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Abstract

Investigations in this paper concern the anelysis of case splitting [(~ A — B) —
(A — B) — B) in an arithmetical system. It is shown that the case splitting can
be done eccording to & thicker class of formulas (quantifier-free formulas) instead of
decidable formulas, The latter includes the class of quantifier-free formulas. Some
approaches to the case splitting, promoted by other authors, have been investigated,
and some corrections concerning the selection of quantifier-free formulas instead of
decidable formulas have been done. According to these corrections, a new derivation
of case splitting is suggested.

Introduction to minimal logic and arithmetic (Necessary Definitions)

i first, let us give required definitions of notions in minimal logic. Thereby, providing
swsential foundation, further we shall extend our considerations to arithmetic. Let us first

% our language L. Types are built from ground types (¢ - for the natural numbers and o -
3r the boolean objects) by the operations p — ¢ and p x ¢. For any type p let a courtable
fifinite set of variables of type p (denoted by z?,7, ...) and a set C of constants of type p

alenoted by ¢?) be given.
Terms and their types are defined inductively by

Vz*,c" € Terms
r7=9, s € Terms = (rs)” € Terms
1’ € Ta‘r;u = (Azfr)f~? € Terms
180, #" € Terms = (tp,1,)*°*** € Terms
1#9%1 € Terms = (m(t))" € Terms, i€ {0,1}

Since any term has a unique normal form with respect to 8n- conversion, in the sequel
we will identify terms with the same 87- normal form. Recall the definitions of # and n

ceductions
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g={ (Pztyr tie="D} n={()z.Mz,M) | = ¢ FV(M)}.

ThesetFV(r)ofﬁumn’aMuofammriade.ﬁneduusual.
AmumathataaatPoipredicawsymbolsRofnﬁtiea P1y---+ Pn i8 given. O-ary relati
are called propositional gymbols. Fb-rmxdaam_-edeﬁ.ned by:
I #Y,..., 00" are terms and B € P is a relation symbol of arity pi,...,pn, then
R(t;....,t,.)isa.fonnu]n.
1(to heread"falsit.y")isaformula-
HAmdBmfomdas,thanA-rBisaformul&
IanndBareformulaS,thunAABiuaformda.
IfAisafomulaandz’isawriahle.then_Vz’Aisaformtﬂa.
R(t,,...,t.,)and.l.arecalled atomicfmulaaoratoma(furtherwewiﬂretumtochi,

notion).

A term t is called closed, if FV(t) = 0. We write £[z,.--, ] to indicate that zy,...,z,
compoeetha]j.stofallﬁ'aevaxinblesint.

Da‘iuaﬁomarewit.hinminjmaliogic. ;

For any L-formula A let countably many ion variables of type A be given (denoted
by u#, v4, ...). The notions of a derivation term d# in minimal logic and its set FA(d4) of
free assumption variables are defined inductively by

[(A) w% 15 a derivation term with FA@RA) = {v'}.
al I i & derivation term, then (Au”d =H g a derivation term
(=) | with FAQwAG®) = FA@®)\{uh}.
—[ 1 d"® and e” are derivation terms, then (d*2¢”)” is a derivation term
(=) | with FA(dA-BeA) = PA(@*~F) U FA(Y).
("*) If d* and are derivation terms, then (d”, e is a derivation term
with FA((d4,eB)A\B) = FA(d*) U FA(eB).
) If @241 is a derivation term, then m(dA°1)A1 js @ derivation term
with FA(m(dA*M1)A) = FA(@AM1), i€ {0,1}..
) If d4 is  derivation term and z° ¢ U{FV(B)|u® € FA(d%)}, then (Az?d#)™™
is & derivation term with FA(\z?d4) = FA(d4).
) If 15 a derivation term and ¢” is & term, then tP)
is & derivation term with FA(d"4t?) = FA(d"4).

A term dA is called closed, if FA(d4) = 0. We write d®[u"*,..., up "] to indicate
that uA, ..., ud~ compose the list of all free assumption variables in d4. Further we also
use the notation d : A instead of d*.

FbranyderivationdwedeﬁneirasetFV(d) of free (object) variables by

FV(u"):=FV(4) ,

FV(\utd®) := FY(A)UFV(d®) ,
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FV(dA~BeA) := FV(d*~2) U FV ()
FV((d*,e®)) .= FV(d*) UFV(e®) ,
FV(m(d*'®)) := FV(d**®) ,
FV(Azd*) := FV(d*)\{z}

FV(d*4t) := FV(d"*A) UFV (2).

Twn kinds of substitution are provided for derivation terms d: we can substitute a deriva-
fion term f# for & free assumption variable u4, denoted d|f/u]; we can substitute an object
serm t for a free object variable z, denoted d[t/z].

Negation and the existential quantifier are defined by

—A=A—=1,
3z A:=-Vz-A.

Derivation terms in iniuitionistic and in classical logic are obtained by adding to the first
iassumption-) clause of the definition:

n the case of intuitionistic logic: For any R € P relation symbol Efqg : VZ.1 — R(%) is a
lerivation term with FA(Efqg) = @ (Ex-falso-quodlibet axiom);

n the case of classical logic: For any R € P relation symbol Stabg : VZ.-—R(Z) — R(Z) is
s derivation term with FA(Stabg) = @ (Stability axiom).

Hence, from the assumptions given above, we can prove: for any relation symbol R
securring in a forma A we can derive -~ A — A and L — A in classical and intuitionistic
ogic, respectively.

From == A — A one can clearly derive . — A. Therefore, any formula derivable in
ntuitionistic logic is also derivable in classical logic.

Let us now extend our L-language by a strong existential quantifier (the term a con-
tructive existential quantifier is also used in literature) written 3* (as opposed to 3 defined
)y =¥-). There are two approaches to deal with formulas containing 3° in a constructive
etting (e.g. in minimal or intuitionistic logic): Weyl’s approach and Heyting’s approach (3].

In this paper we consider only the Weyl's approach, that is:

1 formula containing 3* is considered not to be an entity the deduction system can deal with:
jome “realizing terms” are required to turn it into a “judgment”.

Let us now describe Weyl's approach. To every formula A and terms 7= r{’,...,rfm
ve associate a judgment ¥ mr A (to be read ¥ modified realizes A), which will be a formula
10t containing 3*. The list of types py, ..., pmn = 7(A) is defined as follows: (by ¢ is denoted
he empty list)

T(R()) :=¢ (inparticular 7(L) = &) (1)
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7(B) gT ({19})5 € ;
= 7(B)=¢
i { 7(A)—7(B)  otherwise X
TR
= B T(A)=¢
7(AAB): { :EA% < 7(B) e (3)
ifr(A)=¢
7(Vz"A) = { : — 7(4): otliarwies @
if T(A)=¢
(32 A) = { ‘:. x 7(A) ot.;erwim ®)

Nowjudgmmf"“)mrtimdeﬁnedby

EmIR(E) = R(E)I
T1yeeeyTn IOT (A- B) = VZZmr A—n,...,TaZmr B,
7, §mr (AAB) = fmrAA §mrB,
rl,...,r,er:vPB = Y211 %,...,Tnzmr B,
r, §mr 3'z°B = §Fmr Blr/z] .

Ammethattoanymumptiunmriableu"wehave assisnedglisti'ﬂm =z8},...,78n
ofdiaﬂnctminbles,whmpl,...,p,.=f(ﬂ). Relative to this assignment we define for any
Jerivation dA its extracted terms ets (d4), by induction on dA. If 7(A) = 01,...,0%, then
ota (d4) will be a list 157, ... 7" ;

ets (u') = ﬂ(‘) !
ets (AuAd?) = AT Wets (d) ,
ets (dA~BeA) = ets (d)ets (e) ,
ets ((d*, ef) = ets (d4), ets (€®) , (6)
et (1a(d#A2)) = (the head of ets(dAAP) of same length as 7(4)) ,
eta (my (@A°B)) = (the tail of ets(d4 B) of same length as T(.B)) :
ets (d"*"At°) = ets (d) ¢ -

Note that if ets(d) = r1,...,7¢ and ets(e) = &, then ets(d)ets(e) = 715,...,7:8 and
Azets (d) = AZTy, .., AZTR:

Let us now extend these considerations to arithmetic. It is based on Godel’s system T
and just adds the corresponding arithmetical apparatus to it. Here we identify terms with
the same normel forms.

" The constants are

true®, false®, 0%, S, Ro,ps Ri,p-

R.,,istheprimiﬁuemcm-aimopemtoroftypep—»(c-ap—m)-—n.-vpandR.,,,i.sthe
racu:sionopemt.orfort.hetypeoofboolm.i.e. is of type p — p — 0 — p and represents
definition by cases. Terms have already been defined at the beginning of the paper. We add
the following conversion rules (writing ¢+ 1 for S ). .



Rurao —RT,

R rs(t+1) —=pst(R,,rst),
R, rstrue —pr,

R,,rsfalse —p 5.

For this system of terms every term strongly normalized, and that the normal form is
niquely determined. By identifying =5 z-equal terms we can greatly simplify many formal
sderivations.

Let atom be an unary predicate symbol taking one argument of type 0. The intended
imterpretation of atom is the set {true}; hence “atom(t)” means “¢ = true”. Formulas
wre built from atomic formulas by means of —, A, ¥ and 3°. Recall that L is considered as
Iitomic formula, since it can be defined L := atom(flase).

Our induction schemata are the universal closures of

Al0/n] — (¥n.A— Aln+1/n]) - V¥nA,
Altrue/p] — Alfalse/p] — Yp(A).

We also extend the notion of a derivation term by constants for the “truth axiom”
“WXrue, induction axioms (Ind,, 4 and Ind,, 4) and &g, 4 axiom. Hence derivation terms in
nrithmetic are obtained by adding the clauses

By, ¢ atom(true), with FA(aZie) =0 (T :atom(true) form is also usable),
AXfalen, 4 : 8tom(false) — A, with FA(0Zfuse 4) = 0,

Ind, 4 : V. Aj0/n] = (¥n.A— A[n+1/n]) > YnA, with FA(Ind, ») =0,

Indy, 4 : V. Altrue/p] — A[false/p| — ¥pA, with FA(Ind, 4) = 0.

(7)
Clearly FV(T') := FV (8Xquise, 4) := FV(Ind,, 4) := FV(Ind,, 4) = 0.
The notion of extracted terms can straightforwardly be extended to this situation. In
the case of Ind,, 4 we have to prove

(e, 1) tr-VELARO/] = (e A= Al 4 15D = Yo A.

VY f¥n.g mr Al0/n] — (¥n¥y,.gi mr A — fofi mr Afn+1/n]) -
— ets(Ind, )27 fnmr A .

Hence we let
ets(Ind,, 4) := A\Z.Ry,..., Ry , (8)

where k is the length of 7(A) # € (7(4) = p1,...,p) and Ry, ..., Ry are simultaneous
yrimitive recursion operators of type R;: 7 — (v — g — p) — ¢ — p; satisfying

R 0=y i -
Rigf(z+1)=fiz(R1§if2) ... (Reiff2)

where = denotes equality of fnR- normal forms. Using these equations the above claim will
»e easily proven (recall that terms with the same normal form are identified). The operators
..., Ry can be defined from the recursion constant R, ,, x..xp,-
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Boolean induction (i.e. case analysis) i8 treated similarly. We let
ats(Ind,,,;) c= AR, Rk » (s) :
ereasaiﬂ‘f{ﬂ)=.0h---.ﬂk#€)- Whmmﬁh—--,Rk msimult,anm Pﬁmitiww

glon{arcues-p]itting) opemtorsuftype&:ﬁ'—'ﬁao—op‘mm

R;:yZ true=1%,
R,:§7 false =2 .

2 Analysis of case splitting
Definition: -We call a formula A decidable,

ta)-
m?liagsrk: The following remark will be helpful later: every quantifier-free formula j

decidable.
Let denote D := ,\pAqRq true p and & := qu(R true ia.lseq)ialse p. SD. dﬂ!!b

if there is a term i,4 such that - A

Vp, .(atom(p) — atom(g)) < atom(D pg)
Vp, ¢.(atom(p) A stom(q)) < atom(&pq)

are provable. Hence we let
r) =T
tawp:=Dlals,
tang =& tals -

It must be mentioned that the inverse, i.e. every decidable formula is quantifier-free,
in general is not correct. For eaxample the ‘formula Yz3y(z = y) is decidable, but not
quantifier-free. ] '

Lemma: (Cases [2]) We can do case splitting according to a quantifier-free L-formula
A, i.e. for every formula B the following takes place:

Proof: . :
Recall that | =atom(false) and ~A=A— L.
We shall use Boolean Induction schema:

Ind,,c : C[p/true] — C [p/false] = VpC. (11

Taking into account the fact, that every quantifier-free formula is decidable (see remar}

mentioned above), we can easily construct & boolean term t4 such, that - A « atom{li
takes place, Hence it suffices to derive ] :

Vp.((atom(p) — atom(false)) — B) — (atom(p) — B) — B.

This is done by boolean induction on j, using the truth axiom aXirue : atom(true).
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/" After wetake C' = (- A — B) — (A — B) — B, the Boolean Induction schema (formula
# {) will look like this (recall that - A « atom(t,) and - A = A — atom(false)):

Ind, c : ([(atom(true) —atom(false)) — B] — (atom(true) — B) — B) —
— ([(atom( false) —atom(false)) — B] — (atom(false) — B) — B) — 19
— . ({( stom(p) —atom(false)) — B] — (stom(p) — B) — B) (12)
c
i Thus, it is sufficient to show the following

F [(atom(true) — atom(false)) — B] — [(atom(true) — B) — B| (13)

I [(atom(false) — atom(false)) — B] — [(atom(false) — B) — B). (14)

* So, let us prove these derivations (13 and 14), using the following axioms and derivation
slle (1]

axiom1 : A— (B — A)

axiom?2 : (A— B) = [(A— (B— C)) — (A— C))

8Xyrye ¢ atom(true) Truth axiom (15)
AXfalse, 4 © Atom(false) — A Ex-falso-quodlibet

m.p.: derivation rule - modus ponens

~ The proof of the first one (see 13) is given below

|' 1 | F atom(irue truth axiom
|2 |F atom(true) — |(atom(true) — B) — atom(true) axiom 1
3 | - (atom(true) — B) — atom(true) 1,2 m.p.
let denote C = atom(true) — B
4 |FC—=(C—C) axiom 1-
5 [P 0= = O = {[C=(C= O = O = (C=O)f | axiom 2
6 |FI[C=((C=>C)=C)=(C—C) 4,5 m.p.
7T FC=((C=0)=0) axiom 1
8 [FC—C 6,7 m.p.
according to the denotation of C,
the step 8 will have the following look
9 | F (atom(true) — B) — (atom(true) — B) opened step 8
I- [(atom(true) — B) — atom(true)] —
10 | {[(atom(irue) — B) — (atom(irue) — B)] — | axiom 2
o) = 7 ey = B
atom(lrue) — — (atom(irue) — —
11 ((atom(true) — B) — B] 3,10 m.p.
12 | F (atom(true) — B) — B 9,11 m.p.
let denote [ = (atom(irue) — B) — B
13 | F D — {[(atom(true) — atom(false)) — B] — D} axiom 1
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B l-rdI,il;J,g to the denotation of Dy
the step 14 will have the following look e
et fle)) = 5]~ (ctomrue) = B) = Bl cpeneC fep
= d one (see 14) is jven below
The proctof e om(lse) —aiom(Jalee] = B ———
[ Ee= =
— (C — — C—*{(C—'C)"'C)]"'(C“‘C)} a‘.l:io:nﬂ;_‘__-
-?r:g_, C—0C)— = (C—=0) 12mp.
g [FCo(C=C)=0) axiom 1
5 [FC—C 3,4 m.p.__:
6 | F atom(false) = atom(false) BXtale, aton( el
— | (atom(false) = atom(Jalse)) — ot
7 | (¢ = (stom(false) — stom(false))] b
3 [ C — (atom(false) —atom(false) 6,7 m.p.
according to the den ofC,thestep5willhavethe
following look (only the right appearance of the C is restored) i
g9 |F ¢ — [(atom(false) —atom(false)) = B| :;’;pm
FC — (atom(false) = atom(J alse))] — i
9 —'{lG—r{(x[mm(fdae)*atmn(fdse)) S B—(coB) (S
11| F[C — ((etom(false) —atom(false)) = B)] ~ (C — B) 810mp. _
12|FC—B =) I:-I)] 911 mp.
F[B— ((atom(false) = 5) = — :
18| _, {C—[B - ((atom(false)  B) = B} -
14 [F B — ((atom(false) — B) — B) axiom 1
B|FC—[B— {(?trbm(nge) _{.( B) —(ﬁjr =B 1314 mp.
F(C— B) — — |B — ((atom(false) = D) — —
= =[G = (omfaae) > P ~ B)}} sind
F{C — (B — ((atom(false — B) =+ B)|} —
17 { 51C — ((atom (False) = B) — B)] 12,16 m.p.
18|FC— {(a.t.om(fdse] — B) — B) 15,17 m.p. ]
according to the denotation of C, F
the step IBhgimhythehuowingempreasion
19 [ - [(atom(false) —+atom(Jalse)) — B] — [(atom( false) — B) — B | opened step

T is all that we had to show.

Let us now construct derivation terms corresponding to the derivations (13) and (14).
Then, using the obtained result, we shall finally construct derivation term for case splitting.

We denote by axlsp:A— (B — A) and ax245¢0:(A—B)—=[(A—(B—~C)) —
(A — C)] the derivation terms for axioml and axiom? (see 15), respectively. Then, from
derivation of - C — C we obtain it's derivation term (let denote it by Olg):

Ol = [(ax1g, o ax2¢, c—C, c) axle, c_.c]c"c.

Now, the following term will be derivation term, which corresponds to the derivation (13)
(writing p for atom(p)): :
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Pls= {[C‘Inm-s ((T*™ 8x1irue, trus—B) 832¢rue—B, true, B)] 8X1p, E(h'u—t!ohc)—alwb}s-

-where D = (true — B) — B and E = [(true — false) — B] — D.
We denote this derivation term by P1: [(true — false) — B] — (true — B) — B.
Similarly, we obtain a derivation term, which corresponds to the derivation (14).

r s c_-a
(Ol ((a%Xtuie, satse 81 gatsespaise, €)= ~14") aX20, fatsesyatee, 5] =K,

s0, derivation term for (14) is

where C = (false — false) — B and 8Xgue, fa1se = atom(false) — atom(false) (see 7).
We denote this derivation term by P2: [(false — false) — B] — (flase — B) — B.
Now, we can construct the resulting derivation term for case splitting:

(Ind,c P1)P2)"S,

and recall, that from now we have C(p) = [(atom(p) —atom(false)) — B] —
(atom(p) — B) — B (see 12). :
Taking into account the fact A < atom(t,) we obtain

((Inde,, cres) P1) P2),

as a derivation for case splitting [(- A —+ B) = (A — B) — BJ.

Now let us analyze the approach of case splitting included in [3].

We can do case splitting according to decidable formulas A, i.e. for every formula B[]
we can prove

Casesy, p:(A— B)— (-A— B)— B. (16)

The derivation Casesy, g is given by

. )ﬂ;n wy. Ind Z(AugAug. ug T)(AugAug. ug~ F) ta(Aug. us (diur)) (Aus. uz(daus)), (17)

where d3**™4=4 gnd d;mﬁ"'"" are derivations, which exist according to the remark
(mentioned at the beginning of this section) and the axioms and assumption variables with
indices are (writing ¢ for atom(t))

Indp (p—B)y~(~p~B)~B =Indp,, Ci=(p—B)—(-p—B)—B , *)

and

-; = A= =3 B
uf 5‘ u_‘A a’ “snm{m)-'B' u."""“"'“"’ ,

ylomein)B. ug e false)~B o (ta) u;““'“‘{"‘].
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—F the Tl-m(m}’ quﬂm)‘ ﬂT"mlﬁ‘“)‘ —F —atom (false)

We denote by T, F, -T,
terms respectively: . E
At?:l:t. let 35 show that the gelected Casesy,p term is correct, le. it serves as a
derivation for the formula (A — B) = (~A— B)— B.
atom (brue)—B atom (true) — (uyT) B o

Uz
(g em -, (g T)P) e e
(MusAty. ug'r)(-ton(mha)—%—-mum)—-ﬂhﬂ =
Augiuy. usT: (a.t.om{tnw) — B) = (—atom(true) — B)— B (18)
Similarly
g S UeoeB () e Usie) = (u-F)? = - =
AusAug. ug— F 2 (atom( false) = B) = (- atom(false) = B) —» B (19)

From (18) and with regard to the fact that Ind, 4 @ V.A[true/p] — Alfalse/p] — VpA
iuade:ivaﬁontermfors.nyAformula,weget
Indgq : V- ((atom(true) — B) — (—~atom(true) = B) — B) —
— ((atom(false) — B) — (~atom(false) — B) — B) —
— Vp((atom(p) = B) — (-atom(p) — B) = Blz])
(2]

Using (17) and (18) and taking into account definition of the derivation term d=Aep .
Alt/z), we get

Ind,c, Z (Aushud. usT) (AusAus. ug-F) : VpCi z/z] ,
=0 E

and let denote it by C3.

So, we have C; : Vp.(atom (p) — B) — (—atom (p) — B) —+ B, and taking into account
the fact, that 7°, t both are of type o, then the following is correct

Cats : (atom(ts) — B) — (—atom(ty) — B) = B . (*)

stom(tA)—A , stom(ta) _ A
& U (“Jli“'_?ﬂ } = (u(du)® = dup.u(du): atom(ts) — B.
(20)

Similarly
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= atom( —A_ ostam(ly) _ -
At — (d»ﬂ:;)_.; } = (uy(dzus))® = Aug.us(ds ug) : —atom(t,) — B.

u
(21)
Using obtained (20), (21) and (20), we get

Cata (dur. us(diug)) ss. uz(daus)) : B,
Cy

and let denote it by Cj.
So, Casesy g = Auj,up. C3 and thus we get correctness for Casesy p : (4 — B) —
(-A— B)— B.

Let us now construct extracted terms for Cases, p derivation term.

ets(Autd?) = 2z]W ets (dP)
Casesy,p = My, u. CE

where g7(4~5), z7(>4=5),
By definition of the extracted terms for the d"*"4 ¢? derivation term (see 6) we obtain

} : = ets( CMA.B) = Ay, E'.et.s(Ca‘”) ’

ets(d™AP) =ets(d)t = ets(CPP7 13) = ets(Cy) ta. (22)
After some notations we come to
C.( = Mgy (dllh) = C‘m(“o—a _'-
Cs = Mg upldgug) = CpomltarB = Ci=C31,4CC5 .

Recall that
ets(dA—Pet) = ets(d*—?) ets(e?) (23)
by definition of extracted terms (see 6).
Applying twice the definition (23) of extracted terms in the case for dA~Z ¢4 (see 6), we
get 3 -
ets( (C2taCy)Cs ) = ets(Cy t4Cy) ets(Cs) = ets(Cy ) ets(Cy) ets(Cs) =
= ets(C3) t4 ets(Cy) ets(Cs)

Since 7(atom(p)) = € (see 1), from definition of 7(A — B) (see 2) we can write
ets(CRom(taB) _ gristom(ta)=B) _ gr(B)
ets(c;lwﬂh)—'ﬂ) = irtﬂmtu)—m = 'z-;'(ﬁl'

So, we have ets(C3) =ets(Cy) t4 71 Z.
Assume that # = zy,...,%, , then applying n times the definition (22) and twice the
definition (23), we get

ets(Cy) = ets(Ind, ¢,) Z ets(Cg) ets(Cy),
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where by Cs, C7 are denoted the following terms

Cs = Aughug. us T, Cy = Aughug. us— F.

Taking into account the fact that ets(Indp,c,) = AZ-Ri, .. . Ry (see 9) we obtain

ets(Cz) = Rets(Co) ets(Cr),
w;i:r:sft:g"-_: ) ':1:[ -e;g(a.wm[p)) = ¢ (see 1), we get the following form for ets(Cg)
ets(Co) = ets(Mushug.ueT) = Az, %2 ets(usT) = Mz, Za. ets(us) = Apo, 2.2

08 Well 38 (wwerB) _ g

~7(B
g emn(iruerB) _ z7(B)
Similarly

ets(Cy) = ets(AusAus-ue~ F) = A, Zy.ets(ugF) = s, Zs.ets(ue) = M, 7.3

correspondingly for us and uy .

a8 Well B8 feto)B) _ 5r(B) _
 r(-~otom(false)—B) _ z7(B) correspondingly for us and ug .
Z3 =

So, we obtain ets(Cs) = R (Mja, Z2.2) (A, %-%) t4 1 7 , and finally

ets(Casesp ) = M 2 R (M, 2a ) Min Zs.3s) ta 1 21 =M, 2. A 0121

where if = R (M, 22.52) (Ais, 7s.%5) and all thie §h, 21, Ja, %2, ¥, % are lists of variables of
the same type 7(B), but § and 2 are lists of variables of type 7(A — B) and (-~ A — B),

respectively.

That is why ets(Casessp) = Mj,Z.ifta § Z =4if t4 in [3], will be proper, if we take
quantifier-free formulas instead of decidable formulas in formulation of case splitting. In the
case of quantifier-free formula A, 7(A) will be & (see 1). Consequently, from definition of
7(A — B) (see 2), we get

(A = B) =7(~A — B) =7(B),
50, all the §, Z, §i,  are lists of variables of the same type 7(B), and we can properly apply
1-equality.

Clearly if true ¥ § =g 7 and if false ¥ §=pp 5.

For better readability the following notation is often used for if t4 7 &

if A then r else 7 fi.
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“Hawpbph wpnhiwG JhpymompymGp Plwpwlwlwi hwiwlupgnud
S. Qunjwi

Udthnthnud

MunuiGwuhpoipymGGipp Gyhpjwd b6 nhwpbph wpnhdwa (-A—-B)—»(A-=B)—
B| Jbpmempjubn plwpwlulwt hwiwlwpgnd: 8myg t wnnyby, np nhwpbph wanhnoip
pujuluwl t yumwpby hufwdw@ poGwélbph wbh (it nwuh’ pywGwnnpGbphg wquin
puiGudLbph, npngtih puifwélbph quuh thnfiwnb: ThpghGu wbgh jwj quu t L pingplnus
t pywGunplbphg wquwn pwwdlbph nuup: MundGwuhpyty b6 Gl wyj]. htnhGwyGbph
tinnbignuiGbpp nbupbph wpnhiwép L Yumwpyb) 56 npn) G20pnnuiGbp Yuupwd npnyhih
pwlwdlh phnfuwphGiwlp pjwGonpGbphg wqun pulwdlo]: dwdwdw)6 wyju wikbh
wawgwnlyby £ nbupbph wpnhiwG Gop wpnwdnu:



