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Abstract
The paper presents the general discussion of the data flow algorithms structuring
problem on one hand, and, as an example of that particular problem class, the anal-
ysis of the linear programming problem when the objective function coefficients vary
depending on the date flow. The problem is in reconstruction of current result with
such an approach, which is the most plain from the full solution of the problem by the
dynamic data set flow.

1 Introduction

Many modern applications of information technologies, such as network monitoring, opti-
mal management of telecommunication systems, network search, the exploitation of network
measuring instruments and their data bases, etc., deal with continuous data flows and un-
usual, non-finite and nonstoraged data set. In this case, the requests (the requirements
of data analyses) in their turn are longterm and continuous processes in contrast to usual
one-time questions. The traditional data bases and the traditional data processing algo-
rithms are poorly adjusted to the processing of difficult and continuous requests in the data
flows. This generates a necessity for new investigations for continuous, multipart, depending
on time and subjected to indefinite behavior of data flows processing [1]. Concerning the
mentioned class, some systems and algorithms are processed for different needs: real-time
working systems, controlling systems, modelling processes, ete., but they are episodic for the
formulated general problem.

The incremental update algorithmic model of data analysis by changed problem con-
ditions prefers episodic change of problem solution to its full analysis [2]. For example, a
particular change of time-table problem conditions must be brought to time-table episodic
reconstruction. It is obvious that it is possible to construct theoretical problem where any
particular change brings to the full reconstruction of the problem. It is also clear that there
are numerous problems which are not critical to the local transformations. It is possible to
solve any problem by mentioned algorithms, moreover, in the specific conditions it is the
only possible variant for solving a problem, including the data flows analysis.

The present statement will discuss an important applied model in the flows environment.
We are going to consider a linear programming mathematical problem the parameters of
which are formed by data flows. At the moment it is assumed that the optimal plan is found
and the coordinates of objective function vary. In this case, there is an emerging question
of the mechanisms by which it is possible to follow the coefficients variation by creating the
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p . e
next configuration of the change optimal plan. It is clear that this relates to simple chang!
of the current plan, but not the full analysis of the problem.

9 Linear Programming Problem In The Flows Environment

Particular examples of linear programming general problem are given Ehmﬂ&h_m dlf;;
tion of coefficient values: ay, G bi (i=1,2,...,m; J = 1,2,...,n). Let's examine & 1
programming problem of canonical view:

min c¢'x,

Ax=b, x20,

where ¢ € R", b € R™, A is the m x n full rank matrix, m <7 . Let’s imagine the
peculiar situation arising from applications in which the mentioned coefficients are changing.
Such problems appear, for example, for data flows. E

B(t,n) data flow is finite but a very large-sized sequence of by, ba, .., bn, where b, t =
T are certain structures. The data flows processing algorithms can use incomparably
smaller storage memory than the input data. The limitation window is given in certain
cases for processing separate data episods. The time-dependent values of the applied model
parameters are obtained as result of analysis. Unlike other natural and similar definitions, the
variation of parameters is unpredictable here, as it does not have probabilistic distribution
and is not described by one or another property. Instead, it is considered that the variation
takes place very slowly, because of the accumulation. In turn, the applied problem demands
to have ready answers to the certain questions,

There are two strategies: to solve a problem for every moment by &ll present data which is
practically impossible because of the date sizes, and to structure growing generation systems
when the new data analyses are more or relatively easy summarized with the results of the
previous data analyses. :

We are going to consider linear programming in the mentioned conditions. Any variation
of the coefficients is not considered. Instead, insignificant and slow variation is considered
so that the variation is fully monitored and it changes the solution point slowly. Of course,
it is possible to formalize this fully. At the same time, it is possible to consider partial
behavior of parameters variation by providing clarity of analysis and getting optimum change
mode description in simple terms. The clnﬁﬁca.t.ign is also expedient in respect to the
method application. Let's suppose that in Z = ;é",lc,zj linear objective function of the

linear programming problem c; coefficients are variated by B(t,n) flow. Assume that fp is
the fully analized moment, i.e. we know about the existence of optimization at that moment
and the vertex, if the latter exists. This vertex is stable for certain variation of ¢; coefficients
[3] The stable set is described by simple inequalities and it is clear that there is a necessity
to consider its borders. The theoretical analysis of it is presented in [4] which proves that
the feasible polyhedron vertices set is divided into equivalent vertices groups and that the
passage from one optimization vertex to another takes place through those groups. Some of
the mentioned groups are neighboring with a separately taken vertex, and the total sum of
those groups vertices can be large. Theoretically, in terms of flows, having an optimization
vertex, it is necessary to prepare neighboring equivalent verticés by calculating current c;
coefficients. The weakness of this approach direct application is the drastic increase in the
number of calculations for decreasing which approximations and heuristic solutions should
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be applied. The below considered natural approach gives primary significance to the vertices
which are adjacent to the variation process.

At ly moment let’s denote the optimal vertex by Z' and £ is the corresponding vector
of coefficients. Let's review #2 and . It is clear that variation in the approech from & to
& is arbitrary and it is controlled by flows. It is important that during the variations vector
of coefficients 2 do not go out Z vertex oprimization area. It is possible to apply a set of
simple mechanisms for further behavior modelling of #. For example, one may consider a
standard deviation of @ fromZ* direction. The most simple model is the consideration of
that direction. As an extrapolation, it leads to the intersection of Z vertex and the hull
of stability at the most probable point. In case of sufficient resources, it is also possible to
consider some vicinity of that point, but it is important that in contrast to the mentioned
theoretical model these application approaches give an opportunity to work with the limited
quantity of the possible vertices. Depending on the cosidered problem parameters, the
algorithmic system is able to choose a scheme corresponding to extrapolation, which deals
with different numbers of neighboring vertices. The basis of the choice by & flow average
measures and dispersion is in the process of calculation, which is a simple flow problem (it
is showed in the [1]). Assuming that this question is clarified, let's consider the problem
behavior in the case of rectilinear variation.

3 Rectrilinear Extrapolation

In the above mentioned case, variation of the objective function coefficients is more expedient
to describe with c;(A) = ¢f + A(c} — c}*) expression, where A varies in the certain limits,
[0,1] interval is internal and characterizes the variation from &* to &, and A > 1 values
extrapolate the further values of coefficients vector in the line of variation. Let's denote
@ =d-cb.
So, & linear fuction :
Z= E (€ + Aef)zs(1)

and the system of linear limitations

i -
‘Eauz,=h, f=125 Anm, @
z; 20, F=T12.n,

are given.

Igtlisnessecaryt.oconvoya\chmgeandﬁndoutﬁnml < ) interval the minimal value
of A at which the variation of the optimization vertex takes place for the first time. Assume
that the vector # = (z},2%,...,2%), which satisfies system (2), introduces corresponding
new optimization basis.

According to the hypothesis, in case of A = 0 initial value, we have an optimal solution.
Assume that some basis (consisting of the m vectors of &, ... , &, system) corresponds to it.
According to the simplex algorithm optimization condition, its all estimations in this case
must correspond to the following condition: z; — ¢ < 0. As ¢;()) = cf + Ach, then the
general condition of optimization will be the following:

4- e (N) = 3o (e 4+ 2ef) 7y — (¢ +2c8) S0, =12
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Let‘sgronpthoaeconnecﬁomiuthstoﬂouﬁngww:
ic;‘“f.j-—c?-l-l(icffu—cf)sﬂ, j=1|2|'--|n
i=1 i=1

and input the following notations: a;=£c§"1’u-—c;", and B = (E.lcf‘rﬁ—c?) These
constants are defined by the initial configuration: objective function coefficients and the
nw basis solution, objective current coefficients with the condition that optimality

hase not change during that period. In case of ¢ initial value (when A = 0) we have 2’
opttmjsationvsrbﬂandtherefum.wegetthsfouowinghmitatiom:a,so.

ThaoptinﬁzatianmriationdoesnottakeplweinthsosAglintervd,theraforeWB
also get the following:

a;+ A3 <0:

lnparﬂculnr,whan)\=1wagetag+ﬁ,_<_'.0.

'I'heextrememnditionvﬁllbawrittaninhhafollowinsgmemlform: aj+A6;£0,5=
1,2,...,n. Lut’sﬁndtheminimalvalueof;\atwhlchatleastoneo{theseinequaﬁtieais
violated for the first time.

Let’s separate the negative and positive cases of ;. A restrictions will have the following

form:
A2 _allﬂivfor nllﬁ; <0,
A< —ﬂ,fﬂ,, for all ﬁj >0.
 Let’s input a new notetion:

X={ gg{l-ﬂjlﬁj},
+00, fora.l.lﬁ,SO

The optimal solution for all A = 0 coincides with the optimal solution for all X meeting the
mndmonusAsX.Itisemuedmﬂisthnpmiblatrmiﬁanmomemwhich'isrequired.
If X = 400, then there is no optimal plan variation. If X is finite then it is necessary to
consider two cases: the first one (a/) is the X point, possible equivalent optimal plans and
pumiblemnﬁnuaﬁminthiscaae.mﬂthesemndona(b/):i.fthareisanewoptima.lplan
and if the problem has no solution st A > .

8/ Assume that ) is finite, i.e. X = —ax/Bs 8t k parameter corresponding value. It means
that zx — cx(A) = 0, from which follows that the optimization Rlan is not single. Actually,
let’s inputkvectorinthebaaisandam:dingbothasimplumethodlet’sexclude one of the
vectors from the previous basis. ‘We will get & new optimal plan the objective value of which
will stay unchaged. Itfoﬂmmmthahbydlmﬂuﬁmaﬁomwdbyaﬂbuiamiatjnns
wbmgetmmyopﬁmizaﬁmequimlmt‘vuﬁmmdalldemmmoftheirﬁnearcmealm
have the same discussed optimization value.

bflnthiscasa.wacomiderthek)imeandthaﬁnibeivalue.Ifabovementionedk
vector coefficients all are not positive, i.e. 7y < 0, then according to the simplex method,
the objective function is becoms unlimited. This takes place any time when according to
bheinmessingchumoftheobjecﬁwfmcﬁonmwﬂlgetthemtorwhinhiagoingt.obe
ncluded in the basis zx—cx(A) > 0, but it becomes clear that the vector has no positive T >
) coordinate because of which we could exclude it from the basis. In this case, it is impossible
-0 choose such 8 > 0 coefficient that any z; — 87 = 0, where @ = {1,...,m}. Therefore,
we get the optimization plan with m + 1 positive components i.e. the set of @, @y, ..., Gm, Ok
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linear-dependent vectors which corresponds to the nonangle vertex. Therefore, the linear
objective function could not reach to its minimal value. This means that the hyperplane
defined by linear function could not become the hyperplane of feasible polyhedron at any
shift in the direction of gradient. 5

If any 7y > 0, then @, vector is included in the basis and another @; vector is excluded
from it. As we got the new basis by the simplex method then it corresponds to & new optimal
solution, at that

o+ M <0, j=12,...,n(3)

inequalities are compatible.

Let’s show that any A < A does not satisfy inequalities system (3). Really, for vector &
excluded from the basis we will get the following:

o) = —ap/Tu; B = —Be/m. (4)

where 7 > 0. Suppose that (3) takes place for any A < X then o+ AJ; < 0, or according to
(4) —ax—Mf < 0. As fx > 0 then, from the latter inequality it follows that A > —ax/5; = X:
So, if X is finite then in the case of the new basis it presents lower bound of variation.

4 Conclusion

The paper is devoted to the discussion of applied algorithms for data flows. The linear
programming problems and solving simplex algorithm are considered. The problem is not
about the simplex algorithm development, but the fact that the approaches processed in this
sphere help when according to the problem assumption the coefficients of objective function
vary in the result of the data flows analyses. We got that it is possible to introduce and
develop the concepts and tools related to the simplex algorithm by approaches that solve
flow linear optimization problems. The main result is the construction of the extrapolation
mechanism that applies linear extrapolation and by predicting the stationary change of the
flow explores and prepares possible succeeders of the optimality vertices in advance. This is
important from the viewpoint of linear programming system optimization.
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SijywyGbph hnupbph {ipotonuip puwn gdwgha dpuigpuujnpiw dnnth
1L <. Upun]bpywd, L U, Yupuwwwd, <. 0. Snfnjuf
ool

opwop Gubpwd E unjunbph houpbph wignphpulbph Yuomgiw pinhwnin
punph pGGwplpiwin Sh Yondhg, L mpubu wju nuup GwuGujnp fubnph ophGul’
qouihl dpugpunpiwd Tuinph nunuiGwuppiwt, tpp houpwyhG wijwGbnhg Juiujwd
thmfinfujnud b6 Guyunuljuih pniolghwih qnpowlhgbpp: GnhRR pipwghly wpnympp
Jbpwljwmnigiwd gk k wyGughoh Gh dmnbgiwdp, npn wnun(by wwpg b fuGgph (hwijumwp
jmomuihg pun houph nhGushy wiusGbph puiqinipjwG:



