On Interval Edge Colorings of Harary Graphs $H_{2n-2,2n}$

Rafayel R. Kamalian, Petros A. Petrosyan

Institute for Informatics and Automation Problems of NAS of RA e-mail rrkamalian@yahoo.com, pet_petros@yahoo.com

Abstract

The problems of existence and construction of interval edge colorings of Harary graphs $H_{2n-2,2n}$ are investigated. Bounds are found for the possible number of colors in interval edge colorings of $H_{2n-2,2n}$.

Let G = (V(G), E(G)) be an undirected graph without loops and multiple edges[1]. V(G)and E(G) denote the sets of vertices and edges of G, respectively. The degree of a vertex $x \in V(G)$ is denoted by $d_G(x)$.

A function $\alpha: E(G) \to \{1, 2, ..., t\}$ is a proper edge t-coloring of a graph G iff for each $i,1 \leq i \leq t$ there is an edge $e \in E(G)$ with $\alpha(e) = i$ and $\alpha(e') \neq \alpha(e'')$ for any pair of adjacent edges $e' \in E(G)$ and $e'' \in E(G)$.

A proper edge t-coloring α of a graph G is an interval edge t-coloring of G iff for each vertex $x \in V(G)$ the edges incident to $x \in V(G)$ are colored by $d_G(x)$ consecutive colors.

 \mathcal{N}_t denotes the set of graphs, for which an interval edge t-coloring exists. Let $\mathcal{N} \equiv \bigcup \mathcal{N}_t$. For $G \in \mathcal{N}$ the least and the greatest value of t, for which $G \in \mathcal{N}_t$, are denoted by w(G)and W(G), respectively.

Non-defined conceptions and terms can be found in [1-4].

Let us consider a graph K_{2n} , where $V(K_{2n}) = \{x_1, x_2, ..., x_{2n}\}$, $E(K_{2n}) = \{(x_i, x_j) \mid 1 \le i \le 2n, 1 \le j \le 2n, i < j\}.$ Define the set $E_{0,2n} \subseteq E(K_{2n})$ as follows: $E_{0,2n} \equiv \{(x_i, x_{i+n}) \mid 1 \le i \le n\}$. Evidently, $E_{0,2n}$ is a perfect matching of K_{2n} . It is not difficult to see [2,3] that the graph K_{2n} / $E_{0,2n}$ is isomorphic to Harary graph $H_{2n-2,2n}$, and the graph K_{2n} is isomorphic to Harary graph $H_{2n-1,2n}$.

Theorem1[4]. For any $n \in N$ $K_{2n} \in \mathcal{N}$.

Theorem2[5]. For any $n \in N$ $W(K_{2n}) \ge 3n - 2$.

Theorem3. For $n \ge 2$ $H_{2n-2,2n} \in \mathcal{N}_{3n-3}$.

Proof. The case n=2 is evident.

Now assume that $n \geq 3$.

Define a proper edge (3n-3)-coloring α of the graph $H_{2n-2,2n}$ in the following way:

Define a proper edge
$$(3n-3)$$
-coloring α of the graph $n_{2n-2,2n}$ in the for $i=1,...,\left\lfloor \frac{n}{2}\right\rfloor, \ j=2,...,n, \ i< j, \ i+j\leq n+1$
$$\alpha\left((x_i,x_j)\right)=i+j-2;$$

for
$$i = 1, ..., \lfloor \frac{n}{2} \rfloor$$
, $j = 2, ..., n, i < j, i + j \ge n + 2$ $\alpha((x_i, x_j)) = i + j + n - 4;$

 $[\]alpha((x_i,x_j))=n+j-i-1;$ for $i = 3, ..., n, j = n + 1, ..., 2n - 2, j - i \le n - 2$

^{*}The work was partially supported by 04.10.31 Target Program of RA.

$$\begin{array}{ll} \text{for } i=1,...,n-1,\,j=n+2,...,2n,\,j-i\geq n+1 & \alpha\left((x_i,x_j)\right)=j-i-1;\\ \text{for } i=2,...,1+\left\lfloor\frac{n-1}{2}\right\rfloor,\,j=n+1,...,n+\left\lfloor\frac{n-1}{2}\right\rfloor,\,\,j-i=n-1 & \alpha\left((x_i,x_j)\right)=2(i-1);\\ \text{for } i=\left\lfloor\frac{n-1}{2}\right\rfloor+2,...,n,\,\,j=n+1+\left\lfloor\frac{n-1}{2}\right\rfloor,...,2n-1,\,\,j-i=n-1 & \alpha\left((x_i,x_j)\right)=i+j-3;\\ \text{for } i=n+1,...,n+\left\lfloor\frac{n}{2}\right\rfloor-1,\,j=n+2,...,2n-2,\,i< j,\,i+j\leq 3n-1 & \alpha\left((x_i,x_j)\right)=i+j-2n;\\ \end{array}$$

for i=n+1,...,2n-1, $j=n+\left\lfloor\frac{n}{2}\right\rfloor+1,...,2n$, $i< j, i+j\geq 3n$ $\alpha\left((x_i,x_j)\right)=i+j-n-2$. It is not difficult to see that α is an interval edge (3n-3)-coloring of the graph $H_{2n-2,2n}$. The proof is complete.

Corollary 1. For $n \ge 2$ $H_{2n-2,2n} \in \mathcal{N}$.

Corollary2. For $n \geq 2$ $W(H_{2n-2,2n}) \geq 3n-3$.

The results of [4], the Corollary1 and the definition [2,3] of the graph $H_{2n-2,2n}$ imply

Corollary3. For $n \geq 2$ $w(H_{2n-2,2n}) = 2n-2$.

Corollary 4. For $n \ge 2$ and $2n-2 \le t \le 3n-3$ $H_{2n-2,2n} \in \mathcal{N}_t$.

Theorem 4. For any $m \in N$ $W(H_{4m-2,4m}) \ge W(K_{2m}) + 4m - 2$.

Proof. Let us consider a graph K_{4m} with $V(K_{4m}) = \{x_1, x_2, ..., x_{4m}\}$. Assume $H_{4m-2,4m} \equiv K_{4m} / E_{0,4m}$. Let G be the subgraph of $H_{4m-2,4m}$, induced by the subset $\{x_1, x_2, ..., x_{2m}\}$ of the set of its vertices. Clearly, G is isomorphic to the graph K_{2m} and, consequently, by the Theorem1 there exists an interval edge $W(K_{2m})$ -coloring α of G.

Let us define a proper edge $(W(K_{2m}) + 4m - 2)$ -coloring β of the graph $H_{4m-2,4m}$.

For $i = 1, 2, ..., 4m, j = 1, 2, ..., 4m, i \neq j$ and $i \neq j - 2m$, we set:

$$\beta((x_i, x_j)) = \begin{cases} \alpha((x_i, x_j)) & \text{if } 1 \le i \le 2m, 1 \le j \le 2m; \\ \alpha((x_i, x_{j-2m})) + 2m - 1 & \text{if } 1 \le i \le 2m, 2m + 1 \le j \le 4m; \\ \alpha((x_{i-2m}, x_{j-2m})) + 4m - 2 & \text{if } 2m + 1 \le i \le 4m, 2m + 1 \le j \le 4m. \end{cases}$$

It is not difficult to see that β is an interval edge $(W(K_{2m}) + 4m - 2)$ -coloring of the graph $H_{4m-2,4m}$.

The proof is complete.

Corollary 5. If n is even and $n \ge 2$ then $W(H_{2n-2,2n}) \ge 3, 5n-4$.

Corollary 6. If n is even, $n \ge 2$ and $2n-2 \le t \le 3, 5n-4$ then $H_{2n-2,2n} \in \mathcal{N}_t$.

References

- [1] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [2] M.N.S. Swamy, K. Thulasiraman, Graphs, Networks and Algorithms, John Wiley & Sons, New York, 1981.
- [3] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 2001.
- [4] R.R. Kamalian, Interval Edge Colorings of Graphs, Doctoral dissertation, Novosibirsk, 1990.
- [5] R.R. Kamalian, P.A. Petrosyan, On lower bound for W(K_{2n}), Mathematical Problems of Computer Science, Vol. 23, Yerevan, 2004, pp.127-129.

Խառարիի H2n-2,2n գրաֆների միջակայքային կողային ներկումների մասին Ռ.Ռ. *Զ*ամալյան, Պ.Ա. Պետրոսյան

Ամփոփում

Դիտարկված են Խառարիի $H_{2n-2,2n}$ գրաֆների միջակայքային կողային ներկումների գոյության և կառուցման հարցեր, և ստացված են գնահատականներ այդ ներկումներում օգտագործվող գույների հնարավոր թվի համար: