On Trees with a Special Proper Partial 0-1 Colorings

Vahan V. Mkrtchyan

Department of Informatics and Applied Mathematics, Yerevan State University e-mail vahanmkrtchyan2002yahoo.com

Abstract

It is proved that in a tree in which the distance between any two endpoints is even, there is a maximum proper partial 0-1 coloring such that the edges colored by 0 form a maximum matching.

All graphs considered in this paper are finite, undirected and have no loops or multiple edges. V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively. The degree of a vertex x in G is denoted by $d_G(x)$. If $X \subseteq E(G)$ then a mapping $f: X \to \{0,1\}$ is referred as a partial 0-1 coloring of the graph G. For i=0,1 and the partial 0-1coloring f of the graph G, denote $f_i \equiv \{e \in X/f(e) = i\}$. The partial 0-1 coloring f is proper if the sets f_0 and f_1 are matchings of the graph G. Denote

The sets
$$f_0$$
 and f_1 are interesting of the graph G .

$$\lambda(G) \equiv \max\{|f_0| + |f_1|/f \text{ is a proper partial } 0 - 1 \text{ coloring of the graph } G\}.$$

A proper partial 0-1 coloring f of the graph G is maximum if $|f_0|+|f_1|=\lambda(G)$. Set: $\alpha(G) \equiv \max\{|f_i|/i = 0, 1 \text{ and } f \text{ is a maximum proper partial (shortly, MPP) } 0 - 1$ coloring of the graph G. It is clear, that for every graph G $\alpha(G) \leq \beta(G)$, where $\beta(G)$ is the cardinality of a maximum matching of the graph G. In this paper I show that if G is a tree in which the distance between any two endpoints is even, the equality $\alpha(G) = \beta(G)$ holds. Non defined terms and conceptions can be found in [1,2].

Lemma 1. Let G be a graph, $u \in V(G)$, $w \in V(G)$, $(u, w) \in E(G)$, $d_G(u) = 1$. Then there is a MPP 0-1 coloring f of the graph G, such that $|f_0|=\alpha(G)$ and $(u,w)\in f_0$.

Proof. Let f be a MPP 0-1 coloring of the graph G with $|f_0|=\alpha(G)$. Suppose

 $(u,w) \notin f_0$

Case 1. $(u, w) \notin f_1$. As f is a MPP 0-1 coloring of the graph G, there is a $(w, w') \in$ E(G), such that $(w, w') \in f_0$. Consider the mapping $g: f_1 \cup (f_0 \setminus \{(w, w')\}) \cup \{(u, w)\} \rightarrow \{0, 1\}$ defined in the following way:

$$g(e) = \begin{cases} 0, & \text{if} \quad e \in (f_0 \setminus \{(w, w')\}) \cup \{(u, w)\} \\ 1, & \text{if} \quad e \in f_1. \end{cases}$$

It is clear that g is a MPP 0-1 coloring of the graph G, $(u, w) \in g_0$ and $|g_0| = |f_0| = \alpha(G)$. Case 2. $(u, w) \in f_1$. As f is a MPP 0-1 coloring of the graph G, with $|f_0| = \alpha(G)$, then there is a $(w, w_1) \in f_0$. Consider the maximal alternating path $u, (u, w), w, (w, w_1), w_1, ..., w_{k-1}, (w_{k-1}, w_k), w_k$, where k is odd, $\{(u,w),(w_1,w_2),...,(w_{k-2},w_{k-1})\}\subseteq f_1$ and $\{(w,w_1),(w_2,w_3),...,(w_{k-1},w_k)\}\subseteq f_0$. Define a mapping $g: f_0 \cup f_1 \rightarrow \{0,1\}$ as follows:

$$g(e) = \begin{cases} f(e), & \text{if} \quad e \notin \{(u, w), (w, w_1), ..., (w_{k-1}, w_k)\} \\ 1 - f(e), & \text{if} \quad e \in \{(u, w), (w, w_1), ..., (w_{k-1}, w_k)\}. \end{cases}$$

Clearly, g is a MPP 0-1 coloring of the graph G with $(u,w) \in g_0$ and $|g_0| = |f_0| = \alpha(G)$. The proof is complete.

Lemma 2. Let G be a graph, $u \in V(G)$, $v \in V(G)$, $w \in V(G)$, $d_G(u) = d_G(v) = 1$,

 $u(u,w) \in E(G), (v,w) \in E(G).$ Then

(a) there is a MPP 0-1 coloring f of the graph G, such that $|f_0| = \alpha(G)$, $(u, w) \in f_0$ and $(v, w) \in f_1$;

(b) $\lambda(G) = 2 + \lambda(G \setminus \{u, v, w\}), \alpha(G) = 1 + \alpha(G \setminus \{u, v, w\}).$

Proof. (a) By Lemma1, there is a MPP 0-1 coloring f of the graph G, such that $|f_0| = \alpha(G)$ and $(u, w) \in f_0$. Suppose $(v, w) \notin f_1$, then there is a $(w, w') \in E(G)$, such that $(w, w') \in f_1$. Consider a mapping $g: f_0 \cup (f_1 \setminus \{(w, w')\}) \cup \{(v, w)\} \rightarrow \{0, 1\}$ defined in the following way:

$$g(e) = \begin{cases} 0, & \text{if} \quad e \in f_0 \\ 1, & \text{if} \quad e \in (f_1 \setminus \{(w, w')\}) \cup \{(v, w)\}. \end{cases}$$

Clearly, g is a MPP 0-1 coloring of the graph G with $(u,w)\in g_0,\ (v,w)\in g_1$ and

 $||g_0| = \alpha(G).$

(b) Let $w_1, ..., w_r$ be vertices of the graph G such that $d_G(w) = r + 2$ $(r \ge 0)$, $u \notin \{w_1, ..., w_r\}$, $v \notin \{w_1, ..., w_r\}$, $(w, w_i) \in E(G)$ for i = 1, ..., r, and f be a MPP 0 - 1 coloring f of the graph G, such that $|f_0| = \alpha(G)$, $(u, w) \in f_0$, $(v, w) \in f_1$. As $(w, w_i) \notin f_0 \cup f_1$ for i = 1, ..., r, we have

 $\lambda(G) = \lambda(G \setminus \{(w, w_1), ..., (w, w_r)\}) = 2 + \lambda(G \setminus \{u, v, w\}),$ $\alpha(G) = \alpha(G \setminus \{(w, w_1), ..., (w, w_r)\}) = 1 + \alpha(G \setminus \{u, v, w\}).$

The proof is complete.

Corollary. Let G be a graph, $U = \{u_0, u_1, u_2, u_3, u_4\}$ be a subset of the set of vertices of G satisfying the conditions: $d_G(u_0) = d_G(u_4) = 1$, $d_G(u_1) = d_G(u_3) = 2$, $(u_{i-1}, u_i) \in E(G)$ for i = 1, 2, 3, 4. Then the following is true:

$$\lambda(G) = \lambda(G \setminus U) + 4, \ \alpha(G) \ge 2 + \alpha(G \setminus U).$$

Proof. Lemma2 implies

 $\lambda(G) = 2 + \lambda(G \setminus \{u_0, u_4\}) = \lambda(G \setminus U) + 4$, therefore $\alpha(G) \ge 2 + \alpha(G \setminus U)$.

Theorem. Let G be a tree in which the distance between any two endpoints is even.

Then the equality $\alpha(G) = \beta(G)$ holds.

Proof. Clearly, the statement of the theorem is true for the case $|E(G)| \leq 6$. Assume that it holds for trees with $|E(G)| \leq t - 1$, and let us prove that it will hold for the case

|E(G)| = t, where $t \ge 7$.

Case1. There is a $U = \{u_0, u_1, u_2, u_3\} \subseteq V(G)$, such that $d_G(u_0) = 1$, $d_G(u_1) = d_G(u_2) = 2$, $(u_{i-1}, u_i) \in E(G)$ for i = 1, 2, 3. Set $G' = G \setminus \{u_0, u_1\}$. Clearly, $\beta(G) = \beta(G') + 1$. As $d_G(u_0) = 1$, $d_G(u_1) = 2$ and $d_{G \setminus \{u_0\}}(u_1) = 1$, $d_{G \setminus \{u_0\}}(u_2) = 2$, we have $\lambda(G) = 1 + \lambda(G \setminus \{u_0\}) = \lambda(G') + 2$, thus if g is a MPP 0 - 1 coloring of tree G', such that $|g_0| = \alpha(G')$ and $(u_2, u_3) \in g_0$, then the mapping $f : g_0 \cup g_1 \cup \{(u_0, u_1), (u_1, u_2)\} \rightarrow \{0, 1\}$ defined as

$$f(e) = \begin{cases} g(e), & \text{if} \quad e \notin \{(u_0, u_1), (u_1, u_2)\} \\ 1, & \text{if} \quad e = (u_1, u_2) \\ 0, & \text{if} \quad e = (u_0, u_1), \end{cases}$$

is a MPP 0-1 coloring of the tree G , therefore $\alpha(G) \geq |f_0| = 1 + |g_0| = 1 + \alpha(G')$. As the distance between any two endpoints of G' is even and |E(G')| < t, we have $\alpha(G') = \beta(G')$. therefore

$$\alpha(G) \ge 1 + \alpha(G') = 1 + \beta(G') = \beta(G)$$
, or $\alpha(G) = \beta(G)$.

Case 2. There is a $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\} \subseteq V(G)$, such that $d_G(u_0) = d_G(u_4) =$ $d_G(u_6) = 1$, $d_G(u_1) = d_G(u_3) = d_G(u_5) = 2$, $(u_{i-1}, u_i) \in E(G)$ for i = 1, 2, 3, 4, $(u_2, u_5) \in E(G)$ E(G), $(u_5, u_6) \in E(G)$. Set $G' = G \setminus \{u_5, u_6\}$. Clearly, $\beta(G) = \beta(G') + 1$. From Corollary follows that $\lambda(G) = \lambda(G \setminus \{u_0, u_1, u_2, u_3, u_4\}) + 4$, therefore $\lambda(G) = \lambda(G \setminus \{(u_2, u_5)\}) = \lambda(G') + 4$ 1 and $\alpha(G) \geq 1 + \alpha(G')$. Note that the distance between any two endpoints of the tree G' is even and |E(G')| < t, thus the equality $\alpha(G') = \beta(G')$ holds, and therefore

$$\alpha(G) \ge 1 + \alpha(G') = 1 + \beta(G') = \beta(G)$$
, or $\alpha(G) = \beta(G)$.

Case 3. There is a $U = \{u_0, u_1, u_2\} \subseteq V(G)$, such that $d_G(u_0) = d_G(u_2) = 1$, $(u_{i-1}, u_i) \in$ E(G) for i=1,2. Let $D_1,...,D_r$ be the connected components of $G\setminus U$. Clearly, $\beta(G)=$ $1 + \sum_{i=1}^r \beta(D_i)$. Note that D_i i = 1, ..., r is a tree for which $|E(D_i)| < t$ and the distance between any two endpoints is even, thus $\alpha(D_i) = \beta(D_i)$, therefore, by Lemma2, we have

$$\alpha(G) = 1 + \alpha(G \setminus U) = 1 + \sum_{i=1}^{r} \alpha(D_i) = 1 + \sum_{i=1}^{r} \beta(D_i) = \beta(G).$$

Case 4. There is a $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\} \subseteq V(G)$, such that $d_G(u_0) = d_G(u_6) = 1$, $d_G(u_1) = d_G(u_3) = d_G(u_5) = 2$, $d_G(u_2) = 3$, $(u_{i-1}, u_i) \in E(G)$ for i = 1, 2, 3, 4, 6, $(u_2, u_5) \in E(G)$ E(G). Set $G' = G \setminus \{u_0, u_1\}$. Clearly, $\beta(G) = \beta(G') + 1$. As |E(G')| < t and the distance between any two endpoints of the tree G' is even, the equality $\alpha(G') = \beta(G')$ holds.

Lemma1 implies, that there is a MPP 0-1 coloring g of the tree $G\setminus\{u_0,u_1,u_2,u_5,u_6\}$ such that $(u_3, u_4) \in g_0$. Consider the mapping $f: g_0 \cup g_1 \cup \{(u_0, u_1), (u_2, u_3), (u_2, u_5), (u_5, u_6)\}$ {0, 1} defined as follows:

$$f(e) = \begin{cases} g(e), & \text{if} \quad e \notin \{(u_0, u_1), (u_2, u_3), (u_2, u_5), (u_5, u_6)\} \\ 0, & \text{if} \quad e \in \{(u_0, u_1), (u_2, u_5)\} \\ 1, & \text{if} \quad e \in \{(u_2, u_3), (u_5, u_6)\}. \end{cases}$$

The Corollary implies, that f is a MPP 0-1 coloring of the tree G, therefore $\lambda(G) = \lambda(G\setminus\{(u_1,u_2)\}) = \lambda(G') + 1$ and $\alpha(G) \geq 1 + \alpha(G') = \beta(G') + 1 = \beta(G)$, or $\alpha(G) = \beta(G).$

Case 5. There is a $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6, u_7\} \subseteq V(G)$, such that $d_G(u_0) =$ $d_G(u_4) = d_G(u_6) = 1$, $d_G(u_1) = d_G(u_3) = 2$, $d_G(u_2) = d_G(u_5) = 3$, $(u_{i-1}, u_i) \in E(G)$ for $i=1,2,3,4,6,\ (u_2,u_5)\in E(G),\ (u_5,u_7)\in E(G).$ Set $G'=G\setminus\{u_0,u_1,u_2,u_3,u_4\}.$ Note that $\beta(G) = \beta(G') + 2$. As |E(G')| < t and the distance between any two endpoints of the tree G' is even, the equality $\alpha(G') = \beta(G')$ holds. From Corollary we have

$$\alpha(G) \ge 2 + \alpha(G') = 2 + \beta(G') = \beta(G)$$
, or $\alpha(G) = \beta(G)$.

Case 6. There is a $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9, u_{10}\} \subseteq V(G)$, such that $d_G(u_0) = d_G(u_4) = d_G(u_6) = d_G(u_9) = 1, d_G(u_1) = d_G(u_3) = d_G(u_6) = d_G(u_8) = 2,$ $d_G(u_2) = d_G(u_7) = 3, (u_{i-1}, u_i) \in E(G) \text{ for } i = 1, 2, 3, 4, 6, 7, 8, 9, (u_2, u_{10}) \in E(G),$ $(u_7, u_{10}) \in E(G)$. Set $G' = G \setminus \{u_0, u_1, u_2, u_3, u_4\}$. Clearly $\beta(G) = \beta(G') + 2$. As |E(G')| < tand the distance between any two endpoints of the tree G' is even, the equality $\alpha(G') = \beta(G')$ holds, therefore from Corollary we have

$$\alpha(G) \ge 2 + \alpha(G') = 2 + \beta(G') = \beta(G)$$
, or $\alpha(G) = \beta(G)$.

As every tree G, in which the distance between any two endpoints is even, and $|E(G)| \ge 7$, esatisfies at least one of the conditions of the six cases considered above, the proof of the Theorem is complete.

Acknowledgement: I would like to thank my Supervisor R. R. Kamalian for his conestant attention to this work and for everything he has done for me.

References

- Lovasz L., Plummer M.D., Matching Theory, Annals of Discrete Math. 29, North Holland, 1986.
- [2] Harary F., "Graph Theory", Addison-Wesley, Reading, MA, 1969.

ատուկ տիպի ճշգրիտ մասնակի 0-1 ներկումներ պարունակող ծառերի մասին Վ.Վ. Մկրտչյան

Ամփոփում

Աշխատանքում ցույց է տրվել, որ այն ծառերում, որոնցում ցանկացած երկու կախված գագաթների հեռավորությունը զույգ թիվ է, գոյություն ունի մաքսիմալ ճշգրիտ մասնակի 0-1 ներկում, որ 0 գույնով ներկված կողերի բազմությունը կազմում է ծառի մաքսիմալ գուգակցում։