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Abstract

A new aspect of the influence of the information-thearetical methods on the statisti-
cal theory is considered. The procedures of the probability distributions identification
for K (2 1)rmdomobjecueachhaﬂngmﬁumt.haknwnsetoﬂl(2 2) distributions
are studied. N-sequences of discrete independent random variables represent results of
N observations for each of K objects. Decisions concerning probability distributions
ofthuobjscumustbem.adaontkubuenhudlumplu. For N — co the exponen-
tial decrease of the test’s error probabilities is considered. The reliability matrices of
logaﬂthminﬂbasymptoﬂcﬂb’opﬁmalpmmdwmup]omdformmude]smd
formulations of the identification problems. The optimal subsets of reliabilities which
vdugmnybeglmbefmuhmdmdmdiﬁmguarmhdngpmlﬂmofaﬂthe
reliabilities are investigated.

1 Problem Statement

Let Xi = (Xim» n € [N]), k € [K], be K(> 1) sequences of N discrete independent
identically distributed random variables representing possible results of N observations, re-
spectively, for each of K randomly functioning objects. . '

Fork € [K],n € [N], Xx assumes values ., in the finite set A’ of cardinality | %]
Let P(X) be the space of all possible distributions on X. There are M(> 2) probability
distributions G, . . . , Gas from P(X) in inspection, some of which are assigned to the vectors
Xi,...,Xx. This assignment is unlmown and must be determined on the base of N—samples
(results of N independent observations) Xx = (Zk, ..., Zxx), Where Zyn is a result of the
n-th observation of the k-th object.

When M = K and all objects are different (any two objects cannot have the same
distribution), there are X! possible decisions. When objects are independent, there are M*
possible combinations.

Bechhofer, Kiefer, and Sobel presented investigations on sequential multiple-decision pro-
cedures in [2]. This book is concerned principally with a particular class of problems referred
to as ranking problems. ‘
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Chapter 10 of the book by Ahlswede and Wegener [3] is devoted to statistical identification
* and ranking problems.

We study models considered in [2] and [3] and variations of these models inspired by the
pioneering papers by Ahlswede and Dueck [4] and by Ahlswede (5], applying the concept of
optimality developed in [6]-[11] for the models with K = 1.

Consider the following family of error probabilities of a test

oM (my,ma,...,mg) # (b, b,..., 1), mule[M], keK],

my my gl e et
which are the probabilities of decisions I3, 13, .. .,lx when actual indices of the distributions
of the objects were, respectively, my,ma, ..., mg.
The probabilities to reject all K hypotheses when they are true are the following
(N} — (N)
am{m:.....mthm.--"ﬂx i Oy iz, s da el *
Uz dpe ) (myma,..mi)

We study exponential decrease of the error probabilities when N — oc and define (using
Iogarithms and exponents to the base-e)

1 N
}-’En - N log as":Jna.---.mx!!a ki = B mamieliyda, e 2 0 (1)

These are exponents of error probabilities which we call reliabilities (in association with
Shannon'’s reliability function [12]). We shall examine the matrix E = {Ep, mj,...mucits Ja..x }
and call it the reliability matrix.

Our criterion of optimality is: given M, K and values of a part of reliabilities to obtain
the best (the largest) values for others. In addition it is necessary to describe the conditions
under which all these reliabilities are positive. The procedure that realizes such testing is
identification, which following Birgé [10], we call "logarithmically asymptotically optimal”
(LAO).

Let N(zjx) be the number of repetitions of the element z € X in the vector x € X",

and let
Q = {Q(z) = N(z|x)/N, z€X}
is the distribution, called ”the empirical distribution” of the sample x in statistics, in infor-
mation theory called "the type” [12],[13] and in algebraic literature ”the composition”.
Denote the space of all empirical distributions for given N' by P™)(¥) and by 75" the
set of all vectors of the type Q € PW)(X).
Consider for k € [K], m € [M], divergences

D(QulGn) = T Qu(=) s G,

and entropies

H(Qy) = — 3 Qu(z) log Qu(2).
z€X

We shall use the following relations for the probability of the vector x when Gy, is the
distribution of the object:

M (x) = ﬂc.n(m = exp{~N[D(QIICn) + H(Q)]}
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For my € [M], k € K], when the objects are independent and G, is the distribution of the

k-th object:
K
P (%1, Xa, - -1 XK) = exp{—N[2_ D(Q:l|Gmy) + H(QK)I}- ()
1T T —

; A . he

The equaslities follow from the independence of N observations of K ohjec'r.g and fr?m t_
deﬁm%ons of divergences and entropies. It should be noted that the equality (2) is valid
evenwhsnits}eftpartisequalw{), inthatmsforonaofx;t.hediat.rihut.ionQ; is not
absolutely continuous relative to Gm, and D(Qx||Gm,) = 0. e

Our arguments will be based on the following fact: the "mmumal likelihood” test accepts
as the solution values my, Mz, . .« Mk which maximize the probability y
P, (X1,%,...,Xk), but from (2) we see that the same solution can be obtained by

minimization of the sum él[D(Q.,II,Gm) + H(Qy)], that is the comparison with the help
of divergence of the types of observed vectors with their hypothetical distributions may be
helpful.

l:I'n the paper we consider the following models.

1. K objects are different, they have different distributions among M > K possibilities.
For simplicity we restrict ourselves to the case K =2, M = 2. It is the identification problem
in formulations of the books (2] and [3].

2. K objects are independent, that is some of them may have the same distributions. We
consider an example for K, M = 2. It is surprising, but this model has not been considered
earlier in the literature.

3. We investigate one object, K = 1, and M possible probability distributions. The ques-
tion is whether the m-th distribution occurred or not. This is the problem of identification
of distributions in the spirit of the paper [4].

4, Ranking, or ordering problem [5]. We have one vector of observations
X = (X,X3,....Xn) and M hypothetical distributions. The receiver wants to know
whether the index of the true distribution of the object is in {1,2,...,r} orin {r+1,... ,M}.

5. r-identification of distribution [5]. Again K = 1. One wants to identify the observed
object as a member either of the subset S of [M], or of its complement, with r being the
number of elements in S.

Section 2 of the paper presents necessary notions and results on hypothesis testing. The
models of identification for independent objects are considered in section 3 and for different
objects in section 4. Section 5 is devoted to the problem of identification of an object
distribution and section 6 to the problems of r-identification and ranking. Some results
are illustrated by numerical examples and graphs. Many directions of further research are
indicated in the course of the text and in the section 7.

2 Background

The study of interdependence of exponential rates of decrease, as the sample size N goes to
the infinity, of the error probabilities o' of the "first kind” and afy’ of the "second kind”
was started by the works of Hoeffding [6}, Csiszér and Longo [7], a}\mnﬁdy (8], Longo and
Sgarro (9], Birgé [10], and for multiple hypotheses by Haroutunian [11]. Similar problems for
Markov dependence of experiments were invesiigated by Natarajen [14], Haroutunian [15],
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Gutman [16] and others. As it was remarked by Blahut in his book [17], "It is unfortunately
confusing that the errors are denoted type I and type II, while the hypotheses are subscripted
) and 1. The word "type” is also used in ancther sense to refer to the type of a measurement
or the type of & vector”. For this reason we do not use the names (0" and "1" for hypotheses
and the name "type” for errors. Note thet in [17]-[19] an application of the methods of
hypothesis testing to the proper problems of information theory is developed.

It will be very interesting to combine investigation of described models with the ap-
proach initiated by the paper of Ahlswede and Csiszér [20] and developed by meny authors,
particularly, for the exponentially decreasing error probabilities by Han and Kobayashi [21].

In [22] Berger formulated the problem of remote statistical inference. Zhang and Berger
23] studied a model of an estimation system with compressed information. Similar prob-
Jems were examined by Ahlswede and Burnashev [24] and by Han and Amari [25]. In the
paper of Ahlswede, Yang and Zhang [26] identification in channels via compressed data was
comsidered. Fu and Shen [19] studied hypothesis testing for an arbitrarily varying source.

Our further considerations will be based on the results from [11] on multiple hypotheses
testing, so now we expose briefly corresponding formulations and proofs. In our terms it is
the case of one object (K = 1) and M possible distributions (hypotheses) Gj,...,Gu- A
test (x) on the base of N-sample x = (z1,...,2Zy) determines the distribution.

We study error probabilities a,%’ for m,l € [M]. Here o™ is the probability that the
distribution G was accepted instead of true distribution Gm. For m = [ the probability to
reject Gy when it is true, is denoted by afy, thus:

(&) (
Cnjm = E %A;)
Ll#m

This probability is called [27] the test’s "error probability of the kind m”. The matrix
{a™)} is sometimes called the "power of the test” [27].

n this paper we suppose that the list of possible hypotheses is complete. Remark that,
as it was noted by Rao [1], the case, when the objects may have also some distributions
different from Gy,..., Gy, i8 interesting too.

Let us analyze the reliability matrix

.....................

.....................

with components

1
Eni =E—N-logn,‘,’,‘f,’, m,1 € [M].
According to this definition and the definition of ady? we can derive that

il 1 )
Emlm = E = -ﬁloglaamu —
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- 1 1 (7] I
=E—ﬁlnmafﬂ+ﬁ—-ﬁ-m [(ﬁ;ﬂnﬁfu’) ,w%;] = i, Bnpi-
Thelantequs.lityisaconsequenceofthefsctthatforallmandN

1< (hglﬂiﬂ)/gﬁd.%j <M-1

InhhecaaeM=2,there]jabﬂiLymatﬁxis

(B B
= ( Eyn Eap ) ' )
and it follows from (3) that there are only two different values of elements, namely

By = By and Egp = Eap, (5)

so in this case the problem is to find the maximal possible value of one of them, given the

value of the other.
In the case of M hypotheses for given positive and finite Enpy, Baja, - - » E-1,4-1 let us
consider the regions of distributions

Ri={Q: D(QIIG) < Ey}, 1€M—-1], (6.0)
Ru ={Q: D(Q|IG)) > Ey, 1€ [M—1]} =P(X) - ‘Ul R, (6.5)
; ; _ I=1
RM =R,NP™, 1€ [M]. ' (6.c)
Let
Ejy = Ey(Ey) = Ey, l€[M-1], (7.a)

Byt = Eqpt(Bup) = Jgf&D(Q”Gm)‘ me[M], m#l, le[M—-1], (7.)
B = Enppa(Bapy -+, Bur =) = Jiof D(Q||Gm), m € [M-1], (7.6)
Einu = Expa(Bapy - s Ey-1m41) = . EE}E 5 Eupe (7.d)

If some distribution G, is not absolutely continuous relative to G; the reliability Eg,, will
be equal to the infinity, thjsmmthatwuesponﬂinga,{n‘? = 0 for some large N.

The principal result of [11] is:

Theorem 1: If all the distributions G, are different and all elements of the matrix
{D(Gi||Gm)}, I,m € -[M], are positive, but finite, two statements hold:

a) when the positive numbers By, Egp, . . ., Em—1,m-1 satisfy conditions

B <I%D(Gﬂ|GIJI
.... ..... (8)
Enjm < mml'E:lu"-}nll E;‘j,[Em}, lslrln?j ?1.-"--‘] D(G|||Gr)), m€ [2,M —1],
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then there exists a LAO sequence of tests, the reliability matrix of which E* = {E7;} is
. defined in (7) end all elements of it are positive;

b) even if one of conditions (8) is violated, then the reliability matrix of any such test
has at least one element equal to zero (that is the corresponding error probability does not
tend to zero exponentially).

The essence of the proof of Theorem 1 consists in construction of the following optimal
tests sequence. Let the decision | will be taken when x gets into the set

BM= Uy B, 1eM], N=12,.... (9)
qer"
The non-coincidence of the distributions G, and the conditions (8) guarantee that the sets
from (9) are not empty, they meet conditions

B{mnaitm =0, l#m,

and -
Ug™=a",
I=1

and so they define a sequence of tests, which proves to be LAO.
For the simplest particular case M = 2 elements of the reliability matrix (4) satisfy
equalities (5) and for given By from (5.2) and (6.b) we obtain the value of E3;, = Eq:

i (Ban) = ¢ ol s, DQIGD). (10)

Here, acrording to (8), we can take Ey; from (0, D(G,||Gy)) and E3; (Eq),) will range between
D(G1|G7) and 0.

3 Identification Problem for Model with Independent Objects

We begin with study of the second model. To illustrate possibly arising developments and
essential features we consider a particular case K =2, M = 2. It is clear that the case with
M = 1 is trivial. The reliability matrix is (see (1))

Eypy Bypa Bupy Bapa
E= Eigny Brapnz Brapy Eiapa
Eany Eaapa Eaapy Eaapa
Eana Eaapa Bagpa Eagpa

Let us denote by T:I!E.l.]p, ; a.‘,’.ig;a:nd E(n:)ll:' Er(::l the error probabilities and the reliabilities
as in (4) for, respecnveiy, the and the second objects. 1

Lemma: I 0 < E) < D(G4]|G1), i = 1,2, then the following equalities hold true:
By mal la = Eﬁfu, + E.(.’.:u,- if mi#Eh, m#h, (11a)

Enl:.mul!hl: = g{p‘- if mg—i = I3, mi # l‘l i=1,2, (llb}
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Proof: From the independence of the objects it follows that

N,1) (N2
n"l: M:lh.h l(rnﬂ-lzai(m ) if my % L, my # lﬁt [120]

o™ = o0 -l ), if moei=losy miF L P=12, (120)

According to (1), from (12a) we obtain (11a), from (12b) and the conditions of positiveness

of E and E), i = 1,2, (11b) follows.
If the distributions Gy and Gy are different, the strictly positive elements

Eiapas Erya of the reliability matriz E are given and bounded above:
Eyapa < D(Ga||Gy), and Eippa < D(G2|Gh), (13)
then the other elements of the mairiz E mdqﬁnedaafoﬂcm:
Bapa=Eypa  Biana= By

E = = inf D 3
1211 = Eaapa & DA <Euna (QlIG2)

Bauna = Bagpa =, D{Qllggls& r D(Q||G?), (14)

By = Bigpa + Bagpa, Bapa= Baapa + Baapas
Eiggy = Brapa + Brapay Brpa=Eapat By

By malmy ma = Em-mlla.l:! my,mz = 1,2.

(43 42 ) (m1,m3)
g;mofﬂwimquaﬁﬁa(m) is violated, then at least one element of the matriz E is equal
Proof: The last equalities in (14) follow (as (3)) from the definition of

(V) oL :
Qg malmy,ma = {hh}l%uml al(ﬂ?mlhh’ my,my =1,2.
Let us consider the reliability matrices of each of the objects X; and Xa
(11
E(l) = ( lll E( ) and E(g) ( El.ll Elllzﬂl
E§‘ |: Eg'.! L
From (5) we know that E{) = E{} and E{) = E{), i = 1,2. From (13) it follows that

0 “) El(u < D(Gy|Gy), 0< El|1 < D(G3||G1). Really, if 0 < Eyyp2 < D(Gal|G1), but
Eff) > D(G,||Gy), then from (12b) and (1) we arrive to

S~ %105(1_— af”) <0,

thel'ﬂfo_re.in_d ex Ny exists, such th;t. for subsequence of N' > Ny we will have 1 —afj;” > 1.
Buk this s oiposible broanes “lli's) is the prebability and must be positive.
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Using Lemma we can deduce that the reliability matrix E can be obtained from matrices
{EM) gnd E® as follows:

maElED B ) Eesd

| meemam e s
By el meGRED  E
Rpery B B meEEd)

in other words, providing, that conditions (13) are fulfilled, we find that
Bpa=Ef = Eﬁl) and Eyypg = Efj = Ej),

Epa=Eupa=E  Biana=Eups = Ej,

Eigpy = Baany = B}, Bagpa = Baana = ES),
Eaang =By + B, Bapa= 5-21} +Ef, (15)
Eians = B+ Egly  Buipa= E{) + B,

By malmy ma = min{E'(,:"h“, Eﬁ:m}v my,my =1,2,

From Theorem 1 we know that if Efj) € (0, D(G3||G1)), i = 1,2, then the tests of both

objects are LAO and the elements E§j}, i = 1,2, can be calculated (see (10)) by
EQ= if D@QIG) i=12 16
i Q‘-D(QIIG‘;I}S ﬂ ( | 2 ’ ( )
and if B} > D(G4]|Gh), then Ej=0.

According to (15) and (16), we obtain, that when (13) takes place, the elements of the
matrix E are determined by relations (14). When one of the inequalities (13) is violated,
then from (16) and the first and the third lines of (15) we see, that some elements in the
matrix E must be equal to 0 (namely, either E; g1, or Bz, and others). -

Now let us show that the compound test for two objects is LAO, that is it is optimal.
Suppose that for given Eyj2 and By, there exists a test with matrix E', such that

it has at least one element exceeding the respective element of the matrix E. Comparing
elements of matrices E and E' different from Ej 33,2 and Eyjp1, from (15) we obtain that

cither Byaus < Ejapa» oF Eagna < By » iee. either Eg) < EY, or B} < E{J. Itis
contradiction to the fact, that LAO tests have been used for the objects X; and Xj.

When it is demanded to take the same values for the reliabilities of the first and the
second objects ,|1, = Eff._! = a; and, consequently, E.ﬁl) = Eg,’ = gy, then the matrix E will
take the following form

ay ay ay 2a;
a; min(a,a3) @+ @
aa @ +a min(a,a) a
2a9 a; a az
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4 Identification Problem for Models with Different Objects

The K objects are not independent, they have different distributions, and so the m:unber
M of the distributions is not less than K. This is the model studied in [2]. For brevity we
consider the case K = 2, M = 2. The matrix of reliabilities will be the following:

_ [ Brapa Ergan (7

o ( Eyna Eapa ) :
Since the objects are strictly dependent this matrix coincides with the reliability matrix of

the first object (see (4))
B g
zo= (20 2 ).
By Egp
because the distribution of the second object is uniquely defined by the distribution of the

first one. : _
We can conclude that among 4 elements of the reliability matrix of two dependent objects
only 2 elements are distinct, the second of which is defined by given EY) = Eyana-
From symmetry it follows that the reliability matrix of the second object also may de-

termine the matrix (17), we can write

em- (5 )
T \E B )
5 Identification of the Probability Distribution of an Object

Let we have one object, K = 1, and there are known M > 2 possible distributions. The
question is whether r-th distribution occured, or not. There are two error probabilities for
each r € [M] the probability a,,‘ﬂ“# to accept [ different from r, when r is in reality, and

the probability al%),,,. that r is accepted, when it is not correct.

The probability o~ is already known, it coincides with the probability olff) which
is equal to aﬁ o). The corresponding reliability Emeriir i8 equal to By, which satisfies
the equality (3). ;

We have to determine the dependence of Epnyir{i=r Upon givell Epnariigr = Eyjr, which can
be assigned values satisfying conditions (8), this time we will have the conditions:

0<Ey <ginDGIG), reM]

We need the probabilities of different hypotheses. Let us suppose that the hypotheses
Gi,---, Gy have, say, probabilities Pr(r), r € [M]. The only supposition we shall use is
that Pr(r) > 0, r € [M]. We will see, that the result formulated in the following theorem
does not depend on values of Pr(r), r € [M], if they all are strictly positive.

Now we can make the following reasoning for each r € [M]:

w _P™Mm#ri=r) - 1
St Pr(m # 1) =% Pr(m) mg;* Pr™(m,r).
mimgEr 2
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From here we see that for r € [M]
1
Ennpritmr = Jim (——ﬁlﬂsomm u..-) -

N
- T (ks I, pem s E o) = mip 2 9

Using (18) by analogy with the formula (10) we conclude (with R, defined es in (6.a) for
each r including r = M by the values of E,;, from (D.l&iﬁ D(Gi||G,))) that

Erpriimr (Erir) = Jnig JgLD(QIIGm] =
- _g'ﬂ,emmig{ls% D(Q|IGm). r € [M]. (19)

We can summarize this result in
Theorem 3: For the model with different distributions, for the given sample x we define
its type @, and when @ € R™) we accept the hypothesis r. Under condition that the
probabilities of all M hypotheses are positive the reliability of such test En4- . for given
Eperjigr = Er}r is defined by (19)
For presentation of examples let us consider the set X = {0, 1} with only 2 elements. Let
5 probability distributions are given on A:
G, ={0.1, 0.9}
Gz = {0.65, 0.35}
Gi = {0.45, 0.55}
G, = {0.85, 0.15}
G5 = {0.23, 0.77}
On Fig. 1 the results of calculations of B~y 85 function of Ep—i%- are presented.

M | Byt [Erlr]

0.126

7 =1,2,3,4,5
0.2
0.103

0097
0.082

002 004 006 0082 0.03 01170120 0176

Fig. 1
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The elements of

Jation of conditions (8) for this example.

0
; 1.278
{D(GnlG) Yty = | 0586 0.
2.237 0.
0.103 0.
Inﬁ;mes2and3theresu.ltsof
4 distributions taken from previous 5.
0463
Emgtii=t | Ett
t=1,2,3,4
025

02

0.169

On Statistical Hypotheses Optimal

thsm&rkofdivm‘genoesofallpni

Testing and Identification

rs of distributions are used for calcu-

0956 0.422 2.018 0.082

o0 0117 0176 0.576
120 0 0.618 0.169
146 0499 0 1249
531 0.151 1.383 0

calculations of the same dependence are presented for

pm=l s r=l
o had r=3 !
=3 r=4

fmd = =3

0.103
0082
0.05

ISR

0.03 0,082 0.103 0.151 02 025 0.618

Fig. 2
015 -

1‘ E”“’“u"' lEm] =] = r=l
mus';\ t=1,2,3,4 =2 r=2 |

=3= r=4 |

002 004 006 0082 0103 0.12

Fig. 3

0.146 0.176
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f r-identification and Ranking Problems

The mode] was introduced in [5] and named K-identification. Since in this paper the letter
K is already used we speak of r-identification. Given N-sample x of measurements of the
object the problem is to answer to the question: is the distribution of the object in the part
S of M possible distributions or in its complement, here r is the number of elements of the

set S.
Again we can make decision on the base of the type Q of the sample x and suppose that

before experiments all hypotheses have some positive probabilities
Pr(1),...,Pr(M). (20)
Using (6.a) — (6.c) with some Ey, ..., Ey-1,m-1 meeting the conditions (8) when Q €
U R decision "1 is in 5" follows.

i The model of ranking is the particular case of the model of r-identification with § =
{1,2,...,r}. But conversely the r-identification problem without loss of generality may be
considered as the ranking problem, to this end we can renumber the hypotheses placing
the hypotheses of S in the r first places. Because these two models are mathematically
equivulent we shall speak below only of the ranking model.

It is enough to consider the cases r < [M/2], because in the cases of larger r we can
replace S with its complement. Remark that the case r = 1 was oonmdered in section 5.

We study two error probabilities of a test: the probability u,_s,",, to make incorrect

decision when m is not greater than r and the probability a|(|f>r|i$r to make error when m is
greater than r. The corresponding reliabilities are

E] (l") = Emsl'lbr Md EI("J = 'EnlbrllSﬂ 1 s T s rM/z-!' (21}
With supposition (20) we have

o™ _PMm<ri>n)
Ongrjisr = Pl'[‘m < r) .

e YN I ety e e L ik ™)
"?;r Pr(m) MZSJEPI (m,1) m%_ Prim) “EE Pr{m) (22)

The definition (21) of E(r) and the equality (22) give

1
Ei(r) = Jim_ ~ 3108, =

mer [>r

=Jm - [los P ZPr(m) —log 3, Pr(m)] =, oin _Em. (23)
Analogously, at the same time '
By(r) = Jim — %1"8 g =

E JLV [Iog D) ¥ “...u log Z Pr(m}] l!llfl‘lc‘r Emji- (24)

m>r |<r
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For any test the value of E(r) must satisfy the condition (compare (3) and (23))

Ex(r) 2 i3 Enim: @)
- Thus for any test meeting all inequalities from (8) for m < r and inequality (25) the

reliability Ea(r) may be calculated with the equality (24). For given value of Ey(r) the best

Ea(r) will be obtained if we use liberty in selection of the biggest values for reliabilities

Emmy T <M < M-—l.satiafyinsﬁorthusemconditions@). These reasonings may be

illuminated by Fig.4

l=1, 2yeeeayrdlccneees . M

m=1 [ Ep i Eym

2 \ = i

E i) B e

r Ef L ccnmas e ee—
L B e i a ¥

BB =

F oS Fol |

M\ Emp ; Emm /

Fig. 4 Calculation of Es(r) [E1(r))
and resumed as follows:

: When the probabilities of the hypotheses are positive, for given E; (r) for
m<r not exceeding the expressions on the right in (8), Ea(r) may be calculated in the
following way:

Em) (B = 5 machf i, B1y=E) [wIE.i?Sr E:’“‘] 2

withE‘,',,"deﬁnedin('?).
Bgm,uk_:Oneca.nsaeﬁ-om(26}tha.tforr=1wearrivet.o(19)forr=i.
mjlnuﬁ;mu 5 :t?d ’Lffg;e 2 subsets by 3 distributions taken from 5 defined for Fig.1 the
calculation dependence (19) and in 6 i
O b s il (19) : figures 6 agd 8 the corresponding results
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7 Conclusion and Extensions of Problems

The paper is & contribution to influence of the information theory methods on statistical
theory. We have shown by simple examples what questions arise in different models of
statistical identification. 3

Problems and results of the paper may be extended in several directions some of which
have been already noted above.

It is necessary to examine models in which measurements are described by more general
classes of random variables and processes [14]-[16], [25].

]E){ne of the directions is connected with the use of compressed data of measurements
[22}-126).

One may see perspectives in application oi identification approach and methods to the
authentication theory [32] and steganograpnv [33].
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dhGwlwgpulwi JuplwdGbph ouunhiury
mbuniwi L GoyGuljwiugiwb dwuhl

N-Upmjbnh, b. dwpnipymGyud

Uiithnghnud

Apunwplywd b hipapiwghni-nbuwlwd dbpnnGbnh yhtwlwgpuljwi mbumpjwi Ypw
wqnbignipjwl 0 Gop hGwpuinpmpymi: NumiGwuppdwd 66 hunjwlwiwbmpymbGibph
puplunibbph  GnyGwlwiugiwl plpugwiwungbpp K (z 1) wwnwhujulugdud
opjuljnlbph hwiwp, npnighg jmpwpwlympp puphjwd t pun wmwd M(> 2)
pwpumdbliphg dbyh: Conhun wijwiu wwnwhnlui thdmpmGibph N-hwenpnuljw-
Gmpynilifbpp Gbpywjugloui b K opjtlpnGbph jmpwpwiymph N phuwpymdbGhph
wpryniGpGbpp: NpnznuwiGhpp whup b pigmGyLd opjtlunGbph hujwlwlhwGwhG puyfunud-
Gtiph dwuhl: hwwplyws £ nbunbph ufuwybph hwjwlwlwinpmGibph gnigijwjh
fijuqnip, bpp N — oo Zbnwgnnywd b6 pquphpinphl, wopiupnmonpbl oujwnpiuy
plpwgwljwpgbph  hown hnpjwl tuwwphglbpp GmyGwliwlwgiwl fuGngph dh pwlh
tinnbiGtph L dlwlbpuymiGhph nhwpnul: Lzdwd b6 wyl hmuwhmpymGibph owwmiug
hipwpwquinipjniGGLpp, npnig wndbpGhpp Yupnn b6 wpdb; Gwiuopnp L w)l wwyiwGbpp,
npnp wujwhnynd bl pojnp hmuwihnpynGGeph npuijwut (hGbp:



