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' Abstract
Itispmvedthntinatrminwhjchthedhtmbetmwtwendpoinmhm,
there is & maximum mperpartialn—l oolorlnssunhthattheedgumlmadbynﬁmm

& maximum matching.

All graphs considered in this paper are finite, undirected and have no loops or multiple
edges. V(G) and E(G)denotethesetaofvarﬁoasandedgasofagaph G, respectively. The
degeeofawmzinGisdenotedbyda(z). ]IXQE(G)thenamappingf:X—»{o,q
iamferredasapnrtia.lﬁ—loolorinsoithegraph G. Fori=0,1 and the partial 0 —1
.oolo:ingfo{thegraph(}'.denot-e f;E{eEXff(e)-—-i}. The partial 0 — 1 coloring f is
proparifthasebsfpandhmmat-chingsofthegmpha Denote

\G) = max{[fol + fl/ 1 is & proper pextial 0— 1 coloring of the greph G-

A proper partial 0 — 1 coloring f of the graph G is maximum if |fol + /1] = A(G). Set:

a(G) = max{|fi|/i =0,1and / 58 maximum proper partial (shortly, MPP) 0 -1
coloring of the graph G}. It is clear, that for every graph G a(G) < B(G), where B(G) is
thewdmdhyofammdmummatchingofthegmpha In this paper I show that if G is
a tree in which the distance between any two endpoints is even, the equality a(G) = B(G)
holds. Non defined terms and conceptions can be found in [1,2].

Lemmal. Let G be a graph, u € V(G), w € V(G), (u,w) € E(G), dg(u) = 1. Then
there is a MPP 0 — 1 coloring f of the graph G, such that |fo| = a(G) and (u,w) € fo.

( P}rc;o;. Let f be a MPP 0 — 1 coloring of the graph G with |fo| = a(G). Suppose
u, w 0-

Casel. (u,w) ¢ fi- As fisa MPP 0— 1 coloring of the graph G, there is & (w,w) €
E(G), such that (w,w’) € fo. Consider the mapping g : AU\ (w, w)HU{(w,w)} — {0,1}
defined in the following way:

@ = { 2 E : 2 }{?\{(W.W‘)}] U {(s,w)}
ItisclearthntgisuMPPO-lcoloﬁngoftheth,(u,w)Egaandl | = 1fol = i
Case2. (u,w) € fi. As fisa MPP0 -1 coloring of the graph G, ?ith Ilﬁfll == :E%,

then there is & (w,w;) € fo. Consider the maximal alternating path

u, (u,w), w, (w, 1), Wy, ..y Wie—1, (We—1, W), Wk, Where k is odd,

{(w w), (w1, w3), oo (W3, Wk-1)} C f1 and {(w,wy), (wa, ws), ..., (We—1,wx)} € fo. Define a
mapping ¢ : foU fi — {0, 1} as follows:

/0
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[0, i e {(uw), (w,w), e (wrr, i)}
gle) {l—f{e}, if ee{(u.w}.{w,w,].....(w:_,.w:)}.

Clearly. g is a MPP 0— 1 coloring of the graph G with (u,w) € go and |go| = | fo| = a(G).
"The proof is complete. .

Lemma2. Let G be & graph, u € V(G), v € V(G), w € V(G), dg(u) = dg(v) = 1,
iu,w) € E(CG), (v,w) € E(G). Then

(a) there is a MPP 0 — 1 coloring f of the graph G, such that |fo| = a(G) , (u,w) € fo
wand (v, w) € fi;

(b) MG) =2+ AMG\{u,v,w}), a(G) = 1+ a(G\{u,v,w}).

Proof. (a) By Lemmal, there is a MPP 0 — 1 coloring f of the graph G, such that
/sl = a(G) and (u,w) € fo. Suppose (v,w) ¢ fi,then there is a (w,w') € E(G), such that
(w, ) € f;. Consider a mapping g : foU (fi\{(w,w)}) U{(v,w)} — {0,1} defined in the
following way:

- 0: if CEf
A { L it e€(iM(ww))u{ew).

Clearly, g is & MPP 0 — 1 coloring of the graph G with (u,w) € g, (v,w) € g and

llgol = (G).
(b) Let w,...,w, be vertices of the graph G such that dg(w) =r+2(r20),ué¢
{wy, oy we ), v € {wr,..,we ), (w,wy) € E(G) fori=1,..,r, and f be a MPP 01 coloring

'/ of the graph G, such that |fo| = a(G), (w,w) € fo, (v,) € fr. As (w,w) ¢ foU fy for
ii=1,..,r,we have

)‘(G) = ‘\(G\{twiwl)l k) (wltol')}) = A(G\{mU!W}L

a(G) = a(G\{(w, 1), ..., (w,wy)}) = 1 + a(G\{u, v, w}).

The proof is complete.

Corollary. Let G be a graph, U = {ug, 1, ug, uz, us} be a subset of the set of vertices of
G satisfying the conditions: dg(tuo) = do(us) = 1, dg(u) = dg(us) = 2, (ui-1,%) € E(G)
for i = 1,2,3,4. Then the following is true:

MG) = MG\V) +4, o(G) 2 2+ a(G\V).

Proof. Lemma2 implies :

A(G) = 2+ MG\{uo,w}) = MG\U) + 4, therefore a(G) 2 2+ a(G\U).

Theorem. Let G be a tree in which the distance between any two endpoints is even.

‘Then the equality a(G) = B(G) holds. '

Proof. Clearly, the statement of the theorem is true for the case |E(G)| < 6. Assume
that it holds for trees with |E(G)| < t — 1, and let us prove that it will hold for the case
|E(G)| =1, where t > 7.

Casel. There is a U = {ug,u1,us,us} C V(G), such that dg(ug) = 1, dg(w) =
do(u) = 2, (ti—1,%) € E(G) for i = 1,2,3.8et G' = G\{uo, 1 }. Clearly, B(G) = 5(G") + L.
As dg(uo) = 1, dg(w) = 2 and doy(ue)(h1) = 1, doy(u)(ua) = 2, we have \(G) = 1 +
MG\{1o}) = M(G") +2, thus if g is & MPP 0 — 1 coloring of tree G, such that |go] = a(G") ~
and (uz,us) € go, then the mapping f : go U g1 U {(uo, w1), (u1,u2)} — {0,1} defined as

gle), if e ¢ {(uo,u), (w1, u)}
fley=1¢ 1, if e=(uj,ug)
n, if e=(up,uwm),
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of the tree G , therefore a(G) 2 fol = 1+Igol = 1+a(G"). Asthe

isa MPP 01 e | < t, we have a(G') = B(@),

distance between any two endpoints of G is even and |E(G")
therefore ;
a(G) 2 1+a(@) =1 +B(G") = B(G), or a(G) = B(C) -

There is & U = {10, 1, 2, ¥s» ,uu.m}QV{G)|suchthatda(no)=do(m)=
do(i?:z.l. a‘a[m;s: da(ﬂf}uiudaxsr:;. (w-1,%) € E(G) for i = 1,2,3,4, (ua,us) €
E(G), (us, ) € E(G).Set G' = G\{us, s} Clealy, A(G) = B(G") + 1. From Corollary

fa]lma 2(?+G(G'). Note that the distance between any two endpoints of the tree G'

ila?vgn iﬁd) |E(G")| < t, thus the equality a(G') = B(G") holds, and therefore

a(G) 2 1+0a(G) =1+B(C) = B(G), or a(G) = A(C) -

Case8. There is a U = {uo, 1, ua} € V/(G), such that do(uo) = da(ua) = 1, (ui-1,%) €
E(G) for i = 1,2. Let Dy, Dr be the connected components of G\U. Clearly, ;B_(G} =
1+ Y5, A(Dy). Note that D; i = 1,..,7 i8 & tree for which |E(Dy)| < t and the distance
between any two endpoints is even, thus a(D;) = B(D;), therefore, by Lemma2, we have

o(G) = 1 +a(G\V) = 1+ Tim a(D) = 1+ £ius (D) = B(G).

Cased. Thereisa U = {uo, u1, ¥ s, s, Us, g} C V(G), such that dg () = da(us) =1,
dg(uy) = do(us) = do(us) = 2, doluz) = 3, (ui-1,%) € E(G) for i = 1,2,3,4,6, (u,u5) €
E(G). Set G' = G\{ug, 1} Clearly, B(G) = B(G) +1. As |E(G")| < t and the distance
between any two endpoints of the tree G' is even, the equality a(G") = B(G") holds.

Lemmal implies, that there is & MPP 0 — 1 coloring g of the tree G\ {uo, 11, U3, Us, g}
such that (us, us) € go. Consider the mapping f : goUgU{ (o, w1), (v, u), (ua, us), (us, ug)} =
{0,1} defined as follows: |

g(e)s if e¢ {("03“1)! (ua, ug), (uz, us), (us, ug)}
fley=40, if e€{(u,m) (ua, us)}
1, if e€{(usus), (usue)}-

The Corollary implies, that f is a MPP 0 — 1 coloring of the tree G, therefore
-\Eg]} =Botg;\{(ﬂ1-u=)}) = MG) + 1 and o(G) 2 1 +a(G) = B(G) +1 = B(G), or
o = v

Case. There is a U = {to,u1, us, s, %, us,us, w1} S V(G), such that dg(uo) =
do(w) = dolue) = 1, do(w) = do(us) = 2, dg(u) = dc(us) = 3, (ui-1,%) € E(G) for
i = 1,2,3,4,6, (u2, us) € E(G), (us,ur) € E(G)Set G’ = G\{wo, 1y, Up, Us, g }. Note that
B(G) = B(G") +2. As |[E(G)| <t and the distance between any two endpoints of the tree
G’ is even, the equality a(G') = B(G") holds. From Corollary we have

o(G) > 2+ &(G) = 2+ B(G") = B(G), or oG) = B(C) -

Caseb. There is a U= {"-*O.ﬂluun‘"aaiu.%-"a."fn"a,ﬂ-a,ulu]' c V(G)I such that
do(uo) = dolu) = do(us) = de(w) = 1, da(t) = do(us) = do(us) = do(ue) = 2,
do(w) = dg(ur) = 3, (i1, W) € E(G) for i = 1,2,3,4,6,7,8,9, {“3!“10} € E(G),
(ur, u0) € E(G). Set G' = G\{uo, 1, uz, U3, us}. Clearly B(G) = B(G') +2. As |E(G')] < t
and the distance between any two endpoints of the tree G' is even, the equality a(G') = 8(G")
holds, therefore from Corollary we have

w, g, U, 0a}) +4, therefore A(G) = A(C\{(ua, us)}) = NG+

OnT:uswithaSpecialProperPutialD—IColt!ﬁnxl "1

|
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a(G) z 2+ alG’) =2+ B(G") = B(G), or a(G) = 3(G) .

As every tree G, in which the distance between any two endpoints is even, and |E(G)| > 7,
ssatisfies at least one of the conditions of the six cases considered above, the proof of the
['Theorem is complete.
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