Mathematical Problems of Computer Science 23, 2004, 119-126.

On System with Distributed Shared Memory

Hovhannes Z. Nalbandyan

State Engineering University of Armenia
e-mail hovign@web.am

Abstract

Distributed shared memory systems combine the scalability of loosely coupled mul-
tiple computer systems with the ease of usability of tightly coupled multiprocessors,
providing with transparent replication and caching of data. This paper introduces
distributed system for parallel computing — DSPC, that provides distributed shared
memory on top of network of workstations. Programming model, memory organiza-
tion, cache-coherence protocol and adaptive techniques are discussed in the paper. An
evaluation with some well-known DSM benchmarks was done to present the overall
performance of the DSPC system.

1 Introduction

Networks of single or multi processor workstations have become an alternative to large
bus-based distributed multiprocessor systems, due their inexpensiveness. Nevertheless, ap-
plication development for such distributed systems is difficult, as the application should use
message passing mechanisms, to explicitly send and receive data between computers. En-
abling global shared memory on top of the physically distributed local memories of networked
workstations makes it possible to offer developers with programming advantages of shared
mernory.

Software distributed shared memory (DSM) runtime systems use operating system mem-
ory management: facilities to transparently intercept user application accesses to local mem-
ory and perform communications appropriate to the underlying shared memory organization,
Thus, distributed application developer is given with a large global address space, which
eliminates the task of transferring data between processes located on different computers.
The memory organization in DSM systems is usually page based. The large size of the unit
of sharing (a page) and the high latency associated with communications between different
computers challenge the performance potential of software DSM systems. :

This paper discusses DSPC system distributed shared memory organization and pro-
gramming interface. The basic architecture of DSPC systems can be referred in previous :
publications [2], [5].

2 DSPC

The goal of DSPC system is to provide parallel computing environment, with programming
model similar to Windows programming. The system includes dynamic workload balanc-

On System with Distributed Shared Memory
120

ing. automatic on-demand executable code transfer, computing environment monitoring and
?ysl;amic reconfiguration. :

2.1 Memory organization B d
based software distributed shared memory organization, and it is d-j_ﬁ&mnt
Dsp(it]]t“; pasr;ms in :EM it provides not only distributed shared memory Wmn‘ but
i 15,;?:51-3,1,;1@5@' t,whichaﬂowapmg‘ammerstowntea:pphmum,ﬂlm
& comp P,hmd memory at all. It provides single address space Win32 like programming
vironment, with multithreading, ghared meémory and synchronization mechanisms, but
= mu]ﬁplé workstation and server interconnect. The concurrent execution unit in DSPC
:yv::emisthscau,whichcanbethomhtofasthreadinWtherms. . LAw
Distributed shared memory is organized as separate shared memories. An application
can allocate any number of shared memories, each having size of up to 4GB. The amount
of distributed memory is limited only by overall systems resources. This enables the DSPC
system to rovide larger than 4GB memory space. vh il
The mel:nory organization principles in DSPC system is illustrated in figure 1.

Shared Memory
Page | Page | Page Page
P?.P?P?.P;’i -] 8 LLL] N

TR
 [Jaooms

. jos

Node 1

Fig. 1. Shared memory organization

Shared memory is divided into pages, where page size is equal to Windows 2000/XP
operating system page size - 4 kilobytes. Each page can reside on one or more nodes,
depending on data distribution and application access pattern. Each call, that accesses a
shared memory, should make & mapping by calling appropriate DSM function. In figure 1,
- it is illustrated that pages 0, 1, 2 and 3 are in use by Call 1, and are mapped into Node 1
memory address space. Same page 1 is also mapped by Call 2. Call3 and Call4 on Node2
have mappings of other pages in shared region. In this current illustration, page 3 resides
both on Nodel and Node2.

Generally page based DSM systems use the virtual memory management mechanism,
provided by the operating system, to trap accesses to shared memory. DSPC uses structured
exception. handing and page protecting mechanisms to catch and process memory access
violations. Using these mechanisms, DSPC system is able to protect invalid and read-only

H Z. Nalbandyan 121

pages and fetch latest updates from other nodes on page faults, occurring on read or write

. Imstructions in user application.

Figure 2 illustrates mapping principle. Mapping same memory data to different addresses
is done using file-mapping system mechenism. This allows having different access modes to
the same data in shared memory for different calls on 2 single node. For example, one call
myhnwmdammmedaminahuudmmory,uthemmpondingminiu
mapping has read-only protection, but meanwhile another call may have read-write access.

Virtual Address Space
Shared Memory
s B
b a
_____ Mapping2 |- - -~
N I e g
p 3 = c _ .l Cen2 I

|

Fig. 2. Memory mapping schema

2.2 Application programming interface

Application developed to run in DSPC environment consists of two modules: the main
executable application, and the dynamic link library (DLL) with user distributable functions.
Main parallel application calls distributed functions from user library using DSPC system
routines. Each call to a user function, which in terms of DSPC is a call, is placed and run
concurrently on remote computer taking part in computations.

Calls are able to suspend their execution waiting for some event to occur, This event
may be another call completion or release of some synchronization object. Calls are able to
spawn new calls. But besides these possibilities calls can share data using shared memory
mechanism. ;

In figure 77, in terms of DSPC architecture, the node, where the main application is
running, is called central node. Main application or any other executing call may create -
a named shared memory. -This is done by calling DSM_MemoryAllocate function, which
returns a handle to shared memory. The storage for shared memory is not allocated initially.
Other calls can query for shared memory handle by name. Before call can access the shared
memory, it has to map a portion or the whole shared memory into its address space. This
is done by calling DSM_MapRegion function, specifying the offset and the length of region
to be mapped. The result of function will be the virtual address of this mapping region in

29 On System with Distributed Shared Memory
1

emory . After this point, it can access this block for read and write.
Pmmm S ﬁmﬁ::;?m:gﬁly handles page faults and performs coherence tasks. Once
:.ll has finished accessing mapped region, it ghould unmap region using DSM.UnmapRegion
function. B ’
memory ization is ded by DSPC system for supporting scope con-
2 del’::m@c;: i: na.mod‘::b:;'::ﬂl aﬁﬂm DSM_Lock and DSM_Unlock take the critical
Mm?m'm,“pu ,mdperformen:.erandleavecﬁhicalaectionopmm
mackon. ke A mmmﬁwmﬁonmmhmmadmmnode,whiehm
e dmnge during application execution. DSPC adapts to the application access
i uce the number of messages ;
i e e mented by DSPC system to eable globel synchronization
over particular shared memory. Global synchronization rmeans that after end of particular
barrier operation, the specified shared memory views w.ll] be coherent on all nodes, and
all calls will see the same data in shared memory. For this purpose, DSPC system provides
DSM_Barrier function. The first parameter specifying the shared memory handle, the second

specifies the number of calls, that are taking part in barrier operation.

2.3 Cache coherence protocol

DSPC system supports one memory consistency model, which is scope consistency (ScC)(3].
ScCrequi:eson}ypreviouschsngesinint.erva]smlatedtothesnmmpatobeviaibletothg
processor on entering the scope. : . { :

We propose new cache coherence protocol with critical sections based on scope consistency
model, which is implemented in DSPC system. Adopting scope consistency greatly simplifies
the organization of cache coherence protocol. Protocol uses critical section mechanism to
enable mutual exclusion of concurrent execution in the same scope. Coherence information
is maintained using write-notices associated with critical section.

Fig. 3. Page states and transitions .

. In the protocol each page has a manager node and can be cached by other nodes. There
are four page states: None, Invalid, ReadOnly, and ReadWrite. We use None page state to
indicate that no physical memory is allocated for the page. Protocol allows multiple nodes
simultaneously modify same page, which presumes that pages may be in different states, at
different nodes. Critical section has also manager node. Both managers of page and lock can

H Z. Nelbandyan 123

dynamically migrate during program execution, depending on decisions meade by adaptive
mechanisms. Figure 3 illustrates page states and transitions.

On & read page fault, the faulting page is fetched from the page manager node in read-
only state into the local memory. On a write page fault, if the page is in state None or in
state Invalid in the local memory, it is fetched from the page manager in read-write state. If
the faulting page is in read-only state in the local memory, the state is turned into read-write,
and a twin of this page is created before allowing write.

When call is trying to enter a named critical section, corresponding request is sent to the
critical section manager from the node where the call is executing. The requesting call is then
stalled until it receives reply. The critical section manager also includes associated write-
notices in reply to request. After the requesting processor receives this granting message, it
invalidates all cached pages by the associated write-notices.

During execution inside critical section, when page fault is detected on a page, which has
associated write-notice in critical section, a request is sent to critical section manager to get
the diffs for faulting page.

When call is leaving critical section, DSPC system compares pages, modified in critical
section with their twins and constructs diff records of this session. These changes are then
piggybacked with message of leaving critical section sent to manager. The critical section
manager updates the write-notice list, and appends new diff records to previous ones.

Barrier operation performs the central node, which is the node, where the main part
of program is executed. First barrier manager gets the list of modified pages from every
node. Second, it makes decision for each page about changing page manager. Tkird, it
acknowledges page manager nodes, to get diffs from others for each owned page. During
this step, also the changes made in critical section are transferred to the corresponding page
manager’s nodes, and after that critical section changes are cleared. In final step, the central
node sends to every node the corresponding list of pages that should be invalidated.

3 Reducing system overhead

We have implemented several techniques to reduce overhead in various parts of the system.
They are intended to minimize the number of messages, the amount of data used for cache
coherence protocol related information transfers.

3.1 Dynamic page and critical section manager

Using dynamically migrating page manager node enables the system to maintain page coher-
ence where the page is frequently changed, which eliminate unnecessary diffs transfers. For
example, in application with low sharing pattern, after first barrier, the system will detect
single writer page usage, and automatically reassign page managers.

Using dynamically changing manager of critical section may reduce as much as twice
the amount of data transferred on entering and leaving the critical section. Suppose that
one node enters a critical section and receives list of invalid pages. Upon leaving the critical
section, node detects, that all previously invalid pages were accessed, and thus all the previous
changes in critical section are here. As this data may be huge, and there is no assumption
that current critical section manager may need them, it is worth to reassign section manager
to this node, and do not perforin data transfers. Onee node has decided to become criticel

section manager noti[ﬁngalsothaoanh'alnodewﬂlhdpothernodutoﬁndauﬂym
critical section manager later.

3.2 Page data compression :

- ing node fetches full page from a page manager node. This approach

g mmfm&MMe. and alleviates need for complex tasks such as page

garbage collection. On the other hand, transferring full pages
. We introduced

netwurkmaygrestlyimmonomallmtemper&frm.ance ‘page

ﬁz‘:npnmim module, which compresses page data, and significantly reduces the size of

dut‘.é[‘i.:;mmprmu' on algorithm is not fixed, and the page compression module can be ex-
tended by the user. This makes DSPC system highly flexible to user application needs.
ThebmcmmpremionakoﬁmmmedeSPCm@,triestooompressthepaga,by
enmd.ingmostfraquentbykewithlbit. A512byteb1tvect0{isc?nstmcted,whmm
bits tells whether this is frequent byte or not. The bit vector itself is also compressed two
times with the same schema. Inmofpagethatisﬁﬂedwit{:m?byte,nhepmpmd
output size is 9 bytes. On the other hand, itisobviou-_s.thatnm.ngthmoomprem‘mn schema,
in some cases output size may be greater than page size. If we encounter such situation, no

compression i8

3.3 Early updates

There are two places, where early data fetching and updating invalid pages may be applied.

The first place is at the final step of barrier operation, when each node invalidates its
locally cached pages. Here we introduced adaptive technique — early page update, which based
on observations on page usage, may decide to fetch a number of pages in one request:from
appropriate page managers, before actually the page will be accessed. Doing this minimizes
overall system overheads, and eliminates page faults that may occur when updated pages
are accessed later. :

The second place is when the call enters critical section. By protocol, node receives only
the list of pages to be invalidated, related to the critical section. We introduce another
adaptive mechanism - early critical section changes feiching, where system can decide to
. early fetch diffs of several pages from critical section manager, based on frequency of usage.

For Ethernet networks, sending one byte or one kilobyte message, considerably takes
almost the same time, which comes from the fact that latency for accessing the media is
very high. Using early update mechanisms practically reduces overhead time, when getting
several pages with one message.

3.4 Barrier with asynchronous invalidation

During final step in barrier operation, the central node sends to each node a corresponding
list of pages that should be invalidated. The task of each node is to invalidate its local copy
of the page, and then proceed with execution on the program. -We see that at the start of
this step, all page managers have finished obtaining their appropriate changes, and have up-
to-date page data. Thus, executing invalidating operations can be done concurrently. Also

H Z. Nalbandyan 125

at this step, each node considers that barrier operation has finished, and continues execution
of the program.

All the implemented adapting mechanisms are configurable at runtime, and can be en-
abled, disabled and adjusted depending on application needs.

4 Performance Evaluation

Evaluation was done with well-know benchmark tests taken from SPLASH2 [6] (Barnes, LU,
Radix, Water), NAS Parallel Benchmark [1] (IS, EP), and two well-known applications (SOR,
TSP) [4] from Rice University. The computing environment consisted of eight workstations
with Pentium 1 GHz processors, running Windows 2000/XP, and connected with 100 Mbps
switched Ethernet.

Table 1 shows characteristics, sequential time, and speedups of tested application and
speedup results.

Table 1: Problem Characteristics and S ups

Data Set | Sequential | Speedup
: Time (sec.)
Barnes 16K bodies 46.80 6.24
LU 4096 x 4096 706.60 432 |
[EP e 130.25 8.00
(15 i 285.10 6.48
Radix o N 77 gl R
SOR 8192 x 8192 | 395.40 7.4
TSP 19 cities, 12 56.90 6.89
Water 1792 moles 159.60 6.25

5 Conclusion

In this paper we discussed newly developed DSM system implemented in Windows environ-
ment. We proposed new cache coherence protocol and adapting techniques, that balance
between simplicity and performance. Performance evaluation shows that most tested bench-
marks achieve high speedups.

References

[1] D. Bailey, L. Dagum, E. Barszcz and H. Simon. NAS parallel benchmark results. In
Supercomputing, pages 386-393, 1992.

[2] A. Ghazaryan. On system for distributed parallel computations - dspc. In Proc. of
the Int'l Conference on Computer Science and Information Technologies (CSIT 2001),
August 2001.

[3] L. Iftode, J. P. Singh, and K. Li. Scope consistency: A bridge between release consistency
and entry consistency. In Proc. of the 8th ACM Annual Symp. on Parallel Algorithms
and Architectures (SPAA’96), pages 277-287, June 1996.

126 On System with Distributed Shared Memory

(4] H. Lu, 8. Dwarkadas, A. Cox, and W. Zwaenepoel. Quantifying the performance differ-
anwsbetweenpvmandtmadmnr]m. Journal of Parallel and Distributed Computing, 43,

No. 2:65-78, June 1997. .

parallel processing with distributed shared memory. In Proc. of the

(5] H. Nalbandyan. On
Int’l Conference on Computer Science and Information Technologies CSIT
317-320, September 2003. bR

[6] 8. Woo, M. Ohars, E. Torrie, 7.P. Singh, and A. Gupta. The splash-2 programs: Charach-
torization and methodologicel considerations. In Proc. of the 22th Annual Int'l Sump

on Computer Architecture (ISCA’95), pages 24-36, June 1995.

Pwfuud pighwanip bhynqnpyniiny hunfwhungh dwuhG
4, 9. Lupubnwa '

Uithnthnud

Uphwnmopmd ghuwplpnd quouhbn huplwplGbph hu '
ﬁ:ﬁlu‘[‘““ pinhwGmp hhyonmpymn] huswiupgh Gwpwonny pmﬂ; E&;ﬂhﬁi aunug
mpaﬁﬁm mnummtmﬂm—_ hhyonmpywd dnnbp, wyywibph huniwywphwlmpws
ﬁmmnmum;ﬁ?mu ﬁu;m.ﬂihllinaﬁ L - (lr"ﬂ:ﬂmﬁhn hudwlwngh wpmwApnMY-

. L m
pupdp wpniqugnponipywa tuuhb: wgywd wprymGpabpn Yyuymd &6 hudwlungh

