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Abstract

In this paper a novel approach for yield optimizetion is presented. While there are
different types of defects or other issues affecting the yieid, only the "extra conductive
material” type (potentially causing shorts circuits) is studied. The approach tends to
improve the yield of the IC Juyout by reducing the area which is sensitive to randem
defects, the so-called critical area.

Introduction

The VLSI design automation technology has a very significant progress throughout its
whole history and especially during the last decade. It is capable of handling very large
IC designs with enormous complexity and number of topologies. Iowever even the most
advanced technology in EDA does not allow to follow the huge and even increasing set of
objectives, The fact is that the capability of the modern physical implementation tools is
still very limited - they have to solve a very difficult problem of placement and routing.
This task is becoming even more difficult with the growing number of design rules and their
complexity. As a result place&zroute tools are not able to efficiently follow all the constraints,
satisfy the modern Design-for-Manufacturability(DFM) rules and Design-For-Yield(DFY)
objectives for better yield and follow signal quality improvement recommendations. So how
should these issues be addressed? The solution is in post P&R layout optimization. Many
different optimization objectives can be defined for such an optimization step - critical area
minimization, via etching and planarity improvement for yield optimization, reduction of
necessary OPC amounts for printability, crosstalk/RC minimization for signal integrity and
0 on,

In this paper the general problem of post P&R layout optimization is formulated.
Based on that, the yield enhancement flow is constructed and the high level description of
its algorithm is described.

A New Generic Layout Optimization Flow

An Abstract Class of Problems
Let us define the following class of abstract mathematical problems:
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stion: Let V = {v1,va,..Us} be a vector of real oontin!.mus variables, let us also

maeﬁ:;:::?n,,,..a,} ant{:l B = {bl,b;....b?} vectors of bounding p_aramat.e.rzl suclln: ]t.ha.t
A > V > B. Further in the paper these variables will be called decision varia es. hleas-e
nut_e. that by sctting the same value for a; and b one can fix the value of the variable v;.
Definition: Let CNS : {i, j} =™ R be a table function that carresponds a real number
to a pair of indices. ‘We will refer to the function CNS by a term "constraint function” *.

Definition: Let COST : {v;,v;} "™ R be another function that corresponds a real
number to a pair of variables. We will refer to this fu.n'ction by a term "cost function

Definition: we can now define the objective function

F= 3 COST(wv)
ije{l.n}

which is the arithmetical sum of all the cost function defined on the variable set V.
Definition: Now let us define P = {V, A, B, CNS, F} as an optimization problem of the
variable set V, the constraint function defined on the pair of indices CN'.S, and the objective
function F, so that
minimize: F' =¥
P ={ subject to: Vi,j € {1.n} = (v; —v;) 2 CNS(i, )
A-VEB

Definition: The collection of values § = {s;, 83,...8,} for the decision variables is called
the optimal solution or solution, if the objective function F reaches its optimal value while
all constraints are satisfied.

Definition: Let P = {F:{V, Ai, Bi, CNS;, Fi}} be the class of all possible problems with
all arbitrary cost functions and objective functions satisfying to the definitions given above.

It can be easily shown that P is the subclass of more general class of linearly constrained
optimization problems. One of its special subclasses is the case when the objective function
is at most quadratic. In that case such a problem is called Quadratic Programming (QP)
problem. An even more special case of great importance is where the objective function and
the constraints are entirely linear; this is called. Linear Programming (LP) problem.

Generic Optimization Model

The outline of the abstract layout optimization model proposed in this paper is given by
the figure 1. It is a system of the following three functional components: ProblemGenerator,
Solver, SolutionApplicator.

ProblemGenerator. This module is responsible for translation of the given layout op-
timization problem to a problem P = {V, A, B,CNS, F} by modeling each of its
members. This is done by:

o Constructing the vector of variables V and defining its correspondence to the
topologies of the IC layout. Besides, parameter sets A and B should be defined
for putting constraints on lower and upper bounds of variables,
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o Generating all the constraints in C/N'S corresponding to the design rules, timing
constraints, special constraints defined by the user, etc.
¢ Defining the objective function F' eppropriate to that particular optimization
criteria.
Solver. This unit does the job of finding such a feasible solution which satisfies to the set of
constraint functions and for which the objective function reaches its minimum value.

SolutionApplicator. Once the optimal solution is found, the solution applicator does the
reverse job by translating it back to the layout.

THE UNIFIED LAYOUT OPTIMIZATION MODEL

i rtoapp SOLUTION
GENERATOR SOLVER i
e \ "“"'L
. V \'4 .
| Optimiztion ; T

:>mm B> | | >

Original layout
Figure 1: The optimization moclel

Each one of these subsystems should be defined depending on the nature of the given
particular optimization problem.

The Defect Limited Yield Optimization Problem

Here we will construct the so called Defect Limited Yield(DLY) Optimization problem
(DLYO), To do this, we will need a quick overview on the problem of DLY in modern IC
manufacturing process. It is known that one of the most significant contributors to the overall
yield loss is the existence of so-called random defects. Defects are defined as any physical
anomaly that causes a circuit to fail and can be roughly divided into two types: extra
conductive material that can potentially cause short connections between two topologies
of different nets, and missing material potentially leading to open nets. Obviously not all
random defects result circuit failure. Whether or not a defect will cause open or short circuit
depends on design specific factors such as its density, etc, as well as defect size and location.

The DLYO problem described here is aimed to improve the design tolerance to short
type defects, so let’s focus on that type only.

A random defect will only cause a circuit failure if it lands in a location where it can
produce an electrical short between two wires. The total area of all these locations is called
the critical area(CA) for that specific defect.
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Figure2: The CA for defect size =

Figure shows the CA for defect of radius x between two topologies of different nets. As
you can see it depends on the spacing between those two wires - in the second example the
spacing is greater and the CA is less,

The next step is in finding the WCA - critical area weighted by the defect size (also
known as "average” CA)

WCA = f: CA(x)+D(z)dx

where CA(z) is the CA for defect of radius x and D(z) is the defect distribution function?.
WCA is one of the key attributes of the IC layout and has a direct impact on yield: the less
the WCA - the higher the yield.

The DLYO problem defined below improves the yield by optimally choosing spacings
between the routing topologies. Il is a so-called one-directional solution of the problem - it
supposes to decrease the critical area by modifying the layout in either vertical direction,
or horizontal. Depending on this we will differ vertical and horizontal DLYO steps, and the
whole optimization flow will be a sequence of such one-directional steps. It is not proven
that the sequence of such one-dimensional iterations is converging to the overall optimum
value. Anyway it can be easily shown that after each iteration the WCA value is decreasing.
Hence the number of iterations can be determined based on the runtime versus optimization
results trade-off.

To construct the optimization problem, we will need few more definitions -

Definition: Let’s denote by T = {t1,ts,...tn} the set of all routing topologies in IC
layout. :

Definition: Let's define the function loc:{t;} — (R, R) as the location function for the
topology t°.

Definition: Let’s use the function spacing:{(t;,%;)} — R for the minimum allowed
spacing between the corresponding topologies of the layout. The function is defined if the
topologies t; and t; are adjacent®,

m;i{;:]rmmdualhmdWmmdogymﬁddmddhg,mﬂu!mmdmdomddecupluurdeﬂo{a]
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‘SincnMhm:mhﬁdmlpﬂm.mwﬂwunmdmm‘aﬁmcy' is enough.
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Definition: Another function - lpm.'{(t,,?j} — R will be used for quantifying the
visibility segment of the two topologies t; and t;°. Again, it is defined for two adjacent items
and is zero otherwise.

Definition: Finally let’s denote by the function D:{R) — R the defect density distribu-
tion function.

Now we are ready to formulate the DLYO problem Pyg = {Vyg, Ayo, Byo, CNSyo, Fyo}
where:

* Vyo = { , v corresponds to loc(ty).y if the direction is vertical,
or to loc(t;).z if the direction is horizontal}

® Ayo snd Byo = can be defined as follows: for each non-fixed topology t;, a; and
b ean bedeﬁnudasbmwmmmtmdmpmostwdinatasofthechipbomdingbox
accordingly if the optimization direction is vertical. and leftmost, rightmost - in case
of horizontal optimization direction; for each fixed topology #;, parameters a; and by
should be set equal to its existing location (or the value of the corresponding variable).

spacing(t;, t;) if t; and t; are adjacent.

e CNSyoli,j) =
—o0 otherwise

span(ti,t)) [~ (2= (o —v))Diz)dz
s COSTyo(v,v5) = ki ¢, and t; are adjacent,
0 otherwise

and

Fyo = Lvijeq.n) COSTyo(v;, v5)
Now let's see what are the functional components of this optimization model:

¢ The ProblemGenerator is creating the vector of variables, one for each layout topol-
ogy, setting its lower and upper bounds, etc. Then it extracts all the constraints
between the topologies based on design rules, timing information, etc. Finally it cal-
culates and keeps the visibility information between the layout items.

¢ The Solver module does the most difficult job of solving the optimization problem.

s The SolutionApplicator assigns the values of the optimal solution to the corre-
sponding items in the layout. In other words it moves the topologies so that their
locations equal to the appropriate values,

It is empirically determined, that the behavior of the defect density distribution function
of the defect size x in the range [zg, 7] is similar to the monotone decreasing function -!,;,
where g is the minimum feature size in the chosen process and z,, is the maximum observed
defect size. Parameter p is typically defined in the range (2.5,3) and is usuelly determined
empirically.

B Again, the term visibility will not be defined here, it is not in the scope of this paper. Intuitive under-
standing la ok.
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DLYO approach works for small-size defects, we will admit that

Assuming the given ! il
v; — v; is close to 2,8, Hence we can modify the formula of the COST function in the

following way
COSTyoluny) = span(tity) [ (e (o =~ w)D(@)iz =
apanttt) [ 2~ Dl@da-+ apantlt)oy ~w) [[7, D)z

Based on the definition of the defect density distribution function and having (v; —v) — Zo,
we can write

f’“ D{z)dmj’"p(z)dz =il
vy—vi xo
and do the following estimation
iz z-D()izws [ z-D@)dz = C
v— 0

As a result we will have the following rough approximation
COSTyo(v;,v;) = span(t;, t;)(C — v; + 1))

Obviously there can be given more precise ways of approximations of the COST function, a
good overview on such approximation is presented in [1].

Given that, the cost function in the problem described above will become a linear de-
creasing function of the spacing. This leads to a very important result: by doing a proper
approximation, the abovementioned problem can be reduced to a well known Linear Pro-
gramming problem. By reducing the general problem to an LP, a number of advanced
simplex, barrier or interior-point solving techniques can be used. In similar way, by defin-
ing a quadratic approximation to that function, the problem can be reduced to Quadratic
Programming problem and so on...
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