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Abstract

This paper introduces a dynamic programming approach for computing "contin-
two protein sequences, The discrete dynamic programming
method considers items of each comparable sequence independently; meantime there
interrelation between them. To overcome this disadvantage a "continuous”
sequence comparison method is developed. Particularly, a certain continuous func-
tionismre.latadtoeuhwmpamblapmﬁdnseqmnm, and then the comparison is
made between those functions. Through compressions and expansions the comparable
functions are brought to the most similar representation in the meaning of a certain
gimilarity function. By this approach the sequence comparison problem is reduced to
a functional maximization problem, which is numerically solved using dynamic pro-
gramming method. Finally some practical results are presented with the application
of described method.

1 Introduction

The immense volume of biological sequence databases (see e.g. [3) and [5]) requires intel-
ligent computational methods for automatically analyzing and classification of the accumu-
lated sequence data. In the last three decades a number of &; roaches and methods have
been developed, which are addressed for solving various problems appeared in Molecular
Biology. All those methods referred to Bioinformatics (Computational Biology) discipline,
though Bioinformatics considers much wider range of problems (see [4]).

Formally the biological sequence is considered as a finite word a = a,,as,...,a, of &
finite alphabet U = {u;,ug, ...t} (ie. & € U,i=1,2, ...,n). For protein sequences the
alphabet consists of 20 amino acids and for DNA sequences - 4 nucleotides. The comparison
of biological sequences is one of the main methods for detecting biological homogeneity. The
most of the sequence comparison method are based on the following fact: high similarity
of the[llglr.;logical sequences usually implies significant functional or structural similarity (see
e.g ; :

In the [20] are presented several methods for sequence comparison. The alignment
method is one of the widely used approaches for biological sequence comparison (see [7],
[20], [21], and [24]). In 1966 Levenshtein defined a distance between two sequences (so-called
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edit distance), by aligning the comparable sequences (see [14]). The plausible alignment of

* the biclogical sequences reflects the evolutionary changes, which could occur in the sequences,

mainly insertion, deletion and substitution. The quality of an alignment is assessed based
on & similarity (distance) matrix. In the case of protein sequences it is & 20 x 20 dimensional
matrix, which expresses degree of closeness of amino acids. The similarity (distance) matrices
are calculated based on statistic data or biochemical properties of the amino acids.

In 1970 Needelman and Wunsch introduced a general algorithm for biological sequence
comparison called Needelman-Wunsch algorithm (see [17]). It based on dynamic program-
ming method. The algorithm computes distance (similarity) of two sequences and obtains
the best global alignment.

The idea of dynamic programming method was developed by Wilder, then by Bellman [6],
Mikhalevich [15], Moiseev [16]. Also Bellman introduced and described class of problems,
which can be solved by dynamic programming method (see [6]).

Several variations of Needelman-Wunsch algorithm were developed, which solve related
problems in Bioinformatics, such as semiglobal alignment or overlapped alignment (see [7],
[21], [22] and [24]). Particularly Smith-Watermen algorithm was developed to find the best
local alignment of comparable sequences (see [22]).

Several heuristic modifications of Needelman-Wunsch algorithm were built, such as BLAST
(see [2]) and FASTA (see [18]), which are highly applicable in database search tasks (i.e.
to find biologically relevant sequences in the database for a given query sequence). Hidden
Markov model (HMM) based probabilistic methods are widely used for detecting certain
conserved regions of a sequence (see [7] and [8]).

In this paper a continuous analogue of the alignment method is considered from Bioinfor-
matics perspectives. Mentioned Needelman-Wunsch algorithm for discrete sequence compar-
ison considers items of the sequences independently, meanwhile there are strong correlations
between amino acids of the protein sequence (see e.g. [7]). Our goel is to overcome this
shortcoming,

To take into account interrelation of amino acids in the protein sequence it is natural to
correspond to each protein sequence a continuous function. The value of this function at each
point will be influenced by some neighborhood of that point. Then, the comparison will be
made between corresponded functions. The idea is to find the closest representation of the
comparable functions by compression and expansion of some parts of them. The closeness
is meant in the meaning of a similarity function.

From mathematics perspectives the idea of comparison of continuous functions based on
compressions and expansions is compiled into the following functional maximization problem:

sup [ (alp(t), HH(O)) Ao t)t (1)

wlt),¥(t) /0

where a(t) and b(t) are comparable functions, S(z,y) is a similarity function, @(t) and 1(t)
are functions that implement the warping of the functions a(t) and b(t) respectively, Agy(t)
is a penalty function, { ,

Historically, problems similar to problem (1) were considered by Kantorovich and Ru-
binstein (see [13]) in 1957 and by Wasserstein ( [23]) in 1969. In their studies a distance
between two probabilistic measures y and v in the n-dimensional space R™ is defined as the
"length” of the shortest path along which x can be transposed into v, and the ”path length”
is calculated by the aid of a given distance function G(z,y), defined on R™ x R™,
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in Time Warping discipline (see (20]) to compare two con-
i Th""fu‘lfﬁgf,ﬁ éfl Lmﬁdua argument. As a rule, time plays the role of the argument,
tmuou:le g originated mainly from Speech Recognition discipline (see . [19]) and appli-
o i function comparison problems, when comparable functions differ by
ﬁthgimﬂustrucnuealwappemdinotherdiscipﬁnemu
bird’s songs study, gas Wchmmmﬁmﬁ etc. pi:; u[i‘:}))l;hli [20] is offered to
arping approach to biologi com
sLm’;i:y\riclTieI:I:::!lywt.h|a ﬁmpaI:tempt of applying Time Warping approach to b_iologica] sequence
L wen e . 11, Pectiolacy ropeuvsare sl S
from protein sequence to & continuous function and fwmnmuctmgdmﬁmctlm ALs
o heuristic algorithm is developed for solyins received problem. Tl}e _Ldeaa and met.hods of
[ll]maipiﬂcamlyusedhere. In [leprgsentefl?nothetheunmcmethodform]m
problem (1), which is actually an iterative local variations method. : st 25

In the labors listed above considered problems were reduced to a mmnﬂ m@
problem. Unlike them, here, proceedi:!g from prscﬁca-l reasons, a functional maximization
problem is considered, though general ideas remain unchanged. : .

In this peper problem (1) is considered for the case Y(t) = 1, ie. only function aft)
is subjected to compressions and expansions. *An algorithm is presented for solving stated
problem. The algorithm is based on dynamic prosmmminsmet.hod and the idea of the
algorithm was introduced by Mikhalevich (see [15]) for solm_:s minimization problem for
additive functions, then developed by Moiseev (see [16]). Similar algorithm wes applied to
solve & class of speech recognition problems (see [19]). Also presented algorithm can be
treated as a solution for optimal path finding problem in the graph theory (see [16]).

9 Formulation of the problem

The main disadvantage of dynamic programming algorithm in the biological sequence com-
parison problems is that it considers item of comparable sequences independently. Meanwhile
there is a strong interdependency between amino acids of the protein sequence (see [7]).

To take into account interrelation of amino acids in the protein sequence a continuous
function is corresponded to each sequence. Then the comparison is made between those
functions. By compressions and expansions the comparable functions are brought to the
most similar representation in the meaning of corresponding similarity funetion.

The first attempt for comparison two continuous functions in the context of Bioinformat-
ics was made in {11]. Here the ideas developed in [11] are significantly employed.

Let U = {u1,Uz, ..} is the alphabet, § = {s;;} is & r x r dimensional similarity
matrix, where 8;5 > 0 and a = 613;...0, is & sequence, a; € U, i = 1,2,...,n. The schema
for correspondence a function to the sequence a is the following:

0°. Reordering of the alphabet. To reorder the alphabet U and correspondingly the
matrix S, such that "close” elements of the U will be placed at the close positions, whereas
the difference of the indices of *fai” elements will be bigger. In [11] a heuristic method is
offered for reordering alphabet U based on distance matrix and probabilities of appearances
of amino acids in nature. In this paper & condition is given, that the reordered alphabet
should satisfy. The reordering of the matrix does not affect the biological information behind
it.

Let I = (iy, %2, ..., ;) is a permutation of numbers (1,2, ..., ), ¢(I) is a numerical measure
of goodness of the reordered alphabet Uy = {t;,, %, .., i, } in the meaning described above
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and defined as e
e) =33 lik—isl - 8-
=] j=k
Our goal is to find the permutation I*, such that
e(I") =pipe(),

where T is the set of all permutations of numbers (1,2,...,r). The minimization of e(I)
enforces the corresponding reordered alphebet to satisfy to the requirement stated above.
Posed problem known as quadratic assignment problem. This problem is NP-complete and
can be solved by branch and bound method (see [12]). For our further considerations we
will assume that U = Up., since it has the best measure of goodness. The matrix S will be
rearranged accordingly.

1%, Transition to numerical alphabet. Suppose U = {u1,u3, ...,u,} is the reordered
alphabet according to step 0°. By the following formula we transfer from symbolic alphabet
U to numerical alphabet V = {v;,v3,:..,%}:

v=6), Y=t +es, i=23,..,r

where number v; corresponds to symbol u; and & > 0, i = 1,2,...,n. This transferring
method is adopted from [11]. Particularly in [11]e; =10 and e; = 1/10,2<i<r.

2°. Transition to numerical sequence. To receive numerical sequence & = ay, 0y, ..., 0y,
corresponded to sequence a = ay, ay, ..., @, it is necessary to substitute each element a; € U
of the sequence a with corresponding element a; € V.

3°. Continuous function correspondence. Let a = 04,03, ..., &, is & numerical sequence
(0; € V,i=1,2,..,n ). To correspond & continuous function to the succession o one can
interpolate points (t;, o), (4 < t;, when i < 4, 1,7 = 1,2,...,n). The received function a(t)
should satisfy to the following condition:

a(t) e L “gr{m}:lgmg{m}] L € [t1;ta].
Particularly in (11} ; = i—1,4 = 1,2,...,n and for interpolation Newton-Aitken method
was used. 3 .

Let a and b are two sequences, As described above the sequences a and b are compared
based on a symmetric similarity matrix S. To compare corresponding functions a(t) and
b(t) it is necessary to have appropriate similarity function S(z,y). The function S(z,y) can
be obtained by lined intérpolation of points (v;, vy, 8i5), 4,4 = 1,2, ...,r. The interpolation
method is adopted from [11]). More exactly, let vz <z < vpy and vy <y < vy, 1 < k1 <
r — 1. Then the function S(z,y) is defined as follow:

[8kp41(Vks1 — Z) + Sp1p41(z — v)] (¥ — 1) i
(Vi1 — vi) (V12 — W)
s 852 (Ves1 — Z) + 8i412( — vi)] (Vi1 — )
(Vi1 — vi) (Vi1 — 1) ;
Obviously, for any z,y €'[vi; ), S(z,y) = S(y, z).
Let a(t) and b(t) are two continuous functions corresponding to given sequences a =
ay, @y, ...0, and b = by, by, ...by, respectively. Here is assumed, that functions a(t) and b(t) are
defined on the interval [0; T, (T' > 0), otherwise it can be achieved by linear transformation.

S(z,y) =
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Let ®[p; g] is defined as the follow class of functions:

= {w) e KC'lmal 0 <) < +o0,u(p) = p,w(a) = g},

®[pi )
KC[p; g is the piecewi moothclamofﬂmcﬁons,daﬁnec_lont.heintewallp,q].
Wha;leuw mh;;ll is to compare functions a(t) and b(t). More precisely by compressions and
function a(t) it is tried to find the closest representation to the

i f some parts of
mmioﬂ?:;in the meaning of the similarity function S(z,y)- For that purpose the following
idered:

functional i8 T
() = !S(a{so(t)).b(t))f\q(‘)di- @

where (t) € ®[0;T]. The function (t) is called trajectory or path. It implements com-
pressions and expansions of the function a(f). Suppose [ti;ta] C [0;T) and ¢ € [t1;15]. When
/(t) > 1 the function a(t) is expanded from the interval [t;; 3] to the interval [po(t1); ¢(ta)],
when ¢/(t) < 1 the function a(t) is compressed from the int-e{'val [t1;22] to the interval
[o(t,); (ta)] and for ¢/(¢) = 1 neither compression nor eXpansin take place. The com-
pressionmdexpa.nsionareconﬁnuous analogue of the deletion and insertion in the discrete
alignment method (for more detailed discussion see [20]).

The function A,(t) is & penalty function, analogue of the gap penalty of the discrete
dynamic programming method (see (7], [20], [21] and [24]). Here the penalty function is

defined as follows: :
o= [ IO, YOS
MO=] singly ¢E>1°
This definition of penalty function ensures equal penalty for symmetric compression and
ion. Also if for an interval [ti;ta] C [0;T] ¢/(t) # 1, t € [taita], then My(¢) < 1.

Otherwise Ag(t) = 1, i.e. no penalty is applied.

To achieve the closest representation of functions a(t) and b(t) the following functional
maximization problem is posed: .

Jp)—mp,  olt) € B0;T). 2 3

The function @*(t), which implements the maximum of functional (2) (if exists) is called
optimal trajectory (path). .

Actually, the problem (3) is a classic task of the optimal control (see [1] and [16]). The
classic methods for functional optimization are not applicable to problem (3), because they
have long running time or require strict conditions on the derivatives of the function under
the integral. Meanwhile in the practice those conditions don’t take place for functions in the
definition of functional J(-). L

3 Algorithm

To numerically solve problem (3) & dynamic programming algorithm is presented. The idea
of the algorithm was introduced by Mikhalevich [15], then developed by Moiseev [16].
The preliminary step of the algorithm is to construct a grid system. Let the numbers
IJ=tol,t1,...,t,.=Tme.hoaensuchthatt¢=:'-r,='=0,1,...,n, where 7 = T'/n is the step
for axis t. Similarly, z; = jh, 7 =0,1,...,m, where h = T/m is the step for axis ¢. Let us’
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denote P; = (1;,z;), 1 €i<n-1,0<j <mand Fg = (0,0), Po;m = (T,T). The grid
= gystem is defined as

P={Py|1<i<n—1, 0<j<m}U{Pos, Pam}.

For the fixed i (1 < i < n—1) the set of nodes {P;;}7.q, is called i-th level and denoted by
P, The 0-th and n-th levels consist of points Pyg and P, respectively.

Let ®p[0; T]  ®[0; T] is the set of functions (t), which are linear on the each interval
[ti; ti+1] and (t;) € P*. Obviously the set $p[0;T] is finite. The presented algorithm also
allows to find the function p}(t) € ®p[0; T], which implements the maximum of functional
(2) over the class of functions ®p(0; T]

The function I(€, ) is introduced as a degree of closeness between nodes £ = (t;,z;) € P!
and 7 = {t;.u,xg)EP'“.whereU*ﬁvcu—l 0<j<||P|,0<k < |P*|and k =m,
wheni+1=n:

i(¢,n) = [ lzlS(“("E.ﬁl(ﬂ),b(ﬂ)t\*_‘mtﬁ. i<k !
izk

e 4t — 1) + Zoa (tiss — 1)
_ zg(t = &) + Tega (bigr —
. Pealt) = = .
Then the function d(€), € € P is introduced as a degree of closeness between nodes (0, 0)
and £ = (i, z;):

() = max ] S(aie(2), b(t)) Ao, (B)dt, (@)
0

where the maximum is taken over a.ll functions from ®p(0;T] considered on the interval
[0;;]. It is obvious that d(€)|e=,0) =

Now the problem can be reformu]a.\‘.ed as follows: to find the value of function d(£) for

= (T,T) and the function pp(t} € ®p[0; T}, which implements maximum in (4).

Presented dynamic programming algorithm recurrently calculates the va.lum d(€) for all
nodes and allows to find the optimal trajectory pp(t).

The following three steps describe the algorithm:

1.To calculate values d(P;;) and %(j) for i = 1,2,..,n, 0 < j < |P| and j = m, when

e AP =, oo (d(Prs) +Prss P}, ON
() = argmax {d(Piess) + (Pt Ps)} ®)
0<k<|Pi~Y|

2. (Traceback procedure) For i-th level (0 < i < n) to find the node w; € P!, that the
optimal trajectory passes through:

- (TITJi kll =1,
W1 = Pi—l.m(k‘)t ki = Ti(ki)a i=nn— 1!! L

3. To obtain optimal trajectory by linear interpolation of points (fo;we), (ti;ws), -,
{tn: wn)'
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; takes place: :

The ﬁollcwvm'%'11 h::if::ﬂo [nm’])) running time algorithm for finding maximum and optimal

trajectory fW.ﬁhe functional (2) over the clm (,P[o;q;]&iﬁons of the theorem. The proof is

Proaf. Described sbove algorithm satisfies o o s

made by method of induction. l P, ), since there is only one possibl
: i —1d ghould be equal to {P"n,o, 14)s _ possible

wfw ,\,;., case § 1 {P:.:Lm 0,0 mi P, ” JTLz....,m. Indeed, by the formula (4)

* : =0 and PIJ,O =1
d(P’“’m) =;m§}:'i:§' gfﬁ;m (5)@Jphm for any & (i < ). Let us prove the formula (5) for

the case il d{_ﬁ+1.’) = uﬁi‘gﬁ"l {d{Pi.k} + I(H,h -Pﬁ-l..f)} * (7)

timal trajectory, which connects nodes (0,0) and Py, should necessarily have a
follows:
e d(Pi14) = d(Piw) + 1(Pugs Piy15) ®)
hich follows from definition of
and d(Pisz) > d(Ps) + (P Prg) for 1 < k < P, w
e P ) Fvom (8) and the las inequality follows that (7) takes place.

The second step of the algorithm allows to obtain nodes w; € P!, that the optimal trajec-
tory passes through. The nodes wy are recurrently obtained based on values 7;(5), which are
calculated by the recurrence formula (6) simultaneously with d(P,). The optimal trajectory
@5(t) is constructed in the third step of the algorithm. Obviously ©5(t) € Bp[0;T). The
theorem is proven.

4 Practical results

To demonstrate validity of the developed method some practical results are presented. Par-
ticularly several profile hidden Markov models (HMM) (see [7] and [8]) are chosen from
anm(versionlﬂ)pmﬁleHMMmddomaimdatsbaae(see [6]) and then each HMM is run
through SWISS-PROT (see [3]) protein sequence database to find the set sequences which
belong to corresponding sequence family. From the found set 10 sequences are chosen with
memghmtdpiﬁmmwdlﬁmmyiththed@jﬁmhwthmamtﬂnmmld
(E-value = 10 threshold is used). Also the consensus sequence is generated for each HMM.
) Using developed method the consensus sequence is compared.against unaligned fragments
of the selected sequences, which match to HMMs. It is natural to expect that our method
will produce higher score for sequences with the highest significance and lower score for the

Five random HMMs with moderate length are chosen from Pfam database and. the de-
scribed above procedure is performed for each HMM. As it is expected in the most cases
the significant sequences produce higher similarity score than the less significant ones. In
other words there is a certain threshold for each HMM, such that the scores of the significant
sequences are higher than the threshold and the scores of the less significant sequences lower
that the threshold. Exception made one HMM, for which two sequences don't stick to that
regularity. Also it is worth to note that for another two HMMs the threshold is not so sharp.

In the table 1 is presented the detailed analysis of the comparison results. All scores are
length normalized.
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Toble 1. A ion number - bers of the sel i HMMas (or d us), Threshold - threshold, which L
high and less sigmifi yuences, Bxcep -mmqmwamh-»mm;m-ﬁ.
mummmﬂmmmmwmm-&mubmm
with the score higher than the thresheld.

Conclusion. Presented method gives precise solution of the problem at the scope of
the model. Besides of its immediate epplication in sequence comparison tasks, it can be
serve as a measure for heuristic modifications of the method. The ”continuation” of the se-
quence and penalty function choice are very important steps of the method. The appropriate
continuation and penalty function may significantly affect the comparison result.
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UyhwnwlymgwhG hwenprulwbmpynGibph’ wiplghumn $nillghwGhph dpw
hpdGywo Giwlmpyul hwzuwplnuip nhGunthy Spwgpunnpiw dbpnnmy:

0. 4. QlnpguG

Uilthnthmd

Uy homuond Gbphujwgfws b GbGuwpwbulmG hwonpyulwmpymGibph hunih-
Uuundwl dh dbpn: dwjnGh ghulptn ghiwdhy dpwgnudnpiwG dnpnnn joymupwGimp
hwibidwynn  hwgnpnulwlnpmGGbph winuilbpp ghnwplmd £ bpwphg wllwu,
wjOp0; npuwlg Ghol Ywl npnjwhh Ywubp: Uy pbpnipymlp hunpwhwpbm huwp
npuwplynud £ hwonprwlwbnipymGGtph hwdbiundwl dh “wipbghwn’ dbpnn: 6
£ jmpupwlymp hwibdwunynn hwenpywlwGnipyubp hwdwgunwufuwbnpui dhe
£ npioid dh wiplnhunn pmOlighw b wyw hodbiwnmpymGp Yuumwpmi £ wjny
pmlyghwbph dhol: UbninuiGbph b dgnuitibph dhongny hwibtwwngnn pmighwGhnp
pbpymud b6 wiblwliwl wbuph’ umpjwd GiwGnpub Pmblhghwsh piwwnm]: UWyu
tnunbigiwl dhgngny fulnhpp pbpumd b pmGyghnGunh owwhshqughwsh fuGnph, npp
pluybu  pmobim  hwdwp  Ghpiwyjwgiwd b dh phGunthly opugpunjnpiwl  hpon:
UzhunnwGpnd ppjwd b6 Gulk npny wpwinhl wprynplbp” Gbphwjwgfwe dhpanh
Yhpumiudp:



