A Note on Matching Covered Graphs

Vahan V. Mkrtchyan

Department of Informatics and Applied Mathematics, Yerevan State University e-mail vahanmkrtchyan2002yahoo.com

Abstract

A graph is called matching covered if for its every edge there is a maximum matching containing it. It is shown that line-extremal matching covered graphs contain a perfect matching.

Let Z^+ denote the set of nonnegative integers. We consider finite undirected graphs G = (V(G), E(G)) without multiple edges or loops [1], where V(G) and E(G) are the sets of vertices and edges of G, respectively. For a vertex $u \in V(G)$ define the set $N_G(u)$ as follows:

$$N_G(u) \equiv \{e \in E(G) / e \text{ is incident with } u \}.$$

The set of all maximum matchings [1,2] of the graph G is denoted by M(G), and for $e \in E(G)$ define the set M(e) as follows:

$$M(e) \equiv \{F \in M(G) / e \in F \}.$$

A graph G is called matching covered if for its every edge $e \in E(G)$ $M(e) \neq \emptyset$. A vertex $u \in V(G)$ is said to be covered (missed) by a matching $F \in M(G)$ if $N_G(u) \cap F \neq \emptyset$ ($N_G(u) \cap F = \emptyset$). A matching $F \in M(G)$ is called perfect if it covers every vertex $v \in V(G)$. In a connected graph G the length of the shortest u-v path [1] is denoted by $\rho(u,v)$,

where u, v are vertices of the graph G. For a vertex $w \in V(G)$ and $U \subseteq V(G)$ set:

$$\rho(w,U) \equiv \min_{u \in U} \rho(w,u).$$

In this paper it is proved that every line-extremal matching covered graph contains a perfect matching. Non defined terms and conceptions can be found in [1,2,3].

Lemma. If G is a matching covered graph, which does not contain a perfect matching, then

(1) for every edge $e = (u, v) \in E(G)$ there is a $F \in M(G)$ such that F misses either u or v;

(2) if for edges $e, e' \in E(G)$ M(e) = M(e') then e = e'.

Proof. (1) For every $F \in M(G)$ consider the sets A(F) and B(F) defined in the following way:

$$A(F) \equiv \{w \in V(G) / F \text{ covers } w\}, B(F) \equiv \{w \in V(G) / F \text{ misses } w\}.$$

Clearly, for each $F \in M(G)$ the following holds:

$$V(G) = A(F) \cup B(F), A(F) \cap B(F) = \emptyset, A(F) \neq \emptyset, B(F) \neq \emptyset.$$

For an edge $e = (u, v) \in E(G)$ define a mapping $\mu_e : M(G) \to Z^+$ as follows:

$$\mu_e(F) \equiv \min \{ \rho(u, B(F)), \ \rho(v, B(F)) \}, \text{ where } F \in M(G).$$

Choose $F_0 \in M(G)$ satisfying the condition:

$$\mu_{\epsilon}(F_0) \equiv \min_{F \in M(G)} \mu_{\epsilon}(F).$$

Let us show that F_0 misses either u or v. For the sake of contradiction assume F_0 to cover both u and v. Let $w_0, (w_0, w_1), w_1, ..., w_{k-1}, (w_{k-1}, w_k), w_k$ be a simple path of the graph G tatisfying the conditions:

$$w_0 \in B(F), \{w_1, ..., w_k\} \subseteq A(F_0), \{w_{k-1}, w_k\} = \{u, v\}, k = 1 + \mu_e(F_0), k \ge 2.$$

Set $e' \equiv (w_1, w_2)$. Let us prove that $e' \notin F_0$. If $e' \in F_0$ then consider the matching $F_1 \in M(G)$ defined as follows:

$$F_1 \equiv (F_0 \backslash \{e'\}) \cup \{e\}.$$

It is clear that $\mu_e(F_1) < \mu_e(F_0)$, which contradicts to the choice of F_0 , therefore $e' \notin F_0$. Take a maximum matching $F_0' \in M(e')$ satisfying the condition:

$$|F_0 \cap F_0'| = \max_{F' \in \mathcal{M}(e')} |F_0 \cap F'|.$$

Let us show that $w_0 \in A(F_0)$. If $w_0 \notin A(F_0)$ then assume:

$$F_0'' \equiv (F_0' \backslash \{e'\}) \cup \{e\}.$$

Note that $F_0'' \in M(G)$ and $\mu_e(F_0'') < \mu_e(F_0)$, which is impossible, therefore $w_0 \in A(F_0')$. It is not hard to see that the choice of F_0'' implies that there is a simple path $G_0(0, (\nu_0, \nu_1), \nu_1, ..., \nu_{2l-1}, (\nu_{2l-1}, \nu_{2l}), \nu_{2l} \ (l \ge 1)$ of the graph G satisfying the conditions:

$$\{(\nu_0, \nu_1), ..., (\nu_{2l-2}, \nu_{2l-1})\} \subseteq F'_0, \{(\nu_1, \nu_2), ..., (\nu_{2l-1}, \nu_{2l})\} \subseteq F_0,$$

 $e' \notin \{(\nu_0, \nu_1), ..., (\nu_{2l-2}, \nu_{2l-1})\},$
 $\nu_0 = w_0, \nu_{2l} \in \{w_1, w_2\}.$

Set:

$$\tilde{F}_0 \equiv (F_0 \setminus \{(\nu_1, \nu_2), ..., (\nu_{2l-1}, \nu_{2l})\}) \cup \{(\nu_0, \nu_1), ..., (\nu_{2l-2}, \nu_{2l-1})\}.$$

Clearly $\tilde{F}_0 \in M(G)$ and $\mu_e(\tilde{F}_0) < \mu_e(F_0)$, which contradicts to the choice of F_0 , therefore F_0 misses either u or v.

(2) Suppose $e, e' \in E(G)$, e = (u, v) and $e \neq e'$. Let us show that $M(e) \neq M(e')$. Take a matching $F_1 \in M(G)$ missing either u or v. For the sake of definiteness let us assume that F_1 covers u and misses v. If $e' \in F_1$ then $M(e) \neq M(e')$, therefore without loss of generality we may assume that $e' \notin F_1$. As F_1 covers u, then there is a $w \in V(G)$ such that $(u, w) \in F_1$. Set:

$$F_2 \equiv (F_1 \backslash \{(u,w)\}) \cup \{(u,v)\}.$$

Clearly, $F_2 \in M(G)$, $e \in F_2$ and $e' \notin F_2$, therefore $M(e) \neq M(e')$. The proof of the Theorem. Suppose that the graph G satisfies the following two properties: Lemma is complete.

(1) G is a matching covered graph, (2) G - e is not a matching covered graph for every edge $e \in E(G)$.

Then the graph G has a perfect matching. Proof. Without loss of generality we may assume G to be connected. Let us show that there are two distinct edges e and e'such that M(e) = M(e').

Take an arbitrary edge $e_0 \in E(G)$. Suppose that the edges $e_0,...,e_k$ $(k \ge 0)$ are already defined, and consider the graph $G - e_k$. As it is not a matching covered graph, then there

exists an edge $\tilde{e} \neq e_k$ such that $M(e_k) \supseteq M(\tilde{e})$. Set $e_{k+1} \equiv \tilde{e}$. Consider the infinite sequence $\{e_k\}_{k=0}^{\infty}$ of edges of the graph G. Clearly, there are numbers $i, j \in \mathbb{Z}^+, i < j$ such that $e_i = e_j$. The construction of the sequence $\{e_k\}_{k=0}^{\infty}$ implies that

$$M(e_i) \supseteq M(e_{j-1}) \supseteq M(e_j) = M(e_i)$$
, and $e_{j-1} \neq e_j$,

therefore

$$M(e_{j-1})=M(e_j).$$

Lemma implies that G has a perfect matching. The proof of the Theorem is complete.

References

- Harary F., Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [2] Lovasz L., Plummer M.D., Matching Theory, Annals of Discrete Math. 29, North Holland, 1986.
- West D. B., Introduction to Graph Theory, Prentice-Hall, Inc., 1996.

Գրառում զուգակցումներով ծածկված գրաֆների մասին ՎՎ Մկրաչյան

Ամփոփում

Գրաֆը կոչվում է զուգակցումներով ծածկված, եթե նրա ցանկացած կողի համար գոյություն ունի այն պարունակող մաքսիմալ զուգակցում։ Յույց է արվել որ զուգակցումներով ծածկված գրաֆները, որոնք էքստրեմալ են կողի հեռացում գործողության նկատմամբ, պարունակում են կատարյալ զուգակցում։