Mathematical Problems of Ci ter Sci 25, 2006, 18-26.

Dynamic Process Management System Architecture
for Computational Clusters

Tigran M. Grigoryan, Vladimir G. Sahakyan

Institue for Informatics and Automation Problems of NAS of RA
e-mals tigrangr@ipia.sci.am, svlad@sci.am

Abstract

The problem of efficient utilization of computational resources of clusters arises
as its load and number of users grow. Tasks like the fair use of resources and load
balancing are common and should be solved by the operation environment of cluster.
Existing mechanisms that solve the mentioned problems work fine as long as parallel
programs are run on a fixed number of resources.

Allocating and freeing resources dynamically can highly improve the performance of
a parallel program as well as the efficiency of using the cluster. In the following paper
the system architecture is described, which supports dynamic resource allocation and
process spawning, which is alternate to MPI-2 standard’s dynamic process spawning
mechanism. It is also introduced, how dynamic task/process spawning can improve
the performance of the parallel program.

1 Standard Process Management Schemes for Computational Clusters

The functionality of dynamic process spawning, introduced in MPI-2, provide MPI program-
mers with means for spawning new processes and parallel programs and establish communi-
cation with them dynamically during the execution of the parallel program. It, in fact, also
has a number of hidden problems and in some cases can cause non-efficient use of cluster re-
sources or lead to speeding down the performance of parallel program. To understand these
weaknesses, let's consider a standard configuration of a computational cluster, consisting of
an MPI library implementation for supporting interprocess communication and a task queu-
ing system for supporting task execution control and resource allocation for tasks, and try
to analyze the use of MPI-2’s dynamic processes functions [1] in this kind of environment.
To be more specific, let’s consider LAM/MPI [3] package as an MPI library implementation
(for its support of dynamic processes functions) and PBS [6]as a task queuning system (for its
being a de-facto standard in task queuing systems). Other packages are functionally similar
to the selected ones so they can be easily substituted.

To run a parallel MPI program in LAM/MPI environment, first of all a LAM run-time
environment or so-called "LAM Universe” has to be initialized on the nodes, where the
program should run. The initialization of LAM run-time environment also referred to as
"booting LAM”. All the MPI functions, called from the parallel program, are executed in
the framework of LAM Universe, in which the program runs. Particularly that means the

18

T. M. Grigorysn, V. G. Sahakyan 19

calls to process-spawning functions will result, and which is natural, in spawning of new
processes within the same LAM Universe.

Booting LAM is performed by a program from LAM/MPI package called lamboot. Lam-
boot works in two modes, rsh/ssh and tm [4, 5. In rsh/ssh mode lamboot must be provided
with a list of nodes, on which LAM Universe should be initialized, while in tm mode it will
obtain the node list form PBS through PBS's task management (tm) APL

When the parallel program is started from PBS, first of all PBS script should boot LAM
on the nodes assigned to that program by scheduler, resulting in a LAM Universe working
under PBS, After that the program can run in the newly created LAM Universe. In this
scenario everything is good as far as processes are not spawned dynamically. When trying to
spawn & process from the working parallel program, it has to be spawned on a cluster virtual
processor belonging to the same universe, thus, resulting in overloading cluster node, if all
the virtual processors in the universe already handle processes. On the other hand, if not
all of the virtual processors were used by the time a process dynamically spawned, resource
wasting had taken place. This fact can result in non-efficient overall usage of a computational
cluster when some of the computational resources overloaded while uther ones are wasted.

2 Cluster management and use model

The above described problem resides not in the implementations of MPI, but in the MPI
standard itsell. The aim of MPI is to provide a portable interprocess communication mecha-
nismn, and the tasks such as process and resource management are beyond of MPI. A cluster
operational and functional environment, built on existing packages, described in the previous
section, does not provide with means for effective process or resource management from in-
side of the working parallel program, and lack of such functionality is obvious. This section
is dedicated to development of system architecture for computational clusters, which will
support message passing and task management as well as provide mechanism for resource
allocating and freeing, resource state querying, dynamic process creation with taking into
account the overall load of cluster nodes and restrictions and establishing communication
between newly create processes.

Cluster management and use model, shown on fig.1, is three-tier system architecture,
providing on each layer a new type of functionality.

On the MPI level all interprocess functionality is available in the framework of a single
parallel program. MPI layer can be implemented using an MPI-1 library as well as MPI-2
library, meaning that process spawning will not be handled in this layer. The functionality
of interprocess communication layer is accessible from parallel program using MPI library
[unctions, g

The queuing system layer handles all the resource and parallel jobs management as well
as user management and enforces predefined policies on them. The functionality of this layer
is accessible to cluster users through a set of command line utilities. On standard cluster
system architectures functionality of this layer is provided by packages such as PBS. Queuing
system API layer provides functionality for checking the availability of resources, allocating
and freeing them and spawning new processes on them. It also includes functions for com=
munication between newly spawned processes, checking the execution status of processes,
retrieving results of execution of a process, etc. Being strongly coupled with the queuing
system layer this one sends all the requests for spawning processes to the queuing system,
avoiding form overloading computational resources. This layer is accessible from the parallel

20 Dynamic Process Management System Architecture for Computational Clusters

program through its Jibrary functions. There is no substitute for this layer in the cluster
system architecture described in the previous section.

program

[SR
I ==

r Quﬂh;m '_I Quauing system

Fig. 1

Described three-tier system architecture solves the problem of non-efficient use of clusttfr
resources, because it provides means for the parallel program to access "the outer world”.
More this architecture takes care that all process management is being done through the
queuing system, which makes it impossible to load a computational resource more than the
policy enforced by queuing system states.

Of course, the presented method is not the best solution for all of the parallel program-
ming tasks, which need dynamic processes, but it improves the performance of some kind
of parallel programs and the efficiency of using computational cluster as it is shown in the
section below.

3 Efficiency of Using Dynamic Resource Allocation with Process Spawning

Consider & parallel program and its oriented macrograph, which does not contain strongly-
coupled isolated submacrographs having more than one node [7]. In that kind of graph each
node represents a separate calculation or a subtask that takes arguments from input or from
the results of previously completed calculations and produces some results, that can be used
by other calculations. Lest divide nodes of graphs into groups in following way: put two
nodes in & group if and only if they does not have a connecting oriented path. We will get
a "layered” graph containing k layers. Lets hame the subtasks in the first layer A1, A1z,
.. Aqpy, in the second layer Ag, Am, ... Agg,, etc., in the k-th layer Ay, A, ... Ak, (fig.

2). _
Ml . [Aa
Mol ke
% . i

: Fig. 2

Obviously, for completing all the subtasks in the i-th layer (i > 1), it is necessary that all
the tasks in the i — 1-st Iayer have been completed. Let’s denote the number of processors,
needed for execution of task Ay; through p; and the amount of time, needed for its comple-
tion through t;;. In this section some possibilities will be introduced for programming and
executing such kind of parallel tasks, which can be decomposed into a set of weakly-coupled
smaller parallel tasks (subtasks). Different scenarios of running such a program are possible,
each having its advantages and disadvantages:

T. M. Grigoryan, V. G. Sshakyan 21

I. Run the whole program at once and execute subtasks in each sequential section se-
quentially

2. Iun the whole program at once and execute subtasks in each sequential section in
parallel

3. Run all the subtasks sequentially
4. Run subtasks in each sequential section in parallel, running the sections sequentially
5. Use dynamic resource allocation
Let’s define function € as following
C=7(T)+x¢

where 7() is a non-decreasing function (if t; > t; then 7(t;) > 7(t3)) showing the cost of
waiting for time f, 7' is the amount of time needed by the program to complete, 7 is the
cost of using one processor for a unit of time and € is the amount of used resources, being
a product of the number of used processors and time of use. This function represents the
cost for running parallel program. In the cases 3, 4 and 5 a parameter should also be
considered, showing the time needed to spawn & program through the queue management
systemn. The function 7(t) depends on the parallel program (in other words it is a program-
specific parameter), and the values of = and 0 depend on the cluster configuration and usage
policy (they are cluster-specific parameters).

Let’s calculate the cost C' of execution of program for each scenario, considering 7 as
the cost of using one processor for a unit of time and 7(t) as a function showing the cost of
waiting for time ¢

I. In the first scenario the number of processors P, to be reserved and the amount of
time 7; of the program execution will be described by the following equations

k my
Pi= mey o) o Ti=3.3 1
1<j<ny

=1 =1
The cost of execution will be expressed through the following expression

k iy
Ci=1()+xPTi=71 Z)"j‘u) +7 max (m)i:):lu

15=1 lf‘jgm i=] j=1
IL. In the second scenario values of P; and Tj will be respectively
n k
Po=pe3Qop) o Ta=3 max ty
and the cost of execution will be

k : - -
Cy= T(Ta] +7RT; = "'(‘_Zl 1%‘,‘?_:’,‘,' %) T ® g‘as,i(;pu) El Stv -

22 mmcmwwmwmhmpmﬁmﬂmmm

III. In this case the amount of processors used by program is variable nnd_de'pendsl on
a particular subtask that is currently executed. So, the value of Py will vary during the ime
and Ps € {pyll €1 <k, 1<j<mi}. The overall time, spent for completing the execution

of the whole program will be
E m k
Ty=3.3 ty+ (L m—10

i=14=1

Thecoatinthiscasewillbamcpressedas

k™ k k. m
Co=r(L Dty + (om—18) +7 23 tipy
=] j=1 i=1 =1 j=1

IV. Inthiacasealsot.hanumbm‘ofpmwssorswmbemiableandwﬁllchangethrough
the time, taking values Py € {Tjk pyli = 1,...,k}. The exccution time of the overall
program will be ¥

T4=‘§]n5}g‘tu+(k—1}8

The cost of execution will be

k k n
Ci =1-(Elg}g‘t¢,+(k— 1)8)+1r§§(pu 121121\:“1‘.,‘,)

V. When using dynamic resource allocation, processors will be reserved by the program
ast.heyneededandwillherelaasedasthayhewmeidla.soiuthiscasealsothenumberof
pmﬂﬁllchmgsdynmﬁea]]ydurinsthemuﬁonofpmgmm. Depending on cluster
load, the real time of program execution will be between its maximum and minimum values,
which are

k. om k
T =32 ty+ (o m—1)0

i=1j=1

k
nm=‘§1%tu+(k—1)9

Based on this expressions for maximal and minimal times, the maximal and minimal costs
of execution can be calculated

k mi k E m
(¢ =f(ZZtu+(§m— 1)6) +n§§mtﬁ

fm=] jm=l

k k ng
crr =7 +(k=1)0)+~
T = B 0)+7 33 Pt
Depending on cluster load, the cost of execution C} using dynamic resource allocation will
vary between these two values, CT¥" < C < Cp™®
Having the function 6(t), the values of 7 and 6, a parallel program and its decomposition
into subtasks and having the values of py; and #;; for each of the subtasks it is possible to

" T. M. Crigoryan, V. G, Sahskyan 23

i caleulate the costs of execution for the cases described above and find a case, in which the
. cost of execution is minimal.
It is obvious that C3*" < C; and C7"*® = C; meaning that cost of execution in cases 3
and 4 can be greater or equal to that in case 5. It is also obvious that depending on value of
' and nature of function 7(t) the cost provided by the fifth cese can be lower than the one
provided by first or second cases. For example, if the time of spawning a parallel program
through & queueing system is considered to be 0 (6 = 0), then CP*** < C; and 7" < G,
- meaning that the cost of program execution in case 5 can be lower or equal than that in
. cases 1 or 2,

4 Structure of System for Dynamic Resource Allocation and Process Man-
agement

To support the system architecture described above a System Dynamic Resource Allocation
and Process Management has been designed. The system provides functionality for queuing
system and queuing system API levels, shown on fig.1. It consists of three main pieces: main
maodule, API library and user interface commands,

Most of the functionality of the system is encapsulated inside the main module, It is re-
sponsible for management of task queues, running tasks and collecting results, computational
resources management, user management, enforcing policies, etc. These responsibilities are
distributed between four major subsystems of main module: Queue Management Subsys-
tem, Task Management Subsystem, Process Management Subsystem and Request Processing
Subsystem (fig. 3). Besides the concepts, which are used when working with regular queuing
systems (such as "job” or "task”, "queue”, " virtual processor”), dynamic resource allocation
system introduces its own specific concepts: task context, context size, task rank and context
attributes.

Task context is a virtual environment, in which the task is being executed. For each
separale task, submitted by user, a new context will be created for task execution. When
processes (task) spawn from parallel program, they are executed as a separate task in the
context of spawning task. Context size is the number of tasks executing in the context. Each
task has its unique identifier in its context, called task rank. On creating context, its size
always has the value of 1, and the original task, for which the context was created, always has
rank of 0 in that context. Tasks, executed in the same context can communicate through
the context, using each other rank’s for addressing. Two mechanisms of communication
between tasks are possible: active communication and passive communication. In active
communication send /receive mechanism is used, like in MPI's point-to-point communication,
Passive communication deals with so called context attributes, using set/get mechanism.
Simpler, a task can set an attribute in the context, giving it a name, and another task after
some time can check on the availability of the attribute with a given name in the context
and retrieve its value.

24 Dynamic Process Management System Architecture for Computational Clusters

i

[R:C

Cluster Head Machine
Fig. 8
API library provides a set of functions, allowing the programmer to interact with "outer
world” from parallel program in the framework of its context. These functions include
functions for querying the queuing system, functions for active and passive communications
and functions for allocation of computational resources and spawning processes as new tasks
through the queuing system.

User interface provides users with a set of command line utilities, which allow manipu-
lating tasks, viewing information about queues and task status,

The request processing subsystem provides a unified querying interface for main module.
It handles the execution of all of the incoming requests to the main module, whether from
the user interface or API library.

Queue management subsystem handles task queues and resource management. It also
provides scheduling capabilities for mapping computational resources to the job by using
preset policies. The policies used by queue management subsystem are set through config-
uration files and include the resources accessible from each queue, the algorithms for each
queue according to which the tasks in that queues are served, etc. This subsystem can be
implemented using an existing queuing system such as PBS. Task management subsystem
provides task context abstraction and encapsulates a mechanism for the task to interact
with the context and with the other tasks in the same context. It is also responsible for
creating and destroying contexts, launching and killing tasks and collecting task resource
usage statistics and the results of its execution.

Process management subsystem is responsible for immediate spawning of processes of a
parallel program. It also serves as an interface to which API library sends its requests and
from where it receives responses and events. The implementation of this subsystem is more
likely to use & process spawning mechanism provided by the MPI package.

The description of the API library and user utilities is given in [8], where a simple
implementation of such a system is also described. :

T. M. Grigoryan, V. G. Sehekyan 25

5 Conclusion

The use of dynamic resource allocation in some cases can lower the cost of program execution
on cluster. Depending on the program and its algorithm, that difference in costs can be reaily
valuable. The created system for dynamic resource allocation allows to benefit from the
decomposition of a parallel task into sequential groups of subtasks by providing a mechanism
for spawning a new parallel program from a running one through the queue management
sysiem.

References

[1] Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface
(http://www.mpi-forum.org/docs/mpi-20.ps)

[2] W. Gropp, E. Lusk. Dynamic Process Menagement in an MPI Setting; Mathematics
and Computer Science Division Argonne National Laboratory, 1995

[3] G. Burns, R. Daoud, J. Vaigl. LAM: An Open Cluster Environment for MPI; Proceed-
ings of Supercomputing Symposium, pp. 379-386; 1994

[4] J. M. Squyres and A. Lumsdaine. A Component Architecture for LAM/MPI; Proceed-
ings, 10th European PVM/MPI Users’' Group Meeting, pp. 379-387; 2003

(5] B. Barrett, J. M. Squyres and Andrew Lumsdaine. Integration of the LAM/MPI En-
vironment and the PBS Scheduling System; Proceedings of the 17th International
Symposium on High Performance Computing Systems and Applications and OSCAR
Symposium, pp. 277-283; 2003

[6] A. Bayucan, R. L. Henderson, J. P. Jones, C. Lesiak, B. Mann, B. Nitzberg, T. Proett, J.
Utley. Portable Batch System, OpenPBS Release 2.3, Administrator Guide; Veridian
Information Solutions, Inc., 2000

[7] B.B. Boesoym, BA.B. Boesoau. IapareAnHnie BHRCACHES; "BXB-Tlerep6ypr”, Cankr-
IMetepbypr, 2004.

[8] T. Grigoryan, V. Sahakyan. Dynamic Resource Manager for Clusters. Proceedings of
CSIT2005, pp. 439-442; Yerevan, 2005

26 Dynamic Process Management System Architecture for Computational Clusters

2wynmuljwG YuuntpGhph ghiwshy ppwgpGhph
nhlujwpdwl hudwijwpgquhl Gwpmuopwbnmpjoi

S. UL Qnhgnpjub
Wiithnthoud

Guuunbpuwhl hwiwljupgh Swlnupbnfjudnipjwi L ogunwgnpdnnGph pubwih wi)
htun dhipntn wewg & quijhu npw hwainnuiw(nbunpuGiph thhlnhy oguwgnpiniwl
wnpibip: UnwemGmi &G nbumpuGbph «wqGhg» ogunuugnpdiwl L phnGjwdnpjml
hwjwumpulzninG uGnhpGhpp, npnlp winp kmoybi puunbph owbpwghnl Shewwjph
ynnihg: Qnympyml mbgnn dhluwGhqiGbpp wwwhnjmd b6 wyn ughpibpp menwip
pwih nhn qmquhbn dpwgpbpp wziuunmd B0 phpujwd pulwynipyulp wpngbunplibph
Ypu:
dwgynnuipwl nbunipuGbph ghundhy quunbigoup L wquuanuip fupon E qquihnpb
pwpdpglby hybu qmquhbn dpuigph wpnumponwipnGmpimGp, wilubu & Gwunbph
oquuqnpdiul Epblympmpmbp: UnyG hoqpjwond Gpupugpiwe - hwajnnqwijwi
ntunipulbph nhiwdhy quubignud L ghfwdhy pnugpliph ubpnud wupehnnn Ywunbph
huswlwpquhl Swpnwpuubnmpmil, npp jupon £ wypGopulp hwighuwGw MPI-
2 wnwinumnh ghfwdhy plnugpGhph ubpdwl dofuwlhqihl: Snyg k wmjwd Guwl, ph
hG;wbu nhiwdhy ubpion plnwgpGhph Yhmunninp upnn & pupdpuglhy qmquhte dpugph
wnnunpnnulwinpmp:

