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Abstract

The binary-Hamming case of the E-capacity and capacity results for information
hiding system [1, 2] is evaluated for practical interests. A special parallel algorithm
Is elaborated and the computational software utilities are developed. The graphs,
describing dependences of information hiding rate from the reliability and allowed
distortion levels for the information hider and the attacker are obtained and presented.

Also the graphical view of Lhe capacily, depending from the allowed distortion levels
is plotted.

1 Capacity and E-capacity of Information Hiding System

We consider the model of information hiding system, studied by M. Haroutunian and S.
Tonoyan (1, 2]. Various setups of information hiding systems are studied by P. Moulin and
J. O'Sullivan [3], N. Merhav [4], N. Merhav and A. Somekh-Baruch [5] and others.

Description of the system is the following: an information hider (or an encoder) embeds

. the message m € M within the host data set (covertext) s € S using the side information
k € KY. Codewords x € XN are transmitted via attack channel with the finite input
and output alphabets X and ). The attacker trying to exploit the message m, transforms
the data blocks x € XV into y € Y¥. The decoder, using the side information, decodes
y € V¥, deriving the message m. Random variables S and K , describing the host data
and the side information sources, are distributed jointly by fixed probability distribution
Q=1{Q(s,k), se S,kek}. :

Information hider introduces certain distortion in the host data set for the data embed-
ding. The attacker, trying to change or remove this hidden information, introduces some
other distortion. Also it is assumed that:

a) the attacker uses only discrete memoryless channels (DMC),

b) the covertext is available at the information hider only,

¢) the decoder knows the attack strategy but not the DMC chosen by the attacker,

d) the attacker knows the information-hiding strategy but not the side information,

¢) information hiding process is transparent (the distortion introduced by information hider
does not excced the allowable level)
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f) the system is robust (the distortion introduced by the attacker should be restricted by
rresponding level).

O formation hider designs a memoryless covert channel P = {P(u,zls.k), u € U, = €

X.3€S5, kex}.mmofthem\mchanneb.mbjmmthemmtlA,.M

for the information hider is:

PIQ.A) ={P: ¥ di(s,z)P(u,zls, k)Q(s. k) < A},
wrak

where dy : § x X' — [0, 5] the distortion function for information hider.
Attacker designs an attack channel A = {A(yplz), ¥ €Y, 7 € A}. The set of the attack
channels, subject to the distortion level A;, allowed for the information hider, under the

condition of any covert channel P is:
AQPAN={A: T dizp)Allx)P(u,zls,k)Q(s, k) < As),
uzy.ak
where ds : & x ¥ — [0, 00) the distortion function for attacker.
M is the cardinality of the message set M. The nonnegative number

1
R=?k§M

4

is called the information hiding code rate.
The maximal error probability of the code, maximal over all attack channels from
A[Q|P'Aﬂ)h

elf,s.N.Q. P 82) = e AcAG P A) (-.lsieg";xs Q¥ (e 1) AN — 97! (mlk) £ (m,s, K},

and the average error probability of the code, maximal over all attack channels from .A(F, A;)
is:

Wha M@ PA) =57 max M.Eume%mqﬂ (8K APV =g~ (m{k)i/ (m, 5, k)}.

Information hiding E-capacity is defined as:
RQ,E, Ay, Ag) = C(Q, E, Ay, Ag) = E% log M(Q. E, N, Ay, Ag).

where M(Q, E, N, Ay, Ay) is the highest volume of the code, the maximal error probability
of which exponentially decreases with the given exponent E > 0.
The random coding bound of information hiding svstem is defined as:

RAQ,E. A, ;) = i i ’ -
(@B, 2080) = 8% ) ae a0 010 Bllarancs PV (Y AUIK)

~Ig p(SAUIK) + D(Q o PoV[|QoPo A) - EI*, (1)

In (1, 2] the following theorem was proved.
Theorem. For all £ > 0, for information hiding system with distortion levels A Ay

R-(Q.E, 81, 42) £ C(QE, A1, 89) T(Q, E, A1, M),
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w;:etz C(Q,E, A, A;) the information hiding E-capacity for average error probability
is denoted.
Corollary. When E — 0 (1) presents the lower bound of information hiding capacity:
R(Q,481,47) = PEP%HAEA%PP&J {IgralY AUIK) — Igp(S A UlK)}, (2)

which coincides with the information hiding capacity 1, 23]

2 Binary-Hamming Case

Weomsid'e:rthecam,comlngfmmtheapp]ioatiom, when all sets are binary: Y, X, Y, S,K =
{0,1}. And distortion functions are Hamming distances

d:fs.=J=dxta.=>={ o dn(:.v)=d.q(x.ﬂ)={ by

The joint distribution of host data and side information sources let be
_ (03 025
= ( 01 035 ) :

Now consider the random coding bound (1) dependence from the distortion levels. In the
figure 1 information hiding rate dependences from the reliabilities are presented. The graph
"1" satisfies to the distortion pair A; = 0.4, A; = 0.7, the graph "2” to A; = 0.7, A; =0.7
and the graph "3" satisfies to the pair A; = 0.4, Az =08,
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Figure 1. E-capacity dependence from the reliability
for the different distortion pairs,

As we can see from figure 1, the rate curve "1" is going up, when the allowed distortion
level of information hider A; grows from the value 0.4 to 0.7 and we obtain the curve "2". It
takes place, because when the allowed level is greater, the information hider can hide more
information. And when the allowed distortion level of attacker A; grows from the value 0.7
io 0.8 the curve "1 is going down and we obtain the curve ”3",

In the next figure the capacity (2) dependence from the allowed distortion levels is pre-
sented,
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Figure 2. The capacity dependence form the distortion levels.

On the figures 3a and 3b the intersections of the previous surface are shown. 3a presents
the capacity dependence from the A;, when A; is fixed and equal to 0.816. 3b presents the
capacity dependence from the Ay, if A, is fixed and cquals 0.333.
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Figure 3. a. The capacity dependence form A,;. b. The capacity dependences form A,.

We can see from the figures 3a and 2 that the information hiding rate grows with the
hider’s allowed level. And from 3b and 2 we can see, that Lhe rate decreases, when attacker’s

distortion level grows.

3 Computation Overview

A special parallel algorithm for computation of complex formulas was evaluated for E-
capacity (1) lower bound and for the capacity (2) cases. Sixteen parallel branches are
realized in the algorithm. In the separate branches and branch groups the following tasks
are realized.
a) the creation of the covert and the attack channels,
b) the supporting of probability distribution sets (two and four dimensional),
¢) the sorting of the channels by distortion levels,
d) the computation of information theoretic terms of the mutual informations and diver-
gences,
f) other computational subtasks.

The distributed mechanism for maximin derivation is applied.

Special utilities for computations were developed in C++++ language on the base of eval-
unted algorithm, using the Message Passing Interface. Utilities were run in the high perfor-
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mance environment of ArmCluster, on 16 separate processors. The graphs on the base of
computed data sets are plotted using the Wolfram Research Mathematica package.
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Syjwibp pupglnn hwdwlwpgh mGwlnpwb L E-mOwlmpjwuG
unnphl qGwhwinwlwGGhph hwynusp

U. U. Snlnjud
Uidthnthnud

Bpimuwywl {bidhGgh nbuph hundup npunuplty b6 [1,2]-n08 hbmwgnunfwd ndjuyGhp
pwpglnng hwiwhwpgh mGwimpmb L E-mfwynippul unnphG ghwhwinwijwGGpp,
bty Yhpwawhwl GawGwhnipymbhg: Gunmgyby L dpwqpunmiby & hwpywplGbph
Junwpiw( budwp qmguhtn wignphpd: Uwnwgjud L Gbphuwywgimd b6 wjwyibnp
pwpglbm wpwgnipnwl gpudhlfbpp’ Guipnjus houwihnipymbGhg L wijuylbp pupglnnh
m hwpdwipnnh hwdwp pnypunpbih JtndwG twlwpnulylbphg: Lubl junmgjws k
nuuynipjwl gpudhlwiwl wwinlbpp' Ywhnjwd poyjwinpbih zbniwG swiupnuyGhphg:



