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Abstract

also consider problems of total completeness and total resolvability for PROLOG in-
terpreter from viewpoint of some (natural) prosramtransformntionsmdpmvethat it
is not possible to make the interpreter totally complete.

1 Introduction

In this paper, we discuss questions concerning the extension of logic (Horn) programming
systems’ capabilities. We focus our attention on the problem of total completeness,

is the ability of the interpreter to answer queries which are logical consequences of the
programs, and if such queries contein variables then to find all the possible values for them
(in contrast to simple logical completeness (see [1]) which means finding at least one tuple
of values for variables), and total resolvability, that is being totally complete and being able
to answer all the queries which are not logical consequences of the programs (in contrast
to simple resolvability (see [1]) which means being Jogically complete and answering all the
queries which are not logical consequences of the programs). We prove the existence of totally
complete interpreter for logic programming languages and the existence of totally resolving
interpreters for languages whose programs have finite templates of their least models (the
notion of program least model’s template has been defined in [2]). Also, we study possibilities
to make PROLOG interpreter (3] totally complete by means of program transformations. It
is known (see [4, 5]) that PROLOG interpreter is logically correct (i. e. doesn't lie), but
isn't logically complete. In [1] truncated simple monadic PROLOG has been considered (i.
e. PROLOG which doesn’t use built-in predicates, doesn’t use predicates of predicates, uses
functional symbols of 0 arity and predicate symbols of 0 and 1 arity only, and whose program
clause bodies’ lengths do not exceed 1 and the queries’ lengths equal 1). It has been shown
that, by permuting and removing clauses of PROLOG programs, it’s impossible to lead the
interpreter to logically complete even for this version of PROLOG, but if, in addition, the
programs have no more than one repeated predicate symbol in the clause heads then it is
possible to make the interpreter resolving. Also, in [6] it has been shown that by permuting
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fud removing clauses of PROLOG programs and permuting atoms in queries and clause
3dies, one can make the interpreter logically complete for simple monadic PROLOG whose
¢rograms use no more than one repeated predicate symbol in heads of their clauses (i. e.
yhen the lengths of queries and program clause bodies may exceed 1) but cannot make it
ssolving. We prove that by permuting and removing clauses of PROLOG programs, one
unmot mike the interpreter totally complete for truncated simple monadic PROLOG whose
Jrograms use no more than one repeated predicate symbol in heads of their clauses, and
j=nee canmot make it totally resolving.

Definitions and Results

set's fix three countable disjoint sets X, F,II. X is & set of object variables, F is a set of
unctional symbols such that each symbol from F is assigned some arity and for any n > 0
the subset of n-ary functional symbols is countable, and II is a set of predicate symbols
wch that each symbol from 11 is assigned some arity and for any n = 0 the subset of n-ary
sredicate symbols is countable. Each variable from X and each O-ary functional symbol
rom F are terms, If [ is n-ary functional symbol from F and iy,...,t, are terms, n > 1
then the construction of form f(ty,...,tn) is also a term. Each O-ary predicate symbol from
I is an atom. If p is n-ary predicate symbol from II and %;,...,t, are terms, n > 1, then
he construction of form p(t1,. .., ts), is also an atom. The formula of first order predicates
ogic uses elements of sets X, F,1I; -, V, &, D logic operations; and ¥, 3 quantifiers, and is
lefined in the ordinary way. Let’s denote the set of all closed formulas by &.

Let’s describe the interpretations we are interested in. The object set of these inter-
sretations is the set M of terms without variables (ground terms). Each 0-ary functional
symbol from F is associated with itself. For each n-ary (n > 1) functional symbol f € F
‘here corresponds a mapping M" — M that associates & tuple < t1,...,1n > with a term
f(t1,..-+tn). Each O-ary predicate symbol from 11 is associated with one of elements of set
{true, false}, and for each n-ary (n > 1) predicate symbol p € II there corresponds some
mapping M™ — {true, false}. Let’s denote the set of these interpretations by H.

Let A, B € ®. We'll say that formula B is a logical consequence of formula A and denote
this fact by A | B if the value of the formula A D B is true for any interpretation of the
set H.

Let @ C @ and & # 0. A pair (A, A"), where A, A’ € @', will be called the transformation
of the formules of &'.

Let T be some non-empty subset of transformations of formulas of the set ®'. We will
gay that the formula A € @' is T-transformable into the formula B € @’ (this fact will be
denoted by A % B) if a sequence of transformations (43, A), - -, (An-1, An) from T exists
such that A, = A, A, = B, wheren > 1. If A,B € & and A > B, the formula B will be
called the T-image of A.

Let’s define the set P of logic programs. The program P € P is a sequence of clauses
Si1.veySayn 2 0. A clause S from Pis either a fact A or arule A: —By,..., By (m > 0)
that is an implication Bi&...&Bm 3 A, where A B,..., By are atoms. A is called the
head of the clause S, the sequence By, ..., By, is called the body, and m is called the length
of the clause body. Program P is associated with the formula Vzi,..., Yz (S1& ... &S,)
where 2y, ..., %, are all the variables used in 81000y Sy 20.

Lot's define the set @ of queries, The query @ € Q has the form 7 — C;..., (&
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The query Q is associated with the formuly
i used in Cy,...,Cr, 8 2 0;

..., 3u(Ci &...&c.)whurem..--.v.areaﬂthevqmblm 1re-osCha8 2 05k
i?‘éneéﬁetle?ngth of the query @. The set {v1,...,Vs} i8 denoted by Var(Q).

The logic programming is defined as a pair < Prog, Quer >, where Prog C P
and Quer C Q- We‘lldanotethe]mguasec‘PtQ>by£-

Let < Prog, Quer > be 8 logic prosgrnmmns}anmmse- For any P € Prog and any
QeQucr,theaetofmmsoormspondmgt.olog
is defined as follows:

if P} Q then Log(P, Q) = {no};

if P = Q and Var(Q) =0 then Log(P, Q) = {yes};

...,C, are atoms, k2l

cal semantics is denoted Log(P, Q) and

IfPFdeVﬂr(Q)'_' {”l!-":yl}r3>0thenLOg(P!Q)={( tyee b > by oo te € |

M, and if @ is & result of replaciog ¥ with ty,...,, With 2, in Q, then P |= @'}

P € Prog, @ € Quer, produces 3 set U(P, @) which is defined as follows:
if Log(P,Q) C {yes,no} then U(P,Q) € Log(P,Q);
otherwise U(P,@) € {<t,.. ;
and if < Tiyee2Ts > 18 a result of replacing all the variables of < #;,...,1;, > with terms
fIDthhen(Th”-lTI)ELOQ(PlQ)}'
. For interpreter U and P € Prog, Q € Quer, we define following set Ans(U, P,Q):
if U(P, Q) C {yes,no} then Ans(U, P, Q) =U(PQ); -
otherwise Ans(U, P, Q) = {<my.-s%e > | Mi--sTe € M and there exists such a tuple

<ty,... 1 >EU(P,Q) that < Ty, ..., 7s > can be obtained from < t,, ..., > by replacing

all its variables with some terms from M}.

IfP |=Q=>AM(U,P,Q) = Log(P,Q) for any P € Prog and any @ € Quer then the
interpreter U is called totally complete. If Ans(U, P, Q) = Log(P,Q) for sny P € Prog and

any Q € Quer then the interpreter U is called totally resolving. )
A finite set @ = {t1/th,-- -1 En/Un} 2 > 0, is called a substitution if %1,...,Yn are var-

ables, t1,...,ta are terms, i # j P Fypl ShjSnad bt Fylsisn I

n = 0 then ¢ is called empty substitution. The application of substitution ¢ to an atom

results in simultaneous replacement of variables 1, . .. , ¥a in that atom with terms t;,... 1y

respectively. Composition of substitutions is defined in a natural way (see [4]). £
‘Atoms A and B are called unifiable if there exists such substitution o (which is called a

unifier of A and B) that Ac = Bo. A unifier o of A and B is called the most general unifier

and is denoted by mgu(A, B) if for any unifier § of A and B there exists such & substitution
« that oy = 4. For any pair of inifiable atoms there exists most general unifier (see [4]).

Theorem 1 There ezists totally complete interpreter for the language L.

Proof. Let p be SLD resolution rule with selection function which selects first atom from

the query. Then by applying p to non-empty query @: ?—0Cy,...,Ck (k > 0) and clause

S: A:—B,...,Bn (m > 0) we obtain query Q" ? - Byo,...,Bno,Ca0,...,Cro where

o = mgu(A, Cy) (see [4]). We denote this fact by p(Q,S) = Q.

Let P be a program and @ be a non-empty query. Then the sequence of queries @, . .., @n.
(n > 1) is called inference of @, from (P,Q) if @1 = Q and Qiyy = p(Q;, S;,) where

S, € Pi=1,...,n— 1. This fact is denoted by (P,Q) - Qn.
Let’s define the answer set Proc(P, @) which corresponds to procedural semantics:
if (P. Q)|#7—, then Proc(P,Q) = {no};

for the language < Prog, Quer > is an algorithm which, for every

s> [t1s..- o1 r@ terms, 8 > 0, Var(Q) = {v,. -, ey
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JI(P,Q) 7~ and Var(Q) = 0, then Proc(P,Q) = {yes};

) F(P,Q) F7— and Var(Q) = {»1;---, 1} (s > 0), then Proc(P.Q) = {< ty,..., t, >€

Athere exist such an inference @, ..., Q@ of empty query from (PQ) (i ee @ =Q

2Q, =7-) and such substitution 4 that {t:/¥1s .-+ ts/Us} S 01 ...0n-18,Where o; is the

Istitution which corresponds to the application of p to @, and some clause from P resulting

My 1 <i<n)}.

IThe proof of Theorem 1 results from the fact that Proc(P, Q) = Log(P. @), which follows
o [4).

‘ITheorem 1 is proved.

+In order to formulate and prove Theorem 3, let’s introduce following notions which have
m defined in (2, 4].

TThe interpretation J € H is called a model of a program P if the formula which is
wociated with P is true on /. It is known that every program P has the least model /p

0

/We say that atom A precedes atom B (and we denote it by A < B) if there exists such
bstitution o that Ao = B (for convenience reasons, we will presume that o does not
Jtain items like 1/z where z is not included in A). One can notice that the preceding
jation is reflexive and transitive.

/ We say that atom A is congruent with atom B (and denote it by A = B) if A < B and
< A. One can notice that the congruence relation is reflexive and transitive.

It follows from the results of [2] that the relations of preceding and congruence are
sidable.

" We say that the set Ay of atoms is congruent to set Az of atoms (and denote it by
= Aj) if there exists such one-to-one mapping @ : Ay — Ag that A = p(A) for every
om A € A,

Let’s define the contraction of A (which we denote by Acem):

A AL

AcA* BeA*" and A<B= A=B;

A€ A = there exists such B € A®" that B < A.

It ismytoseethatmytwowntmctionsoh&mwngmem, and if Ay and A; are
om sets then Ay = A = A" = AP -

Let P be a program. For every i = 1 we introduce the notion of i-subtemplate of the
st model of P (i-subtemplate of Ip for short). K 1 = Facts(P)® is 1-subtemplate of Ip,
here Facts(P) is the set of facts of the program P. Let i > 1 and K} be i-subtemplate of
.. In order to give the definition of i + 1-subtemplate K" we need to define following set
41,

P .
A € K ethere exists a rule § € P of the form B : =By, ..., Bm and an atom sequence
1y-++3 Am, such that: : _

atoms Ay, ..., Am don’t share variables with each other and with S;

for every j = 1,...,/m an at.omA;EK}est’r.ssucht.hatAj = A5

there exist such substitutions oy,...,0m that o = mgu(Ay, B)), 0 e
wgu(Ag, Baoy), ... Om = mgu(Am, Bn0j - ..0m-1) and A = Boy ... 0m.

K};"" s (K}UR}“)""

It's easy Lo see that for every i > 1 any two i-subtemplates of Jp are congn
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= - - - . K‘ -

A€ K, #theremusumchao zlthatfm_evmtz.mmchmMmA“e b exists
tha.tAEi‘. Thet.emplateoflpi.adnﬁmdufff,"‘ and is denoted by Kp. It's easy to see
that any two templates of Ip are congruent.

mrdmm[Q],formpmgrumdgroundatomﬁuwehave:

AoefpﬁthmmdmauchanammAerthatA-<Ao.

Let ? — C4,...,Ck be a query (k > 0) dear(?—G,,...,Ck) = {y1,._.,y,},a >0,

According to (4],
Log(P,7—Ch,.--,Ck) = {<ty....ta>EM* |Ci{ta /11s--sts Jys} € Ips1 <i<k})

Lemma 2 Forﬁnitetemplatesofﬂwlemtmodel, the problem ofthm‘rwmmmisdz-

cidable.

Proof. The algorithm of template’s construction follows directly from its definition. Let’s
prove that it doesn’t run infinitely. First, we need to show that the sequence of subtemplates
mmaimitemswbichmmngumweachotharmdthahtheymdmmngmantwthe
template of the program's least model. :

ltfollowsfromtheﬁnitenessoff(pthatthmee:dstssuchju > 1 that for any atom
AermﬂmjzthhmmdsmmchmntomBe K} that A= B. On the other hand, *
foranyjzjumdmyammA'EK}thmmdswmmhmmmB'erth'4A'(it.f
follomfmmhqu}andK;mwnstmcwd).Forizjn,theree:dstsmatomB"EK‘p, !
B"=B. SinoeK}isamntmction,B“=A’.mdhmceB’5A’. Thus, there exists jo 21 -
suchthnt: &
fnrmyabomAerandforanijju.thme:dstssunhanatomBEKithntAEB;
foranyj?_jumdanyabomA’EKf,,thame:dsbsmmhma.tomB‘EKpthstB'EA’.

_Bmonmmmmumdmﬁngintomummefacttmxf,mxpconmctiom,
we have that Kb = Kp, j > ) and hence K = KE™. |

So, we proved that there exists such jo > 1 that K = KF*. :

On the other hand, if Kb = K3 for some i > 1, then Kp = K3 =Ki? =...,and
hence, Kp = Kb = K5 =K' =.... So, we have:

Kb=K#'=>Kp=Kpi21l

The algorithm constructing Kp sequentially builds subtemplates until it reaches such j
that K3 = K5, To prove that it doesn’t run infinitely, let’s describe the algorithm of
contraction construction for finite set of atoms and show that it doesn’t run infinitely.

Algorithm “Contraction”.

Input: finite set of atoms A.

Output: A™".

Step 1. If there exist such atoms A,B € A,A # B, that A < B (decidability of
precedence relation follows from [2]) then remove B € A and go to step 1, otherwise halt;
and give A as an output. g |

It’s easy to see that given algorithm builds contraction of the input set. It follows from:
the finiteness of the input set that the algorithm cannot run infinitely. !

e ————
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1T'To prove that Kp construction algorithm doesn’t run infinitely, we have to show that
riry subtemplate is constructed in finite time.

A K} = Facts(P)™ = (using “Contraction” algorithm) K} can be constructed in finite
me. Supposing that K} is constructed in finite time for i > 1, let’s construct K5 .
#1 = (Kb U K&')™. It's easy to ses that K5 can be constructed in finite time. On
o+ other hand, the contraction (Kjp U K3)®™ can also be constructed with “Contraction”
seorithm in finite time. Hence, subtemplate K7 also can be constructed in finite time.
# 8o, each subtemplate can be built in finite time, and one of them is congruent with
! 3 template of the least model. Therefore, the template of the least model elso can be
znstructed in finite time.

| Lemma 2 is proved.

sneorem 3 There ezists a totally resolving interpreter for languages whose programs have
\vite templates of their least models.

' Proof. Let’s describe the algorithm of such interpreter.

Input. Query Q: 7—Cy,...,Ck (k > 0) and a program P.
. Step 1. Build the template of Ip (according to Lemma 2, this process will end in finite
ane). Let’s denote the template by Kp.

Step 2. Build a program P’ which consists of the facts using all the atoms form Kp (in
dbitrary sequence). It’s essy to notice that Kp is a template for Ip+, and according to [2]

TR P

Step 3. Build the inference tree for P’ and @ using SLD-resolution rule p. The tree's
1epth is limited with the amount of atoms in the source query, and the amount of immediate
sscendants of each node is limited with the amount of clauses of P'. Therefore, the tree is
nite.

Step 4. If none of the leaves contains an empty query then output ‘no’ and halt.
Itherwise if Var(Q) = @ and at least one of the leaves contains empty query then output
ves' and halt. Otherwise if Var(Q) = {,....%s} (8 2 1) then halt and give out the set
«<ty,...,t, >€ M* | the tree contains an inference Qi, ..., Qn of empty query from (P, Q)

. e. Q = Q,Q, =?-) for which such a substitution § exists that {t; /¥h,.--,ts [Us}
/1 ...0q-10, where g; is the substitution being used to derive Qi;1 from Qs (1<i<n)}
since the inference tree is finite, this set will also be finite).

This description shows that the algorithm will halt in finite time for any input, and hence
, is a totally resolving interpreter’s algorithm.

Theorem 3 is proved.

Corollary of Theorem 3. There exists a totally resolving interpreter for the language
vhich doesn’t use functional symbols with arity > 0.

Let < Prog, Quer > be some logic programming language, and let Py, P; € Prog. We
say that P, and P, are A-equivalent (denoted by P, & Py) if Pi |= Q & P |= Q for any
2 € Quer.

Having a programming language < Prog, Quer > and some set of transformations T of
programs from Prog, we will say that it is possible to make the interpreter of the language
totally complete (accordingly, totally resolving) using transformations from T if for any P



w
Onhmw!dwcﬁuymmssm

mpmgthmmmpepmg.f’AP.PZrP'ahstP%aaAmw,P'.o)- |

Log(P', Q) (sccordingly: Ans(U, P', Q) = Log(P, Q) for any Q € Quer.
We will say that the program P contains the repeated predicate symbol p if the numbey

ofthec]aussofP, the heads of which use p, is greater than one.

Let’s define the sets Prog and Quer for truncated simple monadic PROLOG with ons |

ted predicate gymbol. The programs and queries of < Prog, Quer > use 0-ary fune.
tional symbols and 0- and 1-ary predicate symbols. The lengths of program’s clause bodieg
donote:weedl,andthelmsbhsofquaﬁsequal 1. Any program from Prog uses no more
than one repeated predicate symbol. PROLOG interpreter is defined in [3].

Let T be the set of transformations permuting and removing program clauses s that the '-

resulting program is A-equivalent to the initial one.

Theorem 4 Using trnmfam;aﬁomﬁumT, one cannot make the interpreter ofmncdqi"

simple monadic PROLOG with one repeated predicate symbol totally complete. -

Proof. Let’s consider the following pmgrun P and query Q.

The program P:
»(a)
p(b) : —p(2)
p(c) : —p(2)

The query @: ? —p(z)-

Log(P,Q) = {a,b,c}- 1t's obvious that any T-image of P is some permutation of P (it
can’t be a subsequence since any proper subsequence of P is not A-equivalent to P). It's
eaaywseethatioranypmmﬁonP‘ofP. Ans(U, P,Q) # Log(P,Q)- :

Thus, the theorem 4 is proved.

Corollary of Theorem 4. Using transformations from T, one cannot make the inter-
preter of truncated simple monadic PROLOG-with one repeated predicate symbol totally
resolving.
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