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Abstract

There are considered the problems connected with the organization of probably
faster and effective access to geometrical objects (points, lines, and polygons), coded
in standard way in object-relational databases.

For maintenance of effective access the well-known method of so-called R-
trees is often used; improved versions of this method which allow to raise the speed
of access 1o objects of the mentioned specified type in comparison with usually
applied variants of a method of R-trees are considered.

For achievement of the mentioned purpose there are entered into considerations
R’- Trees, which represent certain updating of R-Trees, and R’- Trees allow to model
methods of linear and quadratic R-Trees of Gutman, and the variant of R-Trees
offered by Green.

So a number of advantages of R'-Trees in comparison with R-Trees are
established.

1. Introduction

In this paper we will consider spatial access methods (SAMs) which are based on the
approximation of a complex spatial object by the minimum bounding rectangle with the sides of the
rectangle parallel to the axes of the data space. The most important property of this simple approximation
is that a complex object is represented by a limited number of bytes Although a lot of information is lost,
minimum bounding rectangles of spatial objects preserve the most essential geometric properties of the
object, i.e. the location of the object and the extension of the object in each axis In [7] it is shown that
known SAMs organizing (minimum bounding) rectangles are based on an underlying point access
method (PAM) using one of the following three techniques: clipping, transformation and overlapping
regions. .
The most popular SAM for storing rectangles is the R-Tree [2). The R-tree is based on the PAM
Bi#-tree [9] using the over-lapping regions technique. Thus the R-tree can be easily implemented which
considerably contributes to its popularity.

The R-tree is based on a heuristic optimization. The optimization criterion which it persues, is to
minimize the area of each enclosing rectangle in the inner nodes. This criterion is taken for granted and
not shown 1o be the best possible. Questions arise such as: Why do not minimize the margin or the
overlap of such minimum bounding rectangles? Why do not optimize storage utilization? Why do not
optimize all of these criteria at the same time? Could these criteria interact in a negative way? Only an
engineering approach will help to find the best possible combination of optimization criteria.

Necessary condition for such an engineering approach is the availability of a standardized testbed
which allows us to run large volumes of experiments with highly varying data, queries and operations.
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2) The overlap between directory rectangles should be minimized. This also decreases the
number of paths 1o be traversed.

3) The margin of a directory rectangle should be minimized. Here the margin is the sum of the
lengths of the edges of a rectangle. Assuming fixed area, the object with the smallest margin is the square.
Thus minimizing the margin instead of the area, the directory rectangles will be shaped more quadraric,
Essentially queries with large quadratic query rectangles will profit from this optimization. More
important, optimization of the margin will basically improve the structure. Since quadratic objects can be
packed easier, the bounding boxes of a level will build smaller directory rectangies m the level above.
mmdunuingreclmgluhmhwndiubmuwhhmﬂyIiﬁevuimuufdnlmgduofﬂnedgﬁwﬂi
reduce the area of directory rectangles.

4) Storage utilization should be optimized. Higher storage utilization will generally reduce the
query cost as the height of the trec will be kept low. Evidently, query types with large query rectangles
are influenced more since the concentration of rectangles in several nodes will have = stronger effect if
the number of found keys is high.

Keeping the area and overlap of a directory rectangle small, requires more freedom in the number
of rectangles stored in one node. Thus minimizing these parameters will be paid with lower storage
utilization. Moreover, when applying | or 2 more freedom in choosing the shape is necessary. Thus
rectangles will be less quadratic. With 1 the overlap between directory rectangles may be affected in a
positive way since the covering of the data space is reduced. As for every geometric optimization,
minimizing the margins will also lead to reduced storage utilization. However, since more quadratic
directory rectangles support packing better, jt will be easier to maintain high storage utilization.
Obviously, the performance for queries with sufficiently large query rectangles will be affected more by
the storage utilization than by the parameters of 1-3.

3. R-tree Variants

The R-tree is a dynamic structure. Thus all approaches of optimizing the retrieval performance
have to be applied during the insertion of a new data rectangle. The insertion algorithm calls two more
algorithms in which the crucial decisions for good retrieval performance are made. The first is the
algorithm “ChooseSubtree™. Beginning in the root, descending to a leaf, it finds on every level the most
suitable sub tree to accommodate the new entry. The second is the algorithm “Split™. It is called, if
“ChooseSubtree” ends in a node filled with the maximum number of entries M. Split should distribute
M+1 rectangle into two nodes in the most appropriate manner.

In the following, the ChooseSubtree- and Split - algorithms, suggested in available R-tree variants
are analyzed and discussed. We will first consider the original R-tree as proposed by Guttman in [2].

Algorithm ChooseSubtree

Step 1) Set N to be the root
Step 2) If N is a leaf,
return N
else
Choose the entry m N whose rectangle needs least
area enlargément to include the new data Resolve
ties by choosing the entry with the rectangle of smallest arca
end
Step 3) Set N to be the childNode pointed to by the
childPointer of the chosen eniry an repeat from Step 2

Obviously, the method of optimization is to minimize the area covered by a directory rectangle.
This may also reduce the overlap and the CPU cost will be relatively low.

Guttman discusses split-algorithms with exponential, quadratic and linear cost with respect to the
number of entries of a node. All of them are designed to minimize the area, covered by the two rectangles
resulting from the split. The exponential split finds the area with the global minimum, but the CPU cost is
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: Greene's-Split: .

[Divide d set of M+1 entry into two groups]
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Step 1) Invoke ChooseAxls to determine the axis
icular to which the split is to be performed
Step 2) Invoke Distribute
Algorithm ChooseAxis:
Step 1) Invoke PickSeeds (see p. 5) to find the two most
distamt rectangles of the current node
Step 2) For each axis record the separation of the two seeds
Step 3) Normalize the separations by dividing them by the length of
the nodes enclosing rectangle along the appropriate axis
Step 4) Return the axis with the greatest normalized separation
Algorithm Distribute:
Step 1) Sort the entries by the low value of then rectangles
along the chosen axis.
Step 2) Assign the first (M+1) div 2 entries 10 one group, the
last (M+1) div 2 entries to the other
Step 3) If M+1 is odd, then assign the remaining entry to the group whose
enclosing rectangle will be increased least by its addition
Almost the only geometric criterion used m Greene's split algorithm is the choice of the split
axis. Although choosing  suitable split axis is Important, our investigations show that more geometric
optimization criteria have to be applied to considerably improve the retrieval performance of the R-tree In
spite of a well clustering, m some situations Greene’s split method cannot find the “right” axis and thus a
very bad split may result, Figure 2b depicts such a situation.
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4. The R’-tree
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Let A be the group of the first p entries

From the entries m A, considering all entries in

N, choose the entry whose rectangle needs least
overlap enlargement. Resolve ties as described above.
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For two dimensions we found that with p set to 32 there is nearly no reduction of retrieval
performance 1o state. For more than two dimensions further tests have to be done. Nevertheless the CPU
mwﬂmﬁﬂu“hﬁﬁﬂvﬁwdﬂn&%ﬂmhmﬁddﬁcmu
reduced for the exact match query preceding each insertion and is reduced for the ChooseSubtree
algorithm itself.

The tests showed that the Choose Subtres optimization improves the retrieval performance

'wlﬂyhmkMMNMMmﬂmmhMMﬁhwmm
uniformly distributed small rectangles or points.

In the other cases the performance of Guttman's algorithm was similar to this one. Thus
pﬁndpliymimmmdmmbem

4.2 Split of the R’-tree

The R’-tree uses the following method to find good splits. Along each axis, the entries are first
sorted by the lower value, then sorted by the upper value of then rectangles. For each sort M-2m+2
distributions of the M+1 entries into two groups are determined, where the k-th distribution (k=1 ... (M-
2m+2)) is described as follows. The first group contains the first (m-1)+k entries, the second group
contains the remaining entries.

For each distribution goodness values are determined. Depending on these goodness values the
final distribution of the entries is determined. Three different goodness values and different approaches of
using them in different combinations are tested experimentally:

(i)  area-value srea[bb(first group)] + area [bb(second group)]
(ii)  margin-value margin [bb(first group)] + margin(bb(second group)]
(iii) overlap-value area[bb(first group) ! bb(second group)]

Here bb denotes the bounding box of a set of rectangles.
Possible methods of processing are to determine:
e the minimum over one axis or one sort
s the minimum of the sum of the goodness values over one axis or one sort
» the overall minimum
The obtained values may be applied to determine a split axis or the final distribution (on a chosen
split axis). The best overall performance resulted from the following algorithm.

Algorithm Split:

Step 1) Invoke Choose Split Axis to determine the axis,
perpendicular to which the split is performed
Smp?]lnvoko(}wm:Splithdﬂmmmbul
distribution into two groups along that axis
Step 3) Distribute the entries into two groups

Algorithm ChooseSplitAXis:

Step 1) For each axis
Sort the entries by the lower then by the upper value of their
rectangles and determine all distributions as described above
Compute S. the sum of all margin-values of the different distributions
end
Step 2) Choose the axis with the minimum S as split axis

Algorithm ChooseSplitindex:
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4.3 Forced Reinsert
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To achieve dynamic reorganizations, the R’-tree forces entries to be reinserted -during the
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Algorithm InsertData:
Stepl)hwok:lnw‘tmlﬁnswiﬂiﬂleluflevelnl

parameter, to Insert a new data rectangle
Algorithm Insert:

Step 1) Invoke ChooseSubtree. With the level as a parameter, to find an
appropriate node N, in which to place the new entry B

Step 2) If N has less than M entries, accommodate E in N
IfN has M entries. Invoke OverflowTreatment with the
level of N as a parameter [for reinsertion or split]
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Step 3) If OverflowTreatment was called and a split was
performed, propagate OverflowTrestment upwards
I
If OverflowTreatment caused a split of the root, create 2 new root
Step 4) Adjust all covering rectangles in the insertion path such that they
are minimum bounding boxes enclosing then children rectangles

Algorithm OverflowTreatment:

Step 1) If the level is not the root level and this is the first
call of OverflowTreatment m the given level
during the Insertion of one data rectangle, then
invoke Reinsert

else
invoke Split

end
Algorithm Reinsert:
Step 1) For all M+1 entries of a node N, compute the distance between the centers
of their rectangles and the center of the bounding rectangle of N
Step 2) Sort the entries m decreasing order of their distances computed in Step 1
Step 3) Remove the first p entries from N and adjust the bounding rectangle of N
Step 4) In the sort, defined 111R 12, starting with the maximum
distance (= far reinsert) or minimum distance (= close reinsert),
invoke Insert to reinsert the entries
If & new data rectangle is inserted, each first overflow treatment on each level will be a
reinsertion cf p entries. This may cause a split in the node which caused the overflow if all entries are
rdmawdhmemlomhn.odwwhe:pﬁuwminmwmmmmmmy
situations splits are completely prevented. The experiments have shown that p = 30% of M for leaf nodes
as well as for nonleaf nodes yields the best performance. Furthermore, for all data files and query files
close reinsert outperforms far reinsert. Close reinsert prefers the node which included the entries before
and this is intended, because its enclosing rectangle was reduced in size. Thus this node has lower
probability to be selected by ChooseSubtree
Summarizing we can say: .
i mem«mmmﬁmmmmmmmlp
¢ As a side effect, storage utilization IS unproved
 Due to more restructuring, less splits occur
® Since the outer rectangles of a node are reinserted, the shape of the directory rectangles will be
more quadratic as discussed before.
Obviously, the CPU cost will be higher now since the insertion routine is called more often. This
Is alleviated, because less splits have to be performed. The experiments show that the average number of
disc accesses for insertions increases only about 4% (and remains the lowest of all R-tree variants), if
Forced Reinzert ir applied to the R’-tree.

5. Performance C‘on;pari.mn

We ran the performance comparison on Dell servers under Windows Serever 2003 using C#
implementations of the different R-tree variants and our R’-tree. Analogously to performance comparison
uf PAM’s and SAM’s in [4] keept the last accessed path of the trees in main memory. If orphaned entries
occur from insertions or deletions, they are stored in main memory additionally to the path.

As candidates of our performance comparison we seiccled the R-tree with quadratic split
algorithm, Grecne's variant of the R-tree and our R'-tree, where the parameters of the different structures
are set to the best valies as described in the previous sections. Additionally, we tested the most popular
R-tree implementation, the variant with the linear split algorithm.
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. mnvmpmpin&rmwdlmapcaﬂmhmwmwﬂum@dn
The quadratic R-tree, Greene's R-tree and the linear R-tree require 147%. 171% and 261% of the
disc accesses of the R'-tree, respectively, averaged over all spatial Jam Operations.

The experimental comparison pcimedoﬁlhnihek'—uumpowdhthhmmeﬁidm
hmedummmuﬁndh:dmhnsymmiﬁnsbn&.mulddhuﬂniomlpnmmw
danhdmnnmdmmmlwwfonmmpdmwi&mﬂedmﬂmk'-mdm]y
WM’IRMMM:R—MMMWIMRMM:HW_
Moreover, forpolmdmmagﬂnlnpufommuofmen'-mowthemm is increased.
Additionally, the R'-tree performs essentially better than the 2-level grid file for point data.

Themwnospﬂinmtmﬂmdmthaw-mmhudmﬂnmduﬂlonofﬂnmmﬁnmd
mmofmadmwmglasmwmmvdwmmmmmm is very robust against
ugly data distributions.

Pwthmduumuw&nufﬂnemmptorheedndm;plﬂ:mumﬂ”
mmmhmmﬁmddymmiullyudwmiﬁnﬂmhmghumfuroﬂwnmmmm

insuﬁonmnofthek‘-uuislowmforﬂlewdlmwnkm

Al‘lhnughtth'-uuomﬁmmmpeﬁmmmfwmehplmmnﬂonofmek'-mh
wly:lighﬂyl'dsjuﬂhmfnrﬂleomerkm. .
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Swpwdwlw opjblnGhph hintpuwynpiwi dh
wpnymGubn L popuunn by oy

U Sphqnpyut
UWdthothmd

Unwipljw jwujbu-Ynnilnpozdwd ujwGbph puquibpnd Gyuwdmd b6 fulghplbp’ uupjws
bpypusgunhwlu opybyGhphG (Jinbphs, qObhG, puqiullmGibpht), Ynnuwinpwd unwlnupn
dbpnnn, hiwpuwdophl ywih wybh wpwg by Epbipujy ghidwl yuqinlbpyint hwpgn:

Eptlpnpy] nhinuip wymhndbine hodwp 6wl oguugopoynwi t wjugbu ynpjwd R-
Swnflbph dbpnnn. pOGwplymid b6 wyy dbponh Yunnwpbugnpdywd wwppbpwlGbpg, opalp, h
wnwppbpopnl R-ownbpp dbpnnh uminpwpwp gapdwdinn wwppbpwihG, poy B0 wwjhu
puipdpuigty Gzqwd whwh bpYpwywihwiwl wowplulbphl nhitin wpwgnipymp:

Lwd Guwnwhhl hwulbm hwiwp Gipdméynd b R'-5wnwghl wwpplipuyp, np6 hpkibhg
Gbpluwjuglnud k. R-dwnlbph npnzwih dnnhbhlwghw, ply npowd R*-0wnbbpp poy) b0 wwihu
Abjwiinfub) Gnundwlh qdwihl b vjubdwinhl (wpwdwlwi) R-ownlbkph dbponbbpp, hiswgbu
Gwi] Sphih wowywplwd R-wnlbph uwmuppbmulp:

i llém.qlnml hwunwmmd 60 R'-dwnlbph h wpp wonwbmpymGibp R-dwnlbph
widp:



