Mathematical Problems of Computer Science 23, 2004, 80-99.

ency Management In Database Systems:

Consist
Review

Armen J. Asatryan

Tnstitute for Informatics and Automation Problems of NAS of RA
UNICAD CJSC g

e-mail armen.asatryan@unicad.am

Abstract

Byihdaﬁnrﬁm,admbaumnnmnabﬂhﬁﬂmdmmptimemhnd
data. Applications that consult the database expect a "warranty” that the database is
supplying the correct values. This survey briefly presents the approaches of integrity
constraint management in database systems. It reflects the various research activities
in this field. We focus on central approaches, concepts, methods, and systems in this

area. -

1 Introduction

In the field of databases; the term integrity normally refers to the correctness or validity
of the stored data, as defined explicitly by means of integrity rules or integrity constraints.
]Mtyhamymmtmtpmpmofdmmm The lack of integrity has usually
negative consequences. It is possible to build some mechanisms to guarantee some level of
integrity in a database. This is achieved by means of conditions defined over the facts of -
the database called integrity/consistency constraints (or, for short, constraints). If these
conditions are satisfied, we may have some level of confidence on the database integrity.
Therefore the integrity of a database is partially guaranteed by means of constraints, i.e.
conditions that define properties to be satisfied by the database. The purpose of constraints
is to restrict the database states to.those that are considered as legal. Therefore, constraints
have to be expressed in a formal way, i.e., must be made Jmown to the database system.
In general, consistency constraints can be classified according to where they are specified
into internal and ezternal consistency constraints. Internal constraints are those that are
known to and can be enforced by the database system, while external constraints have to be
expressed, checked, and enforced within application programs. Internal constraints can be
- gubdivided into the following three types: = .
o inherent consistency constraints: they are fixed for a given data model and therefore
do not have to be specified (e.g., absence of cycles in inheritance relationships), '
e implicit consistency constraints: they express restrictions due to the semantics of the
data model, i.e. they are implicit in the database schema, e.g., the identification of
unique properties, :

an

e

A. J. Asatrysn 81

o ezplicit consistency constraints: they are arbitrary properties to be satisfied by the
database that cannot be captured by schema restrictions. They are formulated in a
separate sublanguage of the data definition language (DDL), the constraint definition
language, cither as predicates in a declarative language.

Another classification of constraints is based on whether only single database states or even
database state transitions can be constrained:

e static constraints consider only single states of a database, they express state-independent
properties that must hold at any state of the database and depend only on the current
state, independently of any previous states of the database,

® dynamic constraints allow to constrain state transitions, i.e., they specify which trans-
formations of database states into new ones are allowed. They allow expressing con-
ditions over sequence of two or more database states. There is a particular case of
dynamic constraints called transition constraints. A transition constraint imposes re-
gtrictions on pairs of states, the before and after state of a transaction.

Finally, the third classification of consistency constraints determines which properties of
entities can be subject to constraints:

e state constraints specify conditions on the values (states) of entities,

e behavioral constraints further allow to constrain the behavior of entities, e.g., specify
correct semantics of methods.

Since the database is expected to be consistent with respect to these properties, one impor-
tant issue is the enforcement of integrity constraints upon updates. Integrity enforcement
deals with the prevention of semantic errors made by users due to their carelessness or lack
of knowledge.

Integrity checking is the process of verifying that a given update satisfies the constraints. If
a constraint is violated, then the update is rejected. Otherwise the update is accepted.
Integrity maintenance is & process that also starts with a given update and the constraints
but now, if some constraint is violated, an attempt is made to find a repair, that is, an
additional set of insertions and/or deletions of facts to be added to the update, such that
the resulting update satisfies all integrity constraints.

Based on the time in which the method can be applied to enforce the constraints, there are
two approaches. The first is a run-time approach that must be carried out in the time the
update takes place. It takes into account the information provided by the update request
and the contents of the database. The second is a compile-time approach that is based on
meeting a solution to enforce constraints at compile-time, i.e. before the time of update ex-
ecution. In this case, production rules, ECA (Event-Condition—Action) rules or transaction
programs are generated from a database schema.

The simplest solution of static constraint enforcement would be bo evaluate all constraints
whenever the database is updated. However this naive approach is impractical, because it is
too costly and highly redundant, To avoid such situation all practical methods are based on
the assumption that constraints are known to be satisfied prior to the update. Only a subset
of the constraints needs to be verified after the update, namely those that are affected by it.
Then, given a particular update, methods derive simplified conditions of the constraints such
that, if the database satisfies the simplified conditions, it is guaranteed that the database

Consistency Management In Database Systems: Review
82

- date.
will be wnmgeﬂ; ;ﬁ;r;rel'gp 14, 27, 28, 29, 30] have proposed that the technology of active
Many works (8, 9, " watural framework for implementing integrity enforcement through re-
da?gbmpmﬂﬂﬁm jominant paradigm for active databases is that of ECA rules which
pairing actions. their action is executed only if a condition is met.

t and
m%bg&ﬁw are important for constraint enforcement approaches:

o Kind of constraint: this feature indicates if the method deals with dynamic or static
constraints. 3

e Kind of the database
method. In this paper,
and active databases.

o Kind of consiraint enforcement: which indicates if & method is an integrity checking
method or an integrity maintenance method.

Time of consiraint enforcement: thjsfeatlmrefmstotheinstm}tin_whichthemethad

° & gppuid' Enforcement can be performed completely at oomPﬂa—t.lme, completely at
Tun-time, or partially at compile-time and partially at run-time. However, compile-
time methods have the advantage over runtime methods because performance is less
critical at compile-time. :

o Constraint language used: the language to specify the constraints. In the case of tran-
sition constraints, it is possible to use a first—order logic formula, the same commonly
used for static constraints, extended by operators such as old or new.

o Implementation: which indicates if the proposed approach is implemented or not.

considered: the kind of the database used as basis to develop the
we present methods related with the relational, object-oriented

In the next sections we present the approaches with respect to above features.

2 Approaches

2.1 The approach of Ceri and Widom

Ceri and Widom [8] propose an approach for static constraint enforcement in relational
databases. Authors describe an SQL—based language for defining ¥ntegrity constraints and
a framework for translating these constraints into constraint-maintaining production rules,
Some parts of the translation are automatic while other parts require user intervention.
Based on the semantics of represented set-oriented production rules language, authors prove
that at the end of each transaction the rules are guaranteed to produce a state satisfying all
defined constraints. Constmintsmmcpreasedthmughadedmtiva!angusge,whosuymax-
is similar to SQL. Once constraints have been declared, they can be translated into a set of
event—condition-action (ECA) rules that enforce them. Each rule has

® an event part, containing a so—called transition predicate, that lists all the dats ma-
nipulations potentially violating the constraint, 3

" o aprecondition, an arbitrary predicate ﬂ_:ich is true whenever the constraint is violated,

, A. J. Asatryan &3

e an action, an arbitrary list of SQL statements whose execution may correct the con-
straint’s violation.

Rule execution semantics is the seme as in active databases [25, 12, 11, 18, 19]. Figure 1
shows the general structure of proposed constraint enforcement system, which automatically,
at compile-time, produces rule templates—portions of the production rules necessary for
constraint enforcement. The system includes:

o Producing rule templates from constraints. Rule templates enumerate all operations
that may cause constraint violation (these form the triggering components of the
constraint-enforcing rules) and include rule conditions. Rule actions are provided
by the user.

s Detecting potential cycles in rule activation. As the number of rules increases and rules
become more complex, there is increasing possibility of infinite triggering behavior.
This component detects the potential for such behavior and provides warnings to the
user. ¥

e Rule oplimizalion. The system automatically optimizes rules derived from constraints,
preserving their constraint-maintaining semantics. It is possible to evaluate a rule’s
condition only over the changes that have occurred since the constraint was last con-
gidered. For example, suppose a constraint may be violated when tuples are inserted
into & table. It may be sufficient for the condition part of the rule enforcing the con-
straint to check only those tuples that have been inserted, rather than checking the
entire table. This component transforms rule conditions to incorporate this kind of
optimization.

[constmints Edor usen |

[Ruto Tomplats Ganerator (System)|

Final Rulos Profiminary Rules Potential Cycles -

[kt At e |

Rule Optimizer (System) |
o;uutum-
Figure 1. Interactive System for Rule Derivation

Rule generation and analysis are only partially automated. Only the event and precon-
dition part of rules are generated, the action part; of rules has to be added manually by the
designer. An analysis of rules determines potential sequences of rules, which can trigger
each other indefinitely. This information is given to the designer, who is then responsible

84 Consistency Management In Database Systems: Review

I :ate actions. This work considers a compile-time environment. When

tf:rmaction:p;? s:ltarmmed to have potential for constraint violation, feedback is provided

to the user. Finally, stheoremispmmstaﬂnsthatthaﬁm]mofpmd"m-m s

guaranteed to maintain all defined constraints. That is, at the end of every transaction, rule
ion terminates in a consistent state.

2.2 The approach of Ceri and Widom

In [9] Geriand.WidomprOpaBenfaci]itywh&rebynumdeﬁnesaviewasanSQme
from which the system automatically derives seloriented production rules that
maintain a materialization of that view. The maintenance rules are triggered by operations
on the view's base tables. Generally, the rules perform incremental maintenance: the ma-
mﬁdimedﬁewhmodiﬁedmrdjngwthemofchmsmmadetothebmtables,wm
are accessible through logical tables provided by the rule language. However, for some op-
erations substantial recomputation may be required.
In relational database systems, & view is a logical table derived from one or more physical
(base) tables [10]. Views are useful for presenting different levels of abstraction or different
pwtiomofa.databaset.odiﬁm'entusers. Typically, & view is specified as an SQL select
expression. A retrieval query over a view is written as if the view were a physical table, the
query’s answer is logically equivalent to evaluating the view’s select expression, then per-
forming the query using the result. There are'two well-known approaches fo implementing
views. In the first approach, views are virtual: queries over views are modified into queries
over base tables. In the second approach, views are materialized: they are computed from
the base tables and stored in the database.
Authors suggest to use the production rules to maintain materialized views: when base ta-
bles change, rules are triggered that modify the view. The rules could simply rematerialize
the view from the base tables, but this can be very inefficient. Efficiency is achieved by
incremental maintenance, in which the changed portions of the base tables are propagated
to the view, without full recomputation. A system is developed that automatically derives

View-Maintaining Rules
Figure 2. Rule derivation System

Figure 2 shows the structure of proposed system, which is invoked at ile-ti
re 2 str _ s compile-t
wpen_a. view is created. Initially, the user enters the view as an SQL select exprm:n, alx
with information about keys for the view’s base tebles. The system then performs syntactic

! A. J. Asstryan 85

analysis on the view definition, this analysis determines two things: whether the view may
eontain duplicates and for each base table referenced in the view, whether efficient view
maintenance rules are possible for operations on that table. The user is provided with the
results of this analysis. The results may indicate that, in order to improve the efficiency of
view maintenance, further interaction with the system is necessary prior to rule generation.
Once the user is satisfied with the view definition and its properties, the system generates the
set of viewmeintaining rules. Rules are produced for insert, delete, and update operations on
each base table referenced in the view. The rules ere defined by rule language of Starburst
database system [34, 32, 33].The syntax for defining rule is:

create rule name when transition predicate [if condition | then ection

A rule is triggered by a given transition when its transition predicate holds with respect to
that transition. Transition predicates specify operations on particular tables and columns.
Once rule is triggered, it may be chosen for evaluation. At this point, the rule’s condition
is checked rule conditions are arbitrary predicates on the database state. If the condition
is true, the action is executed. An action may specify a list of SQL data menipulation
operations to be executed or it may request a rollback of the current transaction.

The used rule language is set-oriented, meaning that rules are triggered after arbitrary sets
of changes to the database. For those operations, which the system has determined that
efficiency is possible, the maintenance rules modify the view incrementally according to the
changes made to the base tables, For those operations for which efficiency is not possible,
rematerialization is performed. This method is applicable for simultaneous maintenance of
multiple views.

This work is related to that in [8], where a method for deriving production rules is given,
that maintains integrity constraints. These solutions to the two problems differ considerably,
but the approaches are similar: in both cases a general compile-time facility is described in
which the user provides a high-level declarative specification, then the system uses syntactic
analysis to produce a set of lowerlevel production rules with certain properties relative to
the user’s specification. Theorems are proven stating that the final set of generated rules is
guaranteed to maintain all defined constraints and keep views irredundant.

2.3 The approach of Ceri et al.

6] originates from work of Ceri and Widom [8]. Ceri et al. propose an approach of integrity
maintenance, consisting of automatically compile-time generating production rules for static
and transition integrity constraint enforcement.

The general problem considered by Ceri et al. is represented in Figure 3.

Consistency Management In Database Systems: Review

‘Admiesabis Domain

Figure 3. A pictorial view of the integrity enforcement problem

atabase state is represented as a point in an n—dimensional space, im:egnty constraints
p“gﬁon the space of possible states into two d-lﬁﬁllf-‘-'f- regions, an " admissible” region (in
which all constraints hold) and a "forbidden” region (in which one or more constraints are
violated). All transactions apply fo an orlglnl'l legal state S,. Incorrect um lead
to a forbidden state (Sor — So). The traditional response of a DBMS to an incorrect
transaction is to roll back the transaction. In this apprm_adl tpe database sysh_:m. reacts
autonomously to inconsistencies, by triggering a set of repa:r_actmns capable of elimination
of constraint violations until a consistent state is reached (this correfponds to the database
update Sp — Sy). In some cases, repair is impossible, and an abort is forced by some rules,
yielding state Ser. s
‘An additional requirement is that the final state be chosen within a subspace of states as
nclose” as possible to the original intention of the transaction supplier. The state resulting
from the composition of the transaction and the constraint repair actions should, therefore,
belong to the intersection of the admissible region and the region describing the preferences
of the transaction supplier.
In Figure 4 architecture of a proposed system — Integrity Maintenance System is presented
(similar to interactive system in [8]).

Figure 4. Amhitedmofthewwwntenmsysmm
The system includes:

e Constraint Editor, by means of which a user can introduce all constraints:

A. J. Asatryan R7

e The Rule Generator is applied to all constraints and produces a large set of active
rules, called the meximal rule set that can be used to enforce them. This set may be
modified by the user, to add specific domain knowledge.

The Rule Analyzer is & compile-time component that selects a rule set included in the
maximal rule set and determines a partial order on the constraint set. Rules produced
after this step are guaranteed to terminate in a final state so that all violated constraints
are corrected, with the possible exception of few elements, called critical constraints.

o The Rule Selector is & postoptimization step, possibly user assisted, which generates
& new rule set, by excluding some redundant rules for noncritical constraints and
including at least one rule for each critical constraint. However, the new critical rules
introduced for repairing critical constraints are treated in & special way at run—time.

The Run-Time System is responsible for execution control after a user-supplied trans-
action. All critical rules are executed in a experimental way, if their execution leads to
& violation of a higher-level constraint, thereby introducing the potential for & nonter-
minating execution, then the transaction is immediately aborted, noncritical rules are
instead executed in & conventional way.

Basic concepts from Relational Calculus and Relational Algebra are used in definitions of
constraint specification and enforcement languages. Domain Relational Calculus is adopted
as the underlying query language in the expression of constraints and repair actions.

Rule analysis selects a rule set and determines a partial order on constraints. The rules
selected after this step are guaranteed to terminate in a final state such that all violated
constraints are corrected, with the exception of the bottom elements of the partial order,
such elements are called critical constraints. The proposed approach to guarantee system
termination is that of imposing a particular priority order on constraints and applying only
the repair actions that, while enforcing a constraint, do not violate higher-priority con-
straints. In this way, cycles among repair actions are prevented. The goal of rule analysis is
to find the best constraint order, i.e., the order that guarantees that most constraints will be
repaired by active rules and that the selected rules reflect the user’s wishes. Selecting rules
is an NP-hard optimization problem. That’s why authors develop the heunst.zc method for
rule analysis via Triggering Hypergraph.

A Triggering Hypergraph (THG) is defined as a pair H : (V, A), where V is a finite set of
vertices representing constraints, and A is a finite set of hyperares, representing rules, of the
form (v, V') where v is a vertex and V* a possibly empty subset of V. v is called the tail
of the hyperarc, V' : v;...u, the head set. A hyperarc (9, {d,...,7,}), uniquely labeled as
R, connects constraint ¢ to a set of constraints {dy,...,7,} if and only if R is & rule that
enforces ¥ and can introduce violations of all the constraints listed in {#;,...,9,}. The case
of a hyperarc with an empty head set represents a rule that cannot violate any constraint.

Rules that have the abort operation in the action side are represented by hyperarcs of this
kind.

The rules lying on a cyclic path of THG can trigger each other indefinitely and cause the
nontermination. The presented approach to termination consists of selecting a set of repair
actions, so that the THG is reduced to a directed acyclic hypergraph (DAHG). If only the
rules in the DAHG are executed at run—time, termination is guaranteed. The reduction of
the THG to a DAHG is performed by selecting the less suitable rules to be monitored at
run-time. The semantic knowledge of adequacy of a rule is encoded into a numerical value,

thmmsm Review

i »weight”, the greater _ghe weight, the more prdf:mble the repair
called %ﬁmhrmgmmmdudedmthBDAﬂG!Mnmm when,
action. rules not included in the DAHG are used, then additional run-time monitoring is
required. ; ; jal, describing the architecture of rule
: the core technical material, ing A Pproposed
?mmpﬁﬁﬁ detailed descriptions of rule generation and analysis algorithms.

94 The approach of Urban et al.

; . 98, 29, 30] works propose the approach similar to that in the [6], in
E;ew'ofm de[i‘?ucﬁm ubjecila-oriented datab?aes. : Constraints are expressed as cI?uual
formulas of first—order logical language. Repair actions are encoded as EC?A l‘ult’-lfmti:la.
particular format; several condition-action pairs may be associated With a single trigguing
event. Triggering events correspond to the elementary o?mnons on objects: obJ_ect creation
and deletion, single-valued/multivalued property modification. The same opérations can
be used in the action side of & rule, which may also contain composite operations and I/0
operations. The core issue is the transformation of a set of dec]amhvely expressed constraints
into a set of production rules, called Integrity Maintenance Production Rules (IMPRs) that
are executed by an active DBMS.

The generation of IMPRs from constraints is supported by a tool called CONTEXT [29],
The phase of Constraint Analysis de.rim,ﬁ-omt.hea.nalys_isofro!&tadcomtminu, semantic
information that drives the phase of IMPR generation. This strategy proposes repair actions
to the designer who keeps the responsibility to decide which IMPRs to generate. Multiple
repair actions for a single constraint are allowed.

‘A variant of the Triggering Graph introduced-in [6], is used to evaluate a set of IMPRs to
see if they may cause contradictory updates and infinite triggering. In addition to nodes
representing rules, the graph contains a node for every possible elementary operation. Two
kinds of arcs are defined: propagation arcs connect an operation or a rule to another rule, iff
the former can generate the triggering event of the latter, conflict arcs link a rule to another
rule or to an operation, iff the action of the former contradicts the latter. Direct cycles
contains only propagation arcs denote potential infinite triggering, while cycles containing
at least one conflict arc show the possibility of conflicting updates. Cycles are essential
if they always generate anomalous IMPR behavior, inessential if it can be demonstrated,
based on IMPRs semantics, that infinite triggering or conflicting updates do not arise at
run-time, instance based if the occurrence of anomalies dependg on the actual transaction
and database instance.

The goal of IMPR analysis is that of identifying inessential cycles and to provide information
to the run—time executor of IMPRs, to reduce the probability of repair failure. However, no
problem-solving tool is provided to support IMPR analysis.

88

2.6 The a.ppfoa.ch of Schewe et al.

Schewe et al. [26] address the integrity enforcement problem with respect to static and
transition constraints. Their analysis is based on object—oriented databases with a clear
distinction between values and objects. They use formulae in -first-order logic to express
both static and transition constraints. The approach adopted is that of modifying a user’s
transaction, by replacing the (basic) methods that update objects with rewritten ones, which

e

A.J. Asatryan Rg

 satisfy the established constraints. Such rewritten methods constitute the Greatest Consis-
 tent Specialization (GCS) of database-updating operations. A GCS is defined as a derived
- operation that extends the original one to make it complient to & single constraint. A GCS
- can add to the original operation extra updates, similar to the repair actions of (8] or [6],
provided that they do not contradict the original operation, and the "distance” between the
original and the extended operation must be minimal, this means that any other consistent
specialization of the original operation must be more specific than the GCS. There is sig-
nificant difference between repair rule and GCSs: the rule is triggered only if the constraint
is violated, while the GCS represents a conditional update that, in any state, guarantees
consistency.
The notion of repair failure is also present: when it is impossible to derive a consistent spe-
cialization of the original operation that respects the constraints, the GCS is conventionally
set to a feil operation. GCSs are built manually. A negative result shows that GCS gener-
ation does not scale up trivially: it is not possible to build GCSs of arbitrary methods or
transactions by simply ”assembling” GCSs of elementary operations. Also, building GCSs
for multiple constraints is a problem, since GCSs for a single constraint are usually not
elementary operations.

2.6 The approach of Jagadish and Qian

In [20] authors present an approach for constraint enforcement in object—oriented databases
through integrating inter-object constraint maintenance into an object-oriented database
system. They develop a constraint compilation scheme that accepts declarative global spec-
ification of constraints, including relational integrity, referential integrity, and uniqueness
requirements, and generates an efficient representation that permits localized processing.
The feasibility of this approach is demonstrated by designing a constraint preprocessor for
O++ [2], the programming language interface to the Ode [?, 17] object-oriented database.
The recommended approach in an object-oriented database is to associate constraints with
classes, and upon the update of an object to check each constraint associated with its class
and none others. The constraint compilation approach that’s presented here generates effi-
cient representations and localized consistency maintenance, by appropriately transforming
a specified declarative constraint and associating it with exactly the relevant set of class
definitions, where each of a small number of relevant constructs can efficiently be checked.
Here a language CIAO++ is introduced, which is a small extension of O++, suitable for
declaratively expressing integrity constraints. The constraint facility provided in O++ is
intra-object in that when an object is updated only the constraints associated with it,
through its class definition, are checked. The problem is to implement each inter-object
constraint as an equivalent set of (intra-object) constraints to be associated with the appro-
priate class definitions, that need be checked only when an object of that class is updated,
created, or deleted.

A transformation technique is developed that correctly associates an inter-object constraint -
with the appropriate classes. It transforms an inter-object constraint into a logically equiva-
lent one such that all objects referenced explicitly in the constraint expression are ”brought
Lo attention” in the quantification. In case of implicit object references the constraint is
associated with the class of each of them. This step captures all implicit object references,
provided it is applied recursively through all function definitions encountered. Any sep-
arately compiled functions must declare what classes they refer to, and the constraint is

memmsmmw
90

amama.tod ‘:mh ﬁoérmmaﬁm all kind of inter—object comtmints are maintained. To
Bygd,mg&'omient i dmmmwe?mmﬁw.m
may be applied to the canonical mpmantationofaoonstrmnt after it instantiated
in a class definition. g e e,
proposed proach integrity checking is consi per
lf{:ur:;:::cl in plwﬂ-lll:z of viol::.;tl»yns and enforomnent is performed completely at run-time.

2.7 The approach of Oakasha et al. '
akasha g mmtwnwpmmdidmofmothernpprqachfmwmtmcym
win?in objme:.::ig:md databases. Authors believe that a consistency management sub-
system (CMS) for OODBMSs should have the following features:
o ObjﬁmmcMS should work with basic principles of object-orientation such
as inheritance and encapsulation.
o Specification. Constraints should be specified declaratively and structured as user
accessible objects.
o Interrelated Objects. CMSshouldhesblebomaintainconsistencyofn]argem
of interrelated objects with complex structures.
C e Ihmmom CMSahouldworkwithadmncedtypeaoftrmwtiomauchaaintemcﬁve
and long duration transactions. ;
e Efficiency. The constraint checking should rely on optimization techniques for improv-
ing constraint evaluation.
o Integrity Independence. CMS should be capable to change constraint specifications
without changing application programs and update transactions.
o Inconsistency. CMS should control inconsistency of objects.

o Persistence Style. CMS should maintain consistency of all objects, that is persistent
and nonpersistent ones, and regardless of the persistence style of OODBMSs.

o Disabling and Enabling of Constraints. CMS should providg the tools for enabling and
disabling constraints at various levels of abstraction like the whole database, or a class
~ or a specific object.
o Update Granularity. CMS should work with different levels of update granularity of
objects such as updating a simple attribute or a complex attribute or the whole state
of an object.

In this work authors propose an approach that support the features listed above.

Main aspects of this approach are the constraints catalog and a novel technique for constraints
structuring. The constraints catalog is a meta-database acting as repository of constraints
specifications. The main purpose of the constraints catalog is-to separate the constraints
specification from transactions and application programs and hence to provide the feature
of integrity independence to this approach. The constraints are defined as first-order logic

A. J. Asatryan 91

| formules. The information stored in the constraints catalog is divided into two categories.
. The first calegory is about specification of constraints. This kind of information is stored in a
. class named IC. The second category of information describes definition of constraints. This
type of information is stored in a class nemed Shell. To avoid the drawbacks concerning
redundmtchecﬁnssmdspodﬁcobjmhmdﬁugsheﬂsmamduedwkhmothutypeo!
objects called constraint kernels. This type of information is stored in a class named Kernel.
Kernels store information that is local to objects and which is common among interrelated
objects.
For consistency maintenance every class in the database schema is augmented with a set of
integrity control methods. These methods are used for object manipulation and consistency
maintenance. Their semantics includes all tasks of integrity control, that is:

e linking each newly created object with shells and kernels,
e unifying kernels among shells of interrelated objects,
* monitoring updating to objects states and checking immediate constraints,

o checking violated constraints locally w.r.t. an object and globally w.r.L. all objects
that are updated by a transaction,

s disabling or enabling constraints.
For consistency maintenance only constraint checking is considered and constraint enforce-
ment is performed completely at run-time,
This approach of consistency enforcement can be extended by the method of integrity inde-
pendence proposed by Oakasha and Saske [24]. Applying the feature of integrity indepen-
dence means that constraints can be modified without recompiling updating transactions
and applications. The key aspect of this approach is constraint handler (Figure 5). Con-
nection between the class C' and constraints W ... W, is established via constraint handler
He:. It becomes responsible for controlling all aspects of constraints W ... W,.

l Constraints l
1-1

<

Handler
A n-m
—>

Figure 5. Relationships among Classes, Handlers and Constraints

2.8 The approach of Geppert and Dittrich

Geppert and Dittirch [15] propose an approach to the specification and implementation of
consistency constraints in object-oriented database systems, adopting the programming-
by-contract (PbC) paradigm developed for object-oriented programming. This approach
supports implicit, dynamic (two-state transition) and behavioral consistency constraints.

PbC is an approach to achieve correct and robust object-oriented, modular programs. In

Consistency Management In Database Systems: Review
92
usual parts definitions, preconditions, postconditions, and cless
ﬁmwmmmdﬂsd Mgﬂda:mﬂdltlm and postconditions define a contract:
im g)
the precondition deﬁnesthemndiﬁomthnmdm'ofummagehastoobay,
o
o the postcondition defines what the receiver is obliged to produce.

Constraints t edﬁcforamathodbutrmhif:tthepermimiplemofmob_
ject of & c]a::?mu:angeggad through invariants. Consistency constraints in PbC-DB are
through IVarAI, B hibct model as provided by most OODBSs [1] (defining

roach is defined on the object
gb'h}:capizm.ljnithods, extensions etc.). Class definitions and me'{:-h_od signatures are aug-
mélnt.ed' by special clauses that define invariants, pre- and postconditions: .

invari ula [repair action]{, name formula [repair action]};
raqui:;t nﬂﬁmm i:-o!pair action]{, name formula [repair action]};
ensure name formula [repair action] {, name formula [repair action]};

written as conjunctive forms. Each conjunct is a disjunction of predicates.
mmﬁnmmm icted, quantified predicates. The only free variables
permitted in formules are the instance variables of the class. Methods m.also permitted in
formules, as long as they do not perform modifications on the sta‘te of objects. Inter—object
constraints are expressed as formulas, that refer to methods and instance variables of other
objects of other classes (encapsulation violation in constraint daﬁmifxom'm]_)elmitt.ed]. The
repair clause specifies an action to be performed whenever the invariant is violated. Actions
are code fragments in the object model’s date manipulation langmge The user is responsi-
ble for consistent/inconsistent object state resulting from repair action.
Consistency is maintained on three levels: for objects, extensions, and the.entire database.
At each level the role of constraints is different, but the enforcement semantics is the same
and is defined as follows. Whenever a method m of the object o is called, the precondition of
the m is checked. If none of the formulas in the precondition evaluates to false, the method
body is executed. If a set of formulas of the precondition evaluates to false and if any of them
has no repair action defined, the method execution is aborted. If all formulas evaluating to
false have repairs defined, these repairs are executed after the condition check. The same
procedure for constraint checking and enforcement applies to postconditions and invariants.
For implementation purposes it’s suggested to- use the SAMOS [¥6] ADBMS.

2.9 The approach of Ceri et al.

Ceri et al. [5, 7] present a proposal for constraint enforcement in Chimera. Chimera is a
novel database language jointly designed by Ceri et al. at Politecnico di Milano. Chimera
integrates an object—oriented data model, a declarative query language and an active rule
language for reactive processing. In these papers, the proposal for constraint management
in Chimera is presented, which relies on the declarative specification of passive constraints
as rules and on their transformation into different types of active rules.

To face violations of a constraint by an update transaction, two approaches are traditionally
available: either the transaction checks the integrity of data before committing and under-
takes repair actions in case of violations, or the DBMS independently detects the violations

A. J. Asatryan 93

(at least for a limited variety of constraints) and rolls back the incorrect transaction. Authors
claim that the former approach is unsatisfactory since it scatters the constraint enforcement
' criteria among the applications, thus jeopardizing data integrity and compromising change
management, whereas the latter does not present this problem but is not suited to model
complex semantic constraints. In Chimera a more flexible approach is presented where
constraints can be handled at different levels of sophistication:

s At the simplest level, constraints are expressed declaratively through deductive rules,
whose head defines a constraint predicate that can be used by the transaction supplier
to query constraint violations, integrity is then enforced manually by the transaction
supplier.

At the next level, constraints are encoded as triggers, activated by any event likely to
violate the constraint. Their precondition tests for the actual occurrence of violations,
if a violation is detected, then the rule issues a rollback command. They are called
abort rules. Abort rules can be syntactically generated from declarative constraints.

Al the most sophisticated level, constraints are encoded as triggers having the same
precondition and triggering events as abort rules, their action part, however, contains
database manipulations for repairing constraint violations. Chimera provides ade-
quate tools to support above defined maintenance rules generation from declarative
constraints and their analysis for termination and correctness (ability to achieve a
consistent state for any input transaction as introduced in [8, 6]).

2.10 The approach of Medeiros and Andrade

In [21] Medeiros and Andrade present a method for static constraint enforcement that au-
tomatically transform integrity constraints into a set of ECA-rules.

The considered problem of derivation of production rules from constraints can be defined as
follows:

Let a constraint be specified as a first order logic predicate P over a database state, and
A some userdefined action to be performed if P is not true (i.e. if =P then A). The same
predicate P has to be checked at several different events (updates), which may violate the cor-
responding constraint. An active database must thus provide a set of rules < {E},-P,A >
to maintain this constraint. Whereas the P and A components can be derived straight from
the constraint specification, event determination depends on additional information. Thus,
the most complex part that of automatic rule derivation is that of determining events set,
which may violate a constraint. The objective of event derivation is thus avoid unnecessarily
checking constraints at every update, and thus are save processing time.

Unlike relational database systems, where updates that may violate a given constraint can
be usually determined by static analysis of the constraint, in an object-oriented system,
updates are performed by methods fo obey encapsulation. This complicates the defini-
tion of all events, which may be associated with integrity violation. In relational systems,
events consist of applying the insert, delete and update operations over a tuple or relation. -
In object-oriented systems, however, a given object may react to several methods, whose
names are defined by the user and whose implementation is encapsulated into class and can-
not be handled unless additional context sensitive information is provided. Thus, algorithms
for transforming constraints into rules such as proposed by [35, 8] do not apply to object-
oriented systems. For that purpose authors propose an approach, similar to that in the

Consistency Management In Datsbase Systems: Review
94
; i i duction rules is defined
ation from integrity constraints into prod on
[ﬁ],_whau:?f E::i \?emﬂf?;m databsse. For constraint definition declarative constraint
notions of isdmbpsd.mhnguagembasedonﬁmtorderloglc,mdallm
specification posmes schema components, objects or classes.

defining constraints over
DBME
r..:L—....j.- b
{1:) Kabematan

Figure 6. Constraint Transformation System

conistraint subsystem was implemented on top of the active version of the Oy object-
one'i"rd DBMS [22]. The rule generation algorithm needs different types of'mformal:ion from
the database schema, as well as semantic information about methods. The @plement,ed 8ys-
tem consists of two modules: a schema ezfraction module and a rule generation module. The
first module extracts all schema and method information needed for rule generation, and
loads it into temporary structures in main memory. The second module is the rule genera-
tor, and uses these structures directly, instead of querying the database. This decomposition
presents the further advantage of allowing the rule generation module to be database in-
dependent, and even model independent. The rule generation module can be attached as
a layer on top of any database system, for different schema extraction modules. Figure 6
shows the general structure of the constraint system, where the Schema Exiraction module
is system-dependent, and the remainder is system and model independent. The Schema
Edmcﬁonmodulecouectshfmﬁonﬁomthewhamnmd&omthemmdmn
inthehtamediatedmmuctummpedallydmi@adhrfastm. These structures
are passed on to the Rule Generation subsystem. Module Analysis & Compilation parses
the constraint and builds the condition and action fields of the production rule. It passes
the result on to the module that performs Jdentification of Patgnﬁal Sources of Constraint
Violation. Finally, Event Generation determines the set of events.

2.11 The approach of Benzaken and Schaefer

The basic assumption that Benzaken and Schaefer made in [4] is that the run-time checking
of constraints is too costly to be undertaken systematically. Therefore, methods that are
always safe problems with respect to integrity constraints should be proven at compile-time,
The run-time checks should only: concern the remaining methods. To that purpose, they
propose a new approach of static management of integrity constraints, based on abstract
interpretation, to prove the invariance of integrity constraints under complex methods.

This method undertakes a very detailed analysis of methods and provides some precise infor-
mation on the impact they have upon constraints. Partial but concepts, reliable information

A. J. Asatrysn a5

[

mmningmethodsisobtaimdbymuf;pmdimumafomm. A predicate trans-
formaisafunctionthnt,ﬂmamthodmmdncom:aimCsatiuﬁedbyt.heinputdnta
- of m, returns a formule m/(C) that is satisfied by the output data of m. In other words,
providde‘isutjsﬁedbefmanmtionofm,m’(C}isutisﬁaduﬁeranexmtionofm.
AmethodmiathensdewiththempacttomnmnintCifm’(C'):&C{Cisamnsequence
of m/(C}). To prove the implication, & classical theorem proving technique based on the
tableaux method is used. The tableaux method is a denial method. In order to prove that
F = G, that method proves in fact that F A ~G is unsatisfiable. In order to do that, it
develops a tree, called a fableau, which has several branches. A tableau is of the form:

[branchy, branchy, . .., branch,]
Each branch is of the form:
[formula,, formulay, . .., formula,)

Each branch is & conjunction of formulas, and a tableau is a disjunention of branches.
The tree use is expanded only up to a certain "depth”. Then, a "test for closure” is done on
that tree, which amounts to an instantiation of free variables that reduces the tableau to a
contradiction. Automatic theorem proving techniques in details can be found in [13].

The simple extension of O [22] programming language is used to define integrity constraints,
which are well-formed formulas on a specific, first-order logic.

= ==

[smpie Ansiyuie]

| Transaction Transiation |
4

| Predicats Tanstormer |
' !

[CodsGanamator]

7 N
=] -
Figure 7. Btructureof_thelntegrltyConatraintMamge:

The proposed approach is implemented as a pre-processor for 0. It provides Oy with
an integrity constraint management facility. Figure 7 shows the general structure of the
integrily constraint manager. First, a simple syntactical technique is used to show that some
methods are safe with respect to some constraints. That component is a preliminary filter -
that only considers type information from the constraints and the methods. Roughly, it
compares the types of the objects that are updated in each method with the types of the
objects that are constrained by each constraint.

After that, for methods that have not been proven safe, the more sophisticated method of
predicate transformers is applied in different steps:

6 Consistency Management In Database Systems: Review
9

; icular, methods are the translated
ethods doonstrmntsmdecomlmeed. In parti 2 . :
.xmmah:tnumﬁi&wfomwmmmmkdabehmmmpmnm_

hod and each constraint, the px_ed.ic_:aba transformer is applied. Which
° ?@?ﬁthﬁ&wﬁ&medmmﬁwmmmpmh
tioned previously. :
i based on the tableaux method is applied to
An sutomatic first-order t.heorqm prover
; the result provided by the predicate transformer.
i ults of the analysis at to generate
'I‘hecodegenamt.orﬁmllyt,akesmt.oamunttham
: the Oz schema (if needed) and the O; methods.

3 Conclusion
‘e tsmﬁewofappm'achastointagﬂtycomtraintenfomentin
g ethods have classified and compared with respect to

gystems. The illustrated :
iﬁ:h;wtaﬂzing features, We concluded that that the technology of active databases
provides & natural framework for implementing integrity enfo:l:o@ent through mpmmg ac-
tions. Wﬂof&hm,mtmpmmpmpmmmofmof
the database integrity, i.e. they abort or rollback the transaction in case of violations and
repair actions are not undertaken. Moreover,. the majority of methods perform constraint

enforcement completely at run—time.

Acknowledgments
The author is very grateful to Hrant Marandjian for his useful comments and suggestions.

References

[1] Malcolm Atkinson, Frangois Bancilhon, David DeWitt, Klaus Dittrich, David Maier
and Stanley Zdonik, "The Object-Oriented Database System Manifesto”, Proceedings
of the First International Conference on Deductive and Object-Oriented Databases,
Kyoto, Japan, pp. 223-240, 1989,
citeseer.nj.nec.com/atkinson890bjectoriented. himl. .

(2] Rakesh Agrawal, Shaul Dar and Narain H. Gehani, "The O++ Database
Programming Language: Implementation and Experience”, ICDE, pp. 61-70, 1993,
citeseer.nj.nec.com/dar93database.himl.

[3] R. Agrawal and N. H. Gehani, "ODE (Object Database and Environment): the
language and the data model”, pp. 36-45, 1989,
ﬁtuuf.nj.m.m/wwgode.hml

[4] Véronique Benzaken and Xavier Schaefer, " Static Integrity Constraint Management in

" Object-Oriented Database Programming Languages via Predicate Transformers”,
Lecture Notes in Computer Science, vol. 1241, pp. 60-77, 1977,
citeseer.nj.nec.com/article/benzaken97static. html.

A. J. Asstryan 97

[5] Stefano Ceri, Piero Fraternali and Stefano Paraboschi, "Constraint Management in
Chimera”, IEEE Data Eng. Bull., vol. 17, no. 2, pp. 4-8, 1994.

[6] Stefano Ceri, Piero Fraternali, Stefano Paraboschi and Letizia Tanca, " Automatic
generation of production rules for integrity maintensnce”, ACM Trans. Database
Syst., ACM Press, vol 19, no. 3, pp. 367-422, 1994.

[7] Stefano Ceri and Rainer Manthey, ”Chimera: A Model and Language for Active
DOOD Systems”, East/West Database Workshop ,pp. 3-16, 1994,
citeseer.nj. nec. com/ceridf chimera.hitml.

[8] S. Ceri and J. Widom, " Deriving Production Rules for Constraint Maintenance”,
Proceedings of the 16th VLDB Conference, Brisbane, Australia, D. McLeod and R.
Sacks-Davis and H. Schek, pp. 566-577, 1990,
citeseer.nj.nec. com/ceri90deriving. himl.

[9] S. Ceri and J. Widom, *Deriving Production Rules for Incremental View
Maintenance” , Proceedings of the 17th Conference on Very Large Databases, (Los Altos
CA), Barcelona, Morgan Kaufman, 1991,
citeseer.nj.nec. com/ceri91deriving. html.

[10] C. J. Date, "Databese Systems”, Addison-Wesley, 2000.

[11] Umeshwar Dayal, Eric N. Hanson and Jennifer Widom, * Active Database Systems”,
Modern Database Systems, pp. 434-456, 1995,
citeseer.nj.nec. com/dayal94active. html.

[12] K. R. Dittrich and S. Gatziu and A. Geppert, "The Active Database Management
Systemn Manifesto: A Rulebase of a ADBMS Features”, Proceedings of the 2nd
International Workshop on Rules in Database Systems, Springer, vol. 985, pp. 3-20,
1995,
citeseer.nj.nec.com/dittrich95active. html.

[13] M. Fitting, "First-Order Logic and Automated Theorem Proving ", Sﬁringe.rVerlag,
1990. ;

[14] Piero Fraternali and Letizia 'Ihnca, » A structured approach for the definition of the
semantics of active databases ¥, ACM Trans. Database Syst., ACM Press, vol. 20, no.
4, pp. 414-471, 1995, htip://doi.acm.org/10.1145/219035.219042.

[15] Andreas Geppert and Klaus R. Dittrich,” Specification and Implementation of
Consistency Constraints in Object-Oriented Database Systems: Applying
Programming-by-Contract” , Datenbanksysteme in Buro, Technik und Wissenschaft,
pp. 322-337, 1995,
citeseer.nj.nec.com/geppert95specification. html.

[16] Stella Gatziu and Andreas Geppert and Klaus R. Dittrich, " The SAMOS active
DBMS prototype”, pp. 480-480, 1995, citeseer.nj.nec.com/gatziu94samo.html.

3 ; qwmmmsm:wm
1 V. lish, "Ode as an Active Database: Constraints and
[17]N.H.Gahamand_H Ofmjmcmmmvwmapmaaau(mmm

1991
CA), Barcelona, Morgan Kaufman, "555,

(18] Theodore Hong, "A Survey of Active Database Systems”, 1997,
cimuf-ﬂf.nec.comﬂwng!ﬂmey.hm

Freytag, "An Annotated Bibliography on Active

[19] Ulrike Jaeger and Johann Christoph et

atabases”, SIGMOD Record, vol. 24, no. 1, pp. 58-6
p /arﬁdeﬁaagm'gﬁmmtated;m

citeseer.nj. nec. com,
. V. Jagadish and X. Qian, " Integrity Maintenance in Object-Oriented Databases”,
#l l;moeaﬁnga of the 18th Conference on Very Large Databases, Los Altos CA),
Vancouver, Morgan Kaufman, .1992,_
cite.uer.rd.nec.m/jagadiahﬂ&nw.h&nl

[21] C. Medeiros and M. Andrade, "Implementing Integrity Control in Active Databases”,
Implementing Integrity Control in Active-Databases . The Journal of Systems

Software, december, pp. 171-181, 1994, ° <
citeseer.nj.nec. com/madeimsﬂiﬁnplemenﬁng.hwnl

[22] C. Medeiros and P. Pfeffer, "Object Integrity Using Rules”, n Proceedings European
Conference on Object-Oriented Programming, pp. 219-230, 1991.

[23] H. Oakasha and 8. Conrad and G. Saake, ” Consistency management in
object-oriented databases”, Concurrency and Computation: Practice and Ezperience,
vol. 13, no. 11, pp. 955-985, 2001, :
citeseer.nj.nec.com/296658. html

[24] Oakasha, H. and Saake, G., ” Integrity Independence in Object-Oriented Database
Systems ", Kurzfossungen — 10. Workshop “Grundlagen von Datenbanken”, Konstanz
(02.06.-05.06.98), Universitit Konstanz, Fachbereich Informatik, M. H. Scholl and H.
Riedel and T. Grust and D. Gluche, no. 63, pp. 94-98, 1998,

[25] N.W. Paton and O. Diaz, ” Active Database Systems ", ACM Computing Surveys,
vol. 1, no. 3, pp. 63-103, 1999,
citeseer.nj.nec.com/paton99active. himl

[26] K.-D. Schewe, and B. Thalheim, and J.W. Schmidt, and I. Wetzel, "Integrity
~ Enforcement in Object-Oriented Datebases”, Proc. 4th Int. Workshop on Foundations
;r_; g.l;odeb and Languages for Data and Objects , Volkse, Germany, October, pp. 19-22,

.

[27] Susan D. Urban and Lois M. L. Delcambre, Constraint Analysis: A Design Process for
gmg%emtim on Objects”, JEEE Trans. Knowl. Data Eng., vol. 2, no. 4, pp.
, 1990.

A. J. Asatryan 99

[28] Susan D. Urban, Anton P. Karadimee and Ravi B. Nennapaneni, ”he Implementation
and Evaluation of Integrity Maintenance Rules in an Object-Oriented Database”,
Proceedings of the Eighth International Conference on Data Engineering ,Tempe,
Arizona, IEEE Computer Society, Forouzan Golshani, pp. 565-572, 1992.

[29] Susan D. Urban and Mario Desiderio, "CONTEXT: a CONstrainT EXplenation
Tool”, Data Knowl. Eng., Elsevier Science Publishers B. V., vol. &, no. 2, pp. 153-183,
1992,
hitp://dx.doi.org/10.1016/0169-083X (92)90035-A .

[30] Susan D. Urban and Billy B. L. Lim, " An intelligent framework for active support of
database semantics”, nt. J. Ezpert Syst., JAI Press, Inc., vol. 6, no. 1, pp. 1-37, 1993.

[31] Uliman J. D., Widom J., Garcia-Molina H., "Database Systems: The Complete
Book”, Prentice Hall, 2001.

[32] J. Widom, * The Starburst Rule System: Language Design, Implementation, and
Applications *, IEEE Quarterly Bulletin on Data Engineering, Special Issue on Active
Databases, vol. 15, no. 1-4, pp. 15-18, 1992,
citeseer.nj.nec.com/widom92starburst, html

[33] Jennifer Widom, "The Starburst Active Database Rule System”, Knowledge and Data
Engineering, vol. 8, no. 4, pp. 583-595, 1996,

[34] J. Widom and R. Cochrane and B. Lindsay, *Implementing Set-Oriented Production
Rules as an Extension to Starburst”, Proceedings of the 17th Conference on Very
Large Databases, (Los Altos CA), Barcelona, Morgan Kaufman, 1991,
citeseer.ist.psu. edu/widom9limplementing. himl

[35] J. Widom and 8. J. Finkelstein, "Set-oriented production rules in relational database
systems”, pp. 269-270, 1990,
citeseer.nj.nec, com/widom90setoriented. himl

Udpnnowlwinpyul wwwhnynuip wnyjwiGhph hhﬁﬁhpnu!. wlGwpy
U. 2. Uuunnpjui

Udthnhnus

Cun pip vuhiwdwl wyjwilbph htGpp whnp £ dwewjh npubu wyywiGbph «junwhbh»
ty «lfungbypy zntiwpwe by whnp twewhngh udjulbph neblunpmbp hbGph
htn wzuunnnn YhpunwlwG dpugpbiph hunfwn: Umg6 whGwpymd Ghpljuyugynud b6
wijjuilbph hkGpbpoud wipnnewijwimpjwi vwhiwiuhwymGbph Gwidm sh 2upp
Ununbgnuiibp: W)6 wpmwgnimd E wju plwgqunjunmd Gepljumnuiu jumwngnn
hbmugnunuljub nunoipynlGikpp:

