Mathematical Problems of Computer Science 24, 2005, 133-143.

An Efficient and Robust Access Method for Indexing of
Spatial Objects

Mihran S. Grigoryan

Institute for Informatics and Automation Problems of NAS of RA
e-mail mihran.grigoryan@buy.am

Abstract

There are considered the problems connected with the organization of probably
faster and effective access to geometrical objects (points, lines, and polygons), coded
in standard way in object-relational databases.

For maintenance of effective access the well-known method of so-called R-
trees is often used; improved versions of this method which allow to raise the speed
of access 1o objects of the mentioned specified type in comparison with usually
applied variants of a method of R-trees are considered.

For achievement of the mentioned purpose there are entered into considerations
R’- Trees, which represent certain updating of R-Trees, and R’- Trees allow to model
methods of linear and quadratic R-Trees of Gutman, and the variant of R-Trees
offered by Green.

So a number of advantages of R'-Trees in comparison with R-Trees are
established.

1. Introduction

In this paper we will consider spatial access methods (SAMs) which are based on the
approximation of a complex spatial object by the minimum bounding rectangle with the sides of the
rectangle parallel to the axes of the data space. The most important property of this simple approximation
is that a complex object is represented by a limited number of bytes Although a lot of information is lost,
minimum bounding rectangles of spatial objects preserve the most essential geometric properties of the
object, i.e. the location of the object and the extension of the object in each axis In [7] it is shown that
known SAMs organizing (minimum bounding) rectangles are based on an underlying point access
method (PAM) using one of the following three techniques: clipping, transformation and overlapping
regions. .
The most popular SAM for storing rectangles is the R-Tree [2). The R-tree is based on the PAM
Bi#-tree [9] using the over-lapping regions technique. Thus the R-tree can be easily implemented which
considerably contributes to its popularity.

The R-tree is based on a heuristic optimization. The optimization criterion which it persues, is to
minimize the area of each enclosing rectangle in the inner nodes. This criterion is taken for granted and
not shown 1o be the best possible. Questions arise such as: Why do not minimize the margin or the
overlap of such minimum bounding rectangles? Why do not optimize storage utilization? Why do not
optimize all of these criteria at the same time? Could these criteria interact in a negative way? Only an
engineering approach will help to find the best possible combination of optimization criteria.

Necessary condition for such an engineering approach is the availability of a standardized testbed
which allows us to run large volumes of experiments with highly varying data, queries and operations.

133

MEﬁdmlMWﬁmWthSﬂﬂoﬂm
amdlﬂm&dmdusdhﬁrpaﬁmmmmwuy

int access methods 4].
ormmaﬁamuhuf[olrmwchwduipdanmnmmmn'.mmm
th:knwnR-uuvnrlntsunderﬂlgxpulmmtg.menﬂjﬂcmﬁlmofmwwmh
pinlnpafomluﬂisquim a.Adetimnﬂywthcmunlpom:quu-y_mﬂﬂml i
mdmans!undusmqw.unmR'-uuw;mlyméfnrmmomeﬂwﬂH
wjmwwbmormmmwmﬁmmwemmm jatal
systerns.

This horpnindufououmnnionz.weim'adwthepﬂmipluofn-m including
wmﬂﬁmgmMunsmwumawmorme,
W!&BdﬂlﬂlﬂfWR'-mmmuluofﬂwmmpnﬂmof&gR'wm

Section 4 describes in .
theoﬂwn-uwmimmrepumdinuaions.smwsmcluduﬂ:epupu.

2. Principles of R-trees and possible optimization criteria

MR—mhn%mﬁkBMmemlﬁdimdwﬂmglsum
objects without clipping them or transforming them fo higher dimensional points before. A non-leaf node
mujmenﬁuofﬂ:efwm(cp,lumsla)whuecphﬂ:esddmsoftchildnodnhﬂna-ummd
Wisﬂmaﬁﬁmumboundinsmnahofnﬂmunslﬂwﬂchmmuiummnﬂuldmde.aluf
nodewnninsumiesofmem(OId.Rmsle)whmOH:d‘uawsmmﬂindudmlue,
dm-ihtngup.ﬁa!objaumdamsleisﬂnmdmmhofmmwnblmwm
mulnhgmuiaofmefom(dmwjm.kmsle)mdsopwib]ammunotaﬁ‘enmm
smmmofﬂ:ek-unlnﬂnfuﬂuwingwemumtmﬁdusnwlﬂfmdu.

mmbethsmnimumnmburofuﬂﬂumﬂllﬁiiumenodemdlambeam
sps‘-lfylnsthemhimumnmnbﬂnfﬂmiuEnanoda'(zd-mﬂ-MfZ).AnR—uwsﬂsﬂuﬂufnllmng
properties:
oThe:oothunlullmdiﬂd:munlmnisuaf

osmmhfnmmmmmmdm:ﬁu&mm]miﬁnmem

-vaylufmdoamtnimbetmmmdeﬂuunlmhilﬂmm

o All leaves appear on the same level

An Retree (R'-tree) is completely dynamic, insertions and deletions can be intermixed with
mﬂi:undnoperiodicglobdmmﬁnﬂmlsmﬁ?&m.ﬁwmummmﬂlwmhpﬁng
Mrmmﬁmhmﬂgumdﬂoﬂymmmumtﬂrdfwmmm
quuy.Fwﬁudwluﬁnmnﬁmwemfertn[Z].

Wawiilmmwmmmm@mmiqudOHumimpbaM“m
miwwfomﬂﬂmhmemllommmmem'dimmﬂqwhlchh
geumeﬂlul]yd:_emjnhnum!unﬂn;mslsofﬂumdﬂlyhzmalu.

mmmqmmuwmmmmmm.mhmmnr
gnodrw'levnlpgmunﬂutuﬁwﬂhlwwmluw.mmhhimmlblewopﬁmh
mufmmwrﬂmminﬂumdngomemmw:hmmndemiwaﬁmofﬂwmum
Mnm.slneeﬂmdmmsl'mhﬂemdifﬁwunsinmdshpemdﬂn
directory rectangles mw-mdshrhkdymuﬁnﬂy,themnfmuhods which will optimize one
Wmmhmmﬁmahﬂﬁcmﬂhwﬁﬂmisbudmmydm
ﬂpuhnmuwﬂadoutinuymﬂemm /
\ h&hnﬂimmeofﬁumﬁdnmmmﬁﬂﬁrﬂumiwﬂw{omnum
:ﬂmyc:idmmmdmdamﬁﬂhunmammdnpﬁuﬂnﬁmuim“
I)Theuumuedbyndimchrymnaleahouldheminimind. i.e. the area covered by the

bquqﬁumnﬂemw?nwwhuﬂmdmmnﬂnﬂududmahmﬂdbenﬁnlmmﬁh
wﬂl:mmwperfommanmdwslomvﬂﬁdiplﬁuhavembemvused.mnbenkenmh@wle\rds.

MLS. Grigoryan 135

2) The overlap between directory rectangles should be minimized. This also decreases the
number of paths 1o be traversed.

3) The margin of a directory rectangle should be minimized. Here the margin is the sum of the
lengths of the edges of a rectangle. Assuming fixed area, the object with the smallest margin is the square.
Thus minimizing the margin instead of the area, the directory rectangles will be shaped more quadraric,
Essentially queries with large quadratic query rectangles will profit from this optimization. More
important, optimization of the margin will basically improve the structure. Since quadratic objects can be
packed easier, the bounding boxes of a level will build smaller directory rectangies m the level above.
mmdunuingreclmgluhmhwndiubmuwhhmﬂyIiﬁevuimuufdnlmgduofﬂnedgﬁwﬂi
reduce the area of directory rectangles.

4) Storage utilization should be optimized. Higher storage utilization will generally reduce the
query cost as the height of the trec will be kept low. Evidently, query types with large query rectangles
are influenced more since the concentration of rectangles in several nodes will have = stronger effect if
the number of found keys is high.

Keeping the area and overlap of a directory rectangle small, requires more freedom in the number
of rectangles stored in one node. Thus minimizing these parameters will be paid with lower storage
utilization. Moreover, when applying | or 2 more freedom in choosing the shape is necessary. Thus
rectangles will be less quadratic. With 1 the overlap between directory rectangles may be affected in a
positive way since the covering of the data space is reduced. As for every geometric optimization,
minimizing the margins will also lead to reduced storage utilization. However, since more quadratic
directory rectangles support packing better, jt will be easier to maintain high storage utilization.
Obviously, the performance for queries with sufficiently large query rectangles will be affected more by
the storage utilization than by the parameters of 1-3.

3. R-tree Variants

The R-tree is a dynamic structure. Thus all approaches of optimizing the retrieval performance
have to be applied during the insertion of a new data rectangle. The insertion algorithm calls two more
algorithms in which the crucial decisions for good retrieval performance are made. The first is the
algorithm “ChooseSubtree™. Beginning in the root, descending to a leaf, it finds on every level the most
suitable sub tree to accommodate the new entry. The second is the algorithm “Split™. It is called, if
“ChooseSubtree” ends in a node filled with the maximum number of entries M. Split should distribute
M+1 rectangle into two nodes in the most appropriate manner.

In the following, the ChooseSubtree- and Split - algorithms, suggested in available R-tree variants
are analyzed and discussed. We will first consider the original R-tree as proposed by Guttman in [2].

Algorithm ChooseSubtree

Step 1) Set N to be the root
Step 2) If N is a leaf,
return N
else
Choose the entry m N whose rectangle needs least
area enlargément to include the new data Resolve
ties by choosing the entry with the rectangle of smallest arca
end
Step 3) Set N to be the childNode pointed to by the
childPointer of the chosen eniry an repeat from Step 2

Obviously, the method of optimization is to minimize the area covered by a directory rectangle.
This may also reduce the overlap and the CPU cost will be relatively low.

Guttman discusses split-algorithms with exponential, quadratic and linear cost with respect to the
number of entries of a node. All of them are designed to minimize the area, covered by the two rectangles
resulting from the split. The exponential split finds the area with the global minimum, but the CPU cost is

136 Mmmmmmhﬂmfwm&ﬂngoﬁpﬂlﬂom
i to find
t:nmwilhmngor i T as for
mﬁﬂmmommmmwquwmmmhnmmnrm

mﬁuuﬂdlebimﬂmofMuﬂm.ﬂwqudmcR-wylddequhm
mmlmmlm(seeﬂnmdiunﬂ.m“
Algorithm Qu

proximations In his experiments, Guttman obtained nearly the same
the quadratic version We implemented the R-tree m both

will only discuss the quadratic algorithm in detail.

Mamqfﬂd-l entries into two groups]

Step I)MHMMMMEdumbemﬁmm«ofﬂwm

Step 2) Repeat

DistributeEntry();

until
ajlenuiumdlmlhmdoruneofﬂnmsmupshum-mluuiu

Step 3) ummwmwmmmp

such that it has the minimum number m

Algorithm PickSeeds: :

smpl)ForeadlpukofmﬁuE:de;.mmposa

mﬂekinﬂu&uﬁ;mﬂsmﬂﬂ,ma
Culmlmd-uuﬂl)-uu(E,rmu;Il)-ME;mlxIe).
smpz)Choouelhepalrwlﬂnheluwld.

Algorithm DistributeEntry:

swpl)mwhﬂﬂmmmmummmhmigned

Step 2) Addlttothemupwhuumva‘inn‘mdmdew&ll have

wbemlunedlmwmmmodmit.hom ties by
-:Idlnsmeuh-ymthegm\pwillnhemlﬂmlm,
mwmsmemwmmmnnm.

Algorithm PickNext:

Step l)quchmenotyamlpwp,alallmd,—ﬂ:eminm

roqud:dinmewminsmmnsleofemuplmlndudeﬁnecungle

Step 2) Calculate d; analogously for Group 2

sw3)cn1mﬂ;emuywiﬂ|memﬂmmndiﬁ=muhﬂmd..mddl

'l‘hca]gmid\mPIutSacd!ﬁndsthemm@mwhld:wmﬂdmﬁnlnpltmminme

S m.hmismuﬂ:emmdumﬁnmwmnlslmpnnmtwmemiunﬂmthem
wl.llwndwhemnllm,ifmm.gietmbediuhibutedmofverydiﬂ’emﬂsim(md)urtheovahp
.Wmmbmw.ﬂemmnhmmwmmmnmgmﬁbythccrl‘nuion of
..ﬁnimmnmPiak.Nmmdwnmthnmuywnhmebmun-goodnm-muainmsiunﬂm.

If this algorithm: starts with small seeds, problems may occur. If in d-f of the d axes a far away
rectangle hummwmmmﬂm“meoﬂhcmitwitlbedisu'ibtmdﬁmln&ed.them
and the area enl -Mufmemmdnudle-ﬂhebwudingmglewillbewysmde-me
distance is very large. This may initiare & very bad split. Moreover, the elgorithm tends to prefer the
bnundiugmmlglg,amedﬁnmtheﬁrﬂmiymuﬂohmﬂemunemd.ﬁlmhmsmlmed.h
will be larger than others. ’n-.usitncedslusuuadmnmwimlud:ﬁwwctmuy.itwillhemhmd
again and so on. Another problem inﬁa!ifou:gmuphuruchedﬂ:emnimumnumberofmuiuu-
m+1, all remaining entries are assigned to tii¢ otlier group without considering geometric properties.
Figmlgimmmplu!mwinxallﬂ:uemblm?hemkiulﬂwssplhwiﬂnmuchmdnp(ﬁg
lc)ousp!ilwiﬂ:Mdﬁhﬁoﬂofﬂmﬁumﬁemmﬁaﬁm(ﬂﬁlb}

Wa tested the quadratic split of our R-tree implementuficn varying the minimum nuinber of
entries m = 20%, 30%, 35%, 40% and 45% relatively to M and obtained the best refrieval performaiice
with m set to 40%. Gﬁd}!wqﬁmofwmplﬁns&ek—mﬁthothumumﬁmmngles,
Greene proposed! the following aitérative split-algorithm [1], to determine the appropriate path to insert 2
new entry she uses Guttman's original ChuoszSubtree-algorithm.

: Greene's-Split: .

[Divide d set of M+1 entry into two groups]

M.S. Grigoryan 137

Step 1) Invoke ChooseAxls to determine the axis
icular to which the split is to be performed
Step 2) Invoke Distribute
Algorithm ChooseAxis:
Step 1) Invoke PickSeeds (see p. 5) to find the two most
distamt rectangles of the current node
Step 2) For each axis record the separation of the two seeds
Step 3) Normalize the separations by dividing them by the length of
the nodes enclosing rectangle along the appropriate axis
Step 4) Return the axis with the greatest normalized separation
Algorithm Distribute:
Step 1) Sort the entries by the low value of then rectangles
along the chosen axis.
Step 2) Assign the first (M+1) div 2 entries 10 one group, the
last (M+1) div 2 entries to the other
Step 3) If M+1 is odd, then assign the remaining entry to the group whose
enclosing rectangle will be increased least by its addition
Almost the only geometric criterion used m Greene's split algorithm is the choice of the split
axis. Although choosing suitable split axis is Important, our investigations show that more geometric
optimization criteria have to be applied to considerably improve the retrieval performance of the R-tree In
spite of a well clustering, m some situations Greene’s split method cannot find the “right” axis and thus a
very bad split may result, Figure 2b depicts such a situation.

138
4. The R’-tree

mmmwwmﬂruﬁume

4.1 Algorithm ChooseSubtree

Tnsuhﬂtheptﬂblmofwﬂ

Insuﬂmpdh,p:eviwk—ueevuslmm
lnowinvuﬁpﬁmwemwdﬂnpnmmmm

parameter i consideration.
ﬂo%&ﬁﬁh@%%ﬂnﬂmofmmwmnmm;

LetEy, EnE,beﬂiemtliamthnmmt_node.

hen oversp (B0~ 5, are(ERectngle O EiReciangle) 1 1k 9P
iml, I

The versjon with the best retrieval performance is described in the following algorithm:

Algorithm ChooseSubtree:

Step l}Sele:baﬂnrout
Step 2) If N is a leaf,
return N

else

end

Ifthcohndrohmianohnwluvu[mimnnmlnim\mmhpm],
mmmmnmwmmowmmmmmm
ﬂummmmmmwmmmmwmmmm
least area enlargement,

rectangle of smallest area.

Swa)SetNmbetbed:ﬂdNodepolnmdtobymedﬁldPoimHofﬂfem
entry and repeat from Step 2. .

Fwdoodu&ubutmlafnod&ﬂmnﬁwmﬂho&didmouwﬁrmﬁm'nﬁﬁm
a!priihm.rurﬂnlufmdu.mlnimiﬁnsdnowhpwupafomedhm.

h&hwﬂmﬁemumofdaanﬂmswawhpilquadmicinthenmnberofmu-ies,
mfarunhmﬂ:uwuhpuﬁihd[oﬂ:eremrinofthcnodohnmbeulwhnd.ﬂm.fur
lnpnoduiznsweunreduuthenmnbuofuﬂdufarwhidmuulwmimhnwbedmn.simefm
mdimmmﬁmﬂathembubﬂitytnyieldﬂnmlnimmwdlpiavuysmall.'l'hua.inordarto
mm&umﬁi:muf&;@ﬁmm@thmﬂﬁdshﬂm:

fmimﬁcnmbvmlmawhpmu
Sort the rectangles in N in increasing order of then arca
wlﬂmmtneedsdtuimlweﬁmuwdmmgle

Let A be the group of the first p entries

From the entries m A, considering all entries in

N, choose the entry whose rectangle needs least
overlap enlargement. Resolve ties as described above.

M.S. Grigoryan 139

For two dimensions we found that with p set to 32 there is nearly no reduction of retrieval
performance 1o state. For more than two dimensions further tests have to be done. Nevertheless the CPU
mwﬂmﬁﬂu“hﬁﬁﬂvﬁwdﬂn&%ﬂmhmﬁddﬁcmu
reduced for the exact match query preceding each insertion and is reduced for the ChooseSubtree
algorithm itself.

The tests showed that the Choose Subtres optimization improves the retrieval performance

'wlﬂyhmkMMNMMmﬂmmhMMﬁhwmm
uniformly distributed small rectangles or points.

In the other cases the performance of Guttman's algorithm was similar to this one. Thus
pﬁndpliymimmmdmmbem

4.2 Split of the R’-tree

The R’-tree uses the following method to find good splits. Along each axis, the entries are first
sorted by the lower value, then sorted by the upper value of then rectangles. For each sort M-2m+2
distributions of the M+1 entries into two groups are determined, where the k-th distribution (k=1 ... (M-
2m+2)) is described as follows. The first group contains the first (m-1)+k entries, the second group
contains the remaining entries.

For each distribution goodness values are determined. Depending on these goodness values the
final distribution of the entries is determined. Three different goodness values and different approaches of
using them in different combinations are tested experimentally:

(i) area-value srea[bb(first group)] + area [bb(second group)]
(ii) margin-value margin [bb(first group)] + margin(bb(second group)]
(iii) overlap-value area[bb(first group) ! bb(second group)]

Here bb denotes the bounding box of a set of rectangles.
Possible methods of processing are to determine:
e the minimum over one axis or one sort
s the minimum of the sum of the goodness values over one axis or one sort
» the overall minimum
The obtained values may be applied to determine a split axis or the final distribution (on a chosen
split axis). The best overall performance resulted from the following algorithm.

Algorithm Split:

Step 1) Invoke Choose Split Axis to determine the axis,
perpendicular to which the split is performed
Smp?]lnvoko(}wm:Splithdﬂmmmbul
distribution into two groups along that axis
Step 3) Distribute the entries into two groups

Algorithm ChooseSplitAXis:

Step 1) For each axis
Sort the entries by the lower then by the upper value of their
rectangles and determine all distributions as described above
Compute S. the sum of all margin-values of the different distributions
end
Step 2) Choose the axis with the minimum S as split axis

Algorithm ChooseSplitindex:

140 Anﬂﬁchtuﬂmammhodfwmh;ufsmwobjm
Along the chosen split axis, choose the distribution

it wilh%lu minimum overlap-value. Resolve ties
wmlmhmwhhmimm area-value,

sthm is tested with m = 20%, 30%, 40% and 45% of the maximum number of
entries ;m A.:pm dmﬂ;“wimm values of M have shown, m = 40% yields the best performance.
Additionally, we varied m mtbellfccyclaofmmdmsmuk'-me in order to correlate the storage
utilizaties with geometric parameters. However, even the following ma.bnd did result m worse rqu:val
performance. Compute & split using m; = 30% GfM-MqWﬂF"W!{iPiﬁ using my =40%. If split (m;)
yields overlap and split (m,) does not, take split (m)), mhcnlmchkn !p'ln (mgz). d
Cmmmgtbecustoflhupl'rulpﬂthmoﬂheg-ueewewllm_mﬁmthefullomm,po,
ad:uis(dimiun)thcuuﬂuhuwmbawmdmmwhichmmqmIog(m)um,,\,“
gp:immu.lunstanabrsishummhmwomhﬂfofmemnofmespﬁtmwm,pm
cost is spent as follows. For each axis the margin of 2¢%(2*(M-2m+2)) rectangles and the overlap of 2*(M-

2m+2) distributions have o be calculated.

4.3 Forced Reinsert

Bnm.medR'-wummnMHmhﬂlﬁchd[ocﬁnaﬂ::mﬁammthem 1-e,
diﬁuunmqummufmsuﬁomvdllbulldupﬁﬂkunm For this reason the R-tree suffers from its
o[dMﬁmnmﬂsm:mdmuminofmammmhwm
dkmymmwmchmnmmbmpmuwawmmumhm
:imlﬁun.hmloﬂlmgminﬁmnfﬂudimmﬂahpcfomd during a'split. But this is
mmﬂpourandﬂmforeiﬂadﬂh!blemhwnmmpowuﬂﬂmdlminﬂ!lnsn-ummttnmiu

structure.

Tindisumedwoblmwwldheminﬂmdmevmwom&ifmﬂwﬁﬂedmdu,mmmg
ﬁumdemimofwdlwouldbemmdnndelhaoldmnlu.thlhwwnlppruﬂhofuuﬁng
mzduﬁllednudﬂiamk—heeismdeleteﬁaemdnmdmm{mmmeurphmﬂlmﬁuinthe
wnupondinglml[Zl‘meeChoweSmdgoﬁﬁmhuamdunuofdi:ﬁbﬁnamu
into different nodes.

Slueehwumbeupwted.thndwdelnimmdminwrﬁmofolddanremgleuwouldmve
hm&wﬂﬁmmwﬂzhfoﬂnmmhwmmelwﬂmmm
mihﬂywmammmeﬁmIMMummmmmmW;

impmmunafzmsupmsmidqmdingonﬂmtypuofmequﬁu.nmfouwdelm
mdnmlyhﬂfofﬂ:edﬂsmﬂthmminmhminmmheuvayﬂmplewlynfumlnsax]ningn-
tmedmﬁlnBuuhisiaamﬂcslumionmdfur‘nuﬂymﬂcdanﬁlumepukdguiﬂm[s]hamm

i approach.

To achieve dynamic reorganizations, the R’-tree forces entries to be reinserted -during the
MmmmﬁﬂmWhMmmmdmmmwMWum
mhﬂdkmudﬂywﬁdhﬂdﬂdmmm.&mfmﬂmuﬂw
mgnummumumtywmmmmhismmm

Algorithm InsertData:
Stepl)hwok:lnw‘tmlﬁnswiﬂiﬂleluflevelnl

parameter, to Insert a new data rectangle
Algorithm Insert:

Step 1) Invoke ChooseSubtree. With the level as a parameter, to find an
appropriate node N, in which to place the new entry B

Step 2) If N has less than M entries, accommodate E in N
IfN has M entries. Invoke OverflowTreatment with the
level of N as a parameter [for reinsertion or split]

M.S. Grigoryan 141

Step 3) If OverflowTreatment was called and a split was
performed, propagate OverflowTrestment upwards
I
If OverflowTreatment caused a split of the root, create 2 new root
Step 4) Adjust all covering rectangles in the insertion path such that they
are minimum bounding boxes enclosing then children rectangles

Algorithm OverflowTreatment:

Step 1) If the level is not the root level and this is the first
call of OverflowTreatment m the given level
during the Insertion of one data rectangle, then
invoke Reinsert

else
invoke Split

end
Algorithm Reinsert:
Step 1) For all M+1 entries of a node N, compute the distance between the centers
of their rectangles and the center of the bounding rectangle of N
Step 2) Sort the entries m decreasing order of their distances computed in Step 1
Step 3) Remove the first p entries from N and adjust the bounding rectangle of N
Step 4) In the sort, defined 111R 12, starting with the maximum
distance (= far reinsert) or minimum distance (= close reinsert),
invoke Insert to reinsert the entries
If & new data rectangle is inserted, each first overflow treatment on each level will be a
reinsertion cf p entries. This may cause a split in the node which caused the overflow if all entries are
rdmawdhmemlomhn.odwwhe:pﬁuwminmwmmmmmmy
situations splits are completely prevented. The experiments have shown that p = 30% of M for leaf nodes
as well as for nonleaf nodes yields the best performance. Furthermore, for all data files and query files
close reinsert outperforms far reinsert. Close reinsert prefers the node which included the entries before
and this is intended, because its enclosing rectangle was reduced in size. Thus this node has lower
probability to be selected by ChooseSubtree
Summarizing we can say: .
i mem«mmmﬁmmmmmmmlp
¢ As a side effect, storage utilization IS unproved
 Due to more restructuring, less splits occur
® Since the outer rectangles of a node are reinserted, the shape of the directory rectangles will be
more quadratic as discussed before.
Obviously, the CPU cost will be higher now since the insertion routine is called more often. This
Is alleviated, because less splits have to be performed. The experiments show that the average number of
disc accesses for insertions increases only about 4% (and remains the lowest of all R-tree variants), if
Forced Reinzert ir applied to the R’-tree.

5. Performance C‘on;pari.mn

We ran the performance comparison on Dell servers under Windows Serever 2003 using C#
implementations of the different R-tree variants and our R’-tree. Analogously to performance comparison
uf PAM’s and SAM’s in [4] keept the last accessed path of the trees in main memory. If orphaned entries
occur from insertions or deletions, they are stored in main memory additionally to the path.

As candidates of our performance comparison we seiccled the R-tree with quadratic split
algorithm, Grecne's variant of the R-tree and our R'-tree, where the parameters of the different structures
are set to the best valies as described in the previous sections. Additionally, we tested the most popular
R-tree implementation, the variant with the linear split algorithm.

Msmmmmmmhmdswm
structures we selected six data files containing about

142
wwmmmmﬂnfdwm

djmendonllmunslu.

|ou.oool__zw of all, the R’-tree clearly outperforms the Retree variants in all experiments. Moreover the

most popular variant, the linear R-tree, performs essentially worse than all other R-trees. The following

mnrhmphﬂimﬂnuupeﬂorﬂyofﬂwn'-uumwmparmnmmcnm
. T‘heR'-treeIIthemoﬂmbustmemodwmwiswimdbyﬂ:efmmnformgmﬁh
mdmdmﬁlelendukmmmm:oduunbymyouwwdm.nnynmm

mmisnouﬁmmwn'wunmmmm .

ThcplnInaﬂidmyofﬂ:eR‘mfornmllﬂmmllﬂuh.ishatlunfor[qum

mmuminﬂmwmmmmmﬁrhwquw.mﬂumg
emphasizes ofwowwofmk'w(lemducluemm
oﬂ:ﬂmmomukelymradm;ahuinmme).

° mm.xhnumpu-fommuepinufﬂna'-huumoverlllqwmdduuﬁlui;in
comparison to the linurR—hulhomM(lelttnkufonrnmuuImsut.hca'.wm‘m
Gmme’skmabomzoﬂandwtheqmdnﬁcn-uw 180%.

o Asaq:emd.ﬁ:ek‘-t:uhumebmwutmnﬁm)

Smdwyinmﬁmmnmmﬂrmmmcawmmum

increased, but essentially decreased regarding the R-tree variants.

. mnvmpmpin&rmwdlmapcaﬂmhmwmwﬂum@dn
The quadratic R-tree, Greene's R-tree and the linear R-tree require 147%. 171% and 261% of the
disc accesses of the R'-tree, respectively, averaged over all spatial Jam Operations.

The experimental comparison pcimedoﬁlhnihek'—uumpowdhthhmmeﬁidm
hmedummmuﬁndh:dmhnsymmiﬁnsbn&.mulddhuﬂniomlpnmmw
danhdmnnmdmmmlwwfonmmpdmwi&mﬂedmﬂmk'-mdm]y
WM’IRMMM:R—MMMWIMRMM:HW_
Moreover, forpolmdmmagﬂnlnpufommuofmen'-mowthemm is increased.
Additionally, the R'-tree performs essentially better than the 2-level grid file for point data.

Themwnospﬂinmtmﬂmdmthaw-mmhudmﬂnmduﬂlonofﬂnmmﬁnmd
mmofmadmwmglasmwmmvdwmmmmmm is very robust against
ugly data distributions.

Pwthmduumuw&nufﬂnemmptorheedndm;plﬂ:mumﬂ”
mmmhmmﬁmddymmiullyudwmiﬁnﬂmhmghumfuroﬂwnmmmm

insuﬁonmnofthek‘-uuislowmforﬂlewdlmwnkm

Al‘lhnughtth'-uuomﬁmmmpeﬁmmmfwmehplmmnﬂonofmek'-mh
wly:lighﬂyl'dsjuﬂhmfnrﬂleomerkm. .

References

[1] D Greene ‘An Implementation and Performance Analysis of Spatial Data Access Methods’, Proc 5th
Int. Conf, on Data Engineering. 606-615, 1989

[2] A Guitman 'R—mndymnﬂaindummufuupaﬂnlmchins‘.hocACM SIGMOD Int Conf
on t of Data, 47-57, 1984 2 :

[3] K Htarlchs ‘Thegﬂdﬁlesysmmlenmﬁonmdunmldisfonppllwiom'. Dlssertation No
7734, Eldgen6sslsche Technlsche Hochschule (ETH), Zuerich. 1985

[4] H P Krregel, M Schiwletz, R Schneider, B Seeger “Performance comparison of point and spatial
access methods”, Proc Symp on the Design and Implementation of Large Spatial Databases’, Santa
Barbara, 1989, Lecture Notes in Computer Science.

{5] J Nievergelt, H Hinterberger, K C Sevclk ‘The grid file an adaptable, symmetric multikey file
structure’, ACM Tram on Database Systems, Vol. 9, 1. 38-71. 1984

M.S. Grigoryan 143

. [6] N Roussopoulos, D Leifker ‘Direct spatial search on pictorial databases using packed R-trees’, Proc
| ACM SIGMOD Int. Conf on Management of Data, 17-31, 1985
[Y]BSacw H P Kriegel ‘Design and implementation of spatial access methods’, Proc 14th Int Conf on
' ‘ery Large Databases, 360-371, 1988
[8]BSee|u' H P Kriegel ‘The design and implementation of the buddy tree’, Computer Science
Technical Report 3/90, University of Bremen, submitted for publication, 1990
[9] D Knuth *The art of computer programming’, Vol. 3 sorting and searching, Addison-Wesley Publ.
Co., Reading, Mass, 1973

Swpwdwlw opjblnGhph hintpuwynpiwi dh
wpnymGubn L popuunn by oy

U Sphqnpyut
UWdthothmd

Unwipljw jwujbu-Ynnilnpozdwd ujwGbph puquibpnd Gyuwdmd b6 fulghplbp’ uupjws
bpypusgunhwlu opybyGhphG (Jinbphs, qObhG, puqiullmGibpht), Ynnuwinpwd unwlnupn
dbpnnn, hiwpuwdophl ywih wybh wpwg by Epbipujy ghidwl yuqinlbpyint hwpgn:

Eptlpnpy] nhinuip wymhndbine hodwp 6wl oguugopoynwi t wjugbu ynpjwd R-
Swnflbph dbpnnn. pOGwplymid b6 wyy dbponh Yunnwpbugnpdywd wwppbpwlGbpg, opalp, h
wnwppbpopnl R-ownbpp dbpnnh uminpwpwp gapdwdinn wwppbpwihG, poy B0 wwjhu
puipdpuigty Gzqwd whwh bpYpwywihwiwl wowplulbphl nhitin wpwgnipymp:

Lwd Guwnwhhl hwulbm hwiwp Gipdméynd b R'-5wnwghl wwpplipuyp, np6 hpkibhg
Gbpluwjuglnud k. R-dwnlbph npnzwih dnnhbhlwghw, ply npowd R*-0wnbbpp poy) b0 wwihu
Abjwiinfub) Gnundwlh qdwihl b vjubdwinhl (wpwdwlwi) R-ownlbkph dbponbbpp, hiswgbu
Gwi] Sphih wowywplwd R-wnlbph uwmuppbmulp:

i llém.qlnml hwunwmmd 60 R'-dwnlbph h wpp wonwbmpymGibp R-dwnlbph
widp:

