are disjoint B NBE =0 1#m, (12)

and l'JB‘m} =)
=1

! } = 5. I < m we have that, if D(Qy||Fi) < Ei, then from (7)-(9) it follows,
Really, for m, (Exs) < D(Qyl|F-). From (7) and (11) we see that

that Em!ﬂ < E;-j.l
BINEY =0, 1=T3.
From (11), for m = 1.3, using (3), (6), (9), (10), we can estimate

i N F.,:( ‘J“f,ll")) <
Amim(P¥) = Fou (BR) q'_mq,!y'.bk- 5

<N=1DPT s FT(Y) <
Qy:DIQyIFR)>Erim

< (N+1) sup exp{—ND(Qyl|Fm)} £
Qy:D(Qy || Fm)>Emjm

< exp{—NlO,:D{Oril.InFI-PEnMD{Q,"FM) = ﬂx(l)ll < Q‘P{_Nisnlu e th'l)}}—

where ay(1) — 0, with N — oc For 1 = T35, m = I, ! # m. We estimate by analogy

amp(en) = FY(BY) = F::'( U Té‘,‘(r)) <
Qy:DIQy|IFSEy

S(N+1)P  sup  FEN(T(Y)) <
ie1) QD IRI<E m (To,

N4 1) ~ND(@yl|F)} = :
< (N+1) q,mt;::l]:nsm“p{ (QylIF)} (1)

=ep(-IN it D(@QIIFn) = o(D)])

Now let us prove the inverse inequality

- 80 S F,J: TN X > N 1y
i (erb(oyl?{msmn o )) ‘?r’”l‘;:llﬁ'lﬁfmﬂ[fq'nnz

N+ ™ - - 3
>(N+1) Q':mg:ll&)s&"m{ ND(QyllFm)} (14)

= PNy, o dWryes, P(@rliFm) +ox(1)]}

Acrgrcfing_’ti the definition (1) the reliability E, (") of the test sequence (p°) is the
upper limit fim — ¥ logan(@n). Taking into account (18), (14) and the continuity of

the functional D(Qy||F) we obtain that E— % log amu(n) according to (9b) equals to
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Eny. Thus E y(p*) = El=T5m=18,1#m. Similarly we can obtain upper and
lower bounds for om(gy;), m = T.5. Applying the same reasoning we get the reliability
Enig(#") = Eyg. m =1,5. By the definition (3)~(5) and (9d) Egg(s") = Egy.

Thus we obtain

i 1
Emil¢") = J_ - = log amu(p3) = Enyy, my1=T3. (15)

Thepmofofpn.rta}willbeaccomplishsdifwea.bowthutheseqmoeofthetst
g* is LAO, that is for given Lty ... Eyjs and every sequence tests o™ for all m, [ = 1,8,
Enu(y™*) < B,

Letuswnsideranul.hm'aequmoeoftestsp“. which is defined by the sets
DM, DY, .., DY) such that Bpy(e™) > Epy, m,! = TB. this condition is equivalent
to the inequality

omp(ex) < amu(ipl)- (16)

Let us examine the sets D" N B™), | = T3, This intersection cannct be empty, because

in that case

o (") = F'O) 2 FE") 2 | max  FTE(Y) 2 exp{-N(Ey+ on(1))

Let us show that D" NBM =9, m 1= T8 m#L
If there exists Qy such that D(Qy||F) < By and T3/ (¥) € D™, then

O (¢) = FXD") > F¥ (T (X)) > exp{—N{Empm + on(1)]}.
When 0 # D™ NTJ'(X) # TJ (X), we also obtain that
o (¢**) = GY(D") > GNDM (T (X)) 2 exp{=N (B + o (1)},

Thus it follows that if

8) | < m from (9) we obtain that Emi(™) < Emim < Emp(y*),

b) 1 > m then Epy(p™) < By < Eumj(°), which contradicts our assumption.
Hence we obtain that D[ N B{™) = B(™ for | = T;B. The following intersection M nBM
is empty too, because otherwise

amia(P) = amis(Ph )

which contradicts to (16), that D™ = B, | = T3,
The proof of the second part of the theorem is easily. If one of the conditions (9) is
violated, then it follows from (7) and (8) that at least one of the elements Eqmy is equal to 0.
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