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Abstract

A lower bound is obtained for the greatest possible number of colors in an interval
enlourings of some regular graphs.

Let G = (V, E) be an undirected graph without loops and multiple edges [1], V(G) and
E(G) be the sets of vertices and edges of G, respectively. The degree of a vertex z € V(G) is
denoted by dg(z), the maximum degree of a vertex of G-by A(G), and the chromatic index
2] of G-by x/(G). A graph is regular, if all its vertices have the same degree. If o is a proper
edge colouring of the graph G [3], then the color of an edge e € E(G) in the colouring a
is denoted by afe, G), and by afe) if from the context it is clear to which graph it refers.
For a proper edge colouring a, the set of colors of the edges that are incident to a vertex
z € V(G), is denoted by S(z, a).

A proper colouring a of edges of G with colors 1,2,...,t is interval 4], if for each color
i,1 £i <, there exists at least one edge e; € E(G) with a(e;) = i and the edges incident
with each vertex z € V(G) are colored by dg(z) consecutive colors.

For t 2 1 let \V; denote the set. of graphs which have an interval ¢-colouring, and assume:
N = |J M. For G € N the least and the greatest values of t, for which G € A, is denoted
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by w(C) and W(G), respectively.

In [5] it is proved:

Theorem 1. Let G be a regular graph.

1) G e N iff ¥(G) = A(G).

2) If G € N and A(G) < t < W(G), then G € N;.

[6] and theorem 1 imply that for regular graphs the problem of deciding whether G € N/
or G ¢ N, is N P-complete [7,8].

In this paper we will consider regular graphs G = (V, E), where

V() ={=’| 1<i<k1<j<n},
E(G) = { (e, 2¢*V) | 12i<k~1,1<p<n1<g<n}u
U{(aef))|1<p<n1<g<n} k23,

It is not hard to see that A(G) = 2n, Let R (n,k) be the set of all those graphs.
In [9] it is shown that if G € R (n, k) then
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_ | 2n, if n-kiseven,
"'(G)‘{znﬂ, if n-kls odd.

Theorem 1 implies:

Corollary 1. Let G € R (n, k) . Then:

1) G €N, if n - k-is even;

2) G ¢ N, if n - k-is odd.

Corollary 2. If G € R (n, k) and n - k-is even, then w(G) = 2n.
Theorem 2. If G € R (n, k) and k-is even, then W(G) > 2n + %F — 1.
Proof. Suppose:

V(G)={z1<i<k1<j<n),
E(G) = {(:n},",xg““‘])| 1<i<k-11<p<nl<g<nju
u{(=®,aP)|1<pEn1<g<n}.

Let G; be the subgraph of the graph G induced by the vertices z{), z{?, ..., 2, z{", 2{", ..., z).
It is clear that Giis a regular complete bipartite graph of the degree n. Therefore
x'(G1) = A(G,) = n, and due to theorem 1, G} e N,

Consider & proper edge colouring a of the edges of G; defined as follows:

a((zf,"’,z!,"))=p+q-1forp=l,2,....nmdq= i b o8
1t is not hard to check that a is an interval (2n — 1)-colouring of the graph G;.
Define an edge colouring £ of the graph G in the following way:
1},8((1'},"’.:5”).@) =a((z,‘,"’,z£”),G;) forp=1,2,...,nand ¢=1,2,...,n;
2)101'1':1,2....,%—1andp=1,2,....n.q=1,2,.:.,n
P(e857).6) =B (-0, 5-49),6) = (a0, ). G:) -7

3) B((4),6) = a((a)a?),6)) + 8 for p = 1,2,...,n and g =
1[5 Eee sl *

Let, us show that 4 is an interval (2n + 3 — 1)~colouring of the graph G.

First of all note that for 4, 1 < i < 2n—1 there is an edge &; € E(C) such that S(e;) = i.
5 lgow_letusahuwthatforj,hgjs2n+n§5-lthamisnnedgee,eE(G] with

ej)=17.

Consider the vertices 2, 289, .., 2%, The definition of 4 implies that

5
Us (290,8) = {2n,2n+1,...,2n + % — 1},

Thiﬂpwvesthﬂtfor.f.2ﬂ55$2n+ﬂ§!-1thmisanedgee,—eg(c}wi;hﬁ(g,)=j,

Let us show that the that are incident to
e _ edges & vertex v € V/(G) are colored by 2n
Letz{’ € V(G), 1<i<k1<j<n
Casel:i=1,1<j<n.
The definition of 8 implies that:
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5(48) = (0a (@) u(0 2 (GP.a2) -
= (Qo(@.).00)u( (o (at) 1) +n)) =

:{j,j-r],...,j+n—-1}-.J{j+n.j+n+1,....j+2n—1}={j.j+l,...,j+2n—1}.

Case2: 2<i<k-11<j<n.
The definition of 3 implies that:

5(&.6) = (0a (. 4))u (U (0. ))) =
= (0 (. 47,6+ 6-0-m))u (0 (2((f,282),61) +-0)) =

={j+li-1)m.j+i-a-1}U{i+i-n.,j+({+1)-n-1} =
={i+({-1)n,.,j+(i+1)-n—1}.

Case 3: i=k1<j<n.
The definition of 3 implies that:

s (s2.8) = (O (G2 ) (0 5 (2, 52)) -
- (e 6 4m)u(G a(6).0) -

={j+nj+n+1,.,j+2m-1}U{5i+L,..j+n-1}={jj+1,..5+2m—1}.

Theorem 2 is proved.

Corollary 3. If G € R(n, k), k-is even and 2n <t < 2n + % — 1, then G € M.

Let us note that if G' € R(n, 4), then the lower bound of the proved theorem is the exact
value of W(G), that is W(G) = 4n—1.
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