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Abstract

In this paper the mothod of construction of N-polynomials over Fy with g = 1
(mod 4) is presented. For a suitably chosen initial N-polynomial f) (z) € F,[z] of
degree 2 N-polynomials fi (z) € F,[z] of degree 2% are constructed by the iterated
spplication of following transformation: f (z) — (2z)%%() ¢ (ﬁgﬂ) € Fgn#0.

1 Introduction

In this paper we use a method similar to Meyn’s [3] to show that Kyuregyan’s [2] construction
gives a more general iterative technique to construct sequences of polynomials of degrees 2*
over F,, compared to one given by Meyn, which was based on the Cohen’s [1] result.

Let F be the Galois field of order p = g* where p is an odd prime and s is & natural
number. Let f(z) be a monic irreducible polynomial of degree n over F, and § its root.
The field Fyn is an extension of F; and can be considered as a vector space of dimension n
over F,.

A normal basis of Fy over F, is s basis of form N = {a,of,...,a""}, ie. & basis
consisting of all the algebraic conjugates of a. We say that o generates normal basis, or o
is a normal element of Fya over F, :

A monic irreducible polynomial f(z) € F,[z] is called normal or N-polynomial if its
roots are linearly independent over F;;. The elements in a normal basis are exactly the roots
of some N-polynomial. Hence, an N-polynomial is just another way of describing a normal
basis.

The problem in general is: given an integer n and ground field F;, construct a normal
basis in [ over F, or equivalently, construct an N-polynomial in F} [z] of degree n.

We briefly recapitulate some concepts from linear algebra. Let T be a linear transforma-
tion on a finite-dimensional vector space V over an arbitrary field F. A subspace W C V
is called T-invariant if Yu € W,Tu € W. For any vector u € V, the subspace spanned
by u,uT,uT?,... is T-invariant and called the T-cyclic subspace generated by u. Denote it
Z (u,T). Z (u,T) consists of all vectors of the form g (T)u,g(z) € F. If Z (u,T) = V, then
u is called a cyclic vector of V for T.

For any polynomial g (z) € F'[z], g(T) is a linear transformation on V. The null space
of g (T') consists of all vectors u such that g (T") u = 0. We also call it null space of g (z). On
the other hand, for any vector u € V' the monic polynomial g (z) € F [z] of smallest degree
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called the T-order of u (some authors call it t_.ha T-annihilator,
additive order of u). Denote this polynomial by Ord,,r (z),
on T is clear from context. Note that Ordy (z) divides any

such that g(T)u = 0I5
minimal polynomial of u or &
or Ordy (z) if the transformati
polynomial annihilating t.
Recall that the Frobenius map
g:y— 70 TEFe

: i fixes F.. In particular, ¢ is a linear transformation of F,
B e e mion  ov i It vel kaown fact ha th minm
and d teri |'cpolynominlsfﬁl0mid°m_icalb°thbmn:szn__1' By definition, a is a
normal element if and only if @, o, o%a, ..., 0"'a are linearly independent over Fyn(a
i“cychc‘m‘nofp‘..fmaj.IfaEF,-'isanormalelema_ntthentheremno?olynomid
ofdugulessthnnnthatmihﬂn&&ﬂa.Snitfollmthatamanormalelamentﬁandonly

if Ord,, = 2" — 1. For any polynomial
f(@)=3 o',
=0

define n n
foa=2qa'a=2qa"‘.
i=0

i=0

2 N-polynomials and quadratic extensions
We consider certain infinite extensions of a finite field Fy, which have the shape
Fgm = ) Fr, g=1(mod 4)
k20

and are specified by a sequence of irreducible polynomials fi (z) € F; [z] of degrees 2. For
guitable chosen initial N-polynomial f; (z) € F, [z] of degree 2, the defining N-polynomials
Jx (z) € F, [z] of degree 2* are constructed by the iterated application of following transfor-
mation:

1a) — (aayiore (21T | )

For more general transformation Kyuregyan[2] proved that it geherates the sequence of
irreducible polynomials:
Theorem 1. (Kyuregyan [2]) Let P (z) #  be an irreducible polynomial of degree n > 1
over Fy where n is even if ¢ = 3(mod 4),7,h,0 € F; and r # 0,6 # 0. Suppose that
P(@)P(—@) is a non-square in F,. Define

Fy(z)=P(a),
Fi(z) = (2.1: + i—h)‘H Fiy ((z’ + ﬂ—;@) / (2z+ %)) @

where t, = n2* denotes the degree of Fy (z) . Then Fi (z) is an irreducible lynomial
Fy of degree n2* for every k> 1. o ¥ o
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Here we show that l’orh=0in'l'haommlseqmce(2)inauqu:nceof.ﬂ’-polynomials.
i Thaoremz.qusl(modi)beaprﬁnemrw&df;eF,[:]beamﬁcadﬁ

reciprocal N-polynomial of degres 2 such that f;(n) fi (—n) is a nonsquare in F,, where
n€ Fy n#0. Then the sequence fy (z),,, defined by

frsr = (22)" fi (‘122)

consists entirely of N-polynomials.

According to Theorem 1 any sequence fj (::),“21 satisfying (3) will define a sequence of
extension fields K isomorphic to Fps. For k 2 0 the 2*-th power of Frobenius automorphism,

ie. 7 — " , will be denoted by 3. Note that this notation implies 03 = 0.,. The roots
ay € Ky of fi can be arranged in such & way that

st + P0G =204, k2> 1 (4)
Then by applying g, to (4) and subtracting (4) from that we get

[/ T n’a.a;},; — Oy — rfa;_,,’l =0

3)

O40tkir HI RO~ 1~ 0y = Okt~ — (s — Toxail;) = (k1040001 — 77) of.
(On410k08+1 — 7°) ORi; =
(ok410k0841 — 1) (a;-:-l = “t“;;l-l) =0

Oyt = 0405ty # 0 = (0ks10k0041 —177) = 0

LR (5)

and

Triuyisk (Okt1) = Okt + Ok = Okis +105), = 204 (6)
Weshauproofbyinducﬁononkthatagganerawsanormalbasisowffa=F¢. By
construction, the starting polynomial f; is an N-polynomial, i.e. oy generates a normal
basis of K;/Ky. Suppose by induction that

Ordy, (z) =z —1. (7
We have to proof that Ord,,,, (z) = 22" — 1. The relation (6) shows that
Triu/k (w1 — 0x) = 204 — 204, = 0 (8)
Following Meyn (3] we now denote
Br1 = 01 — o 9) -

These differences are non-zero, by Theorem 1, and
OBt = Okpi1 — O = P01y = 200 — Qg4 — O = Q) — gy

OkBrs1 = =it ' (10)
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that Ords,., () is & divisor of z*! — 1. On the other hand
o s 100 e N ot two elements of relatively prime additive orders 5o that the
mn:em :?mlisthelﬂmd“‘tof’*—l=ord°‘ (z) and the additive order of fy,;.

Orda,.,, (¥) =3 +1 Ordg,,, (z) = SR

(z) is equal to %" + 1 will be proved without further use

Ay

of induction hypothesis (7). By substituting
Brs = On1 — (@1 +Ou0k11) /2 = Ops1/2 — On0i1 /2
So elements g1 have the following representation:

Be1 = Qki1/2 = OkCks1/2 (11)
The following relations between elements also take place:
By = oy — 200100 + 0} = Of — Ok (2ax — Ck41) = O — Ops1T O} =0 — 7P =
ok (ﬂt - ﬂ’ail) = o (o — o) = 2P

R Bin =0} — 1" = 204Bs (12)

Also
(@i 1) = o (0w £20 +1%/aria) = e (200 £ 27) = 20041 (ox £1)

(@41 £1)* = 20041 (k£ 1) (13)
According to the test we restate problem we got to deal with: Isit true that for any irreducible
factor h (z) of 22" +1
2 41

TOR °.'Iﬁb+1 #0 ; (14)

Now we need information about factorization of the 2%+!-st cyclot.;:umic polynomial z2* + 1.
Proposition 1. Let ¢ = 1(mod4), ie. ¢ =2'm+1, A > 1, m is odd. Define
d = d(k) = max{k + 1 — A,0}. Then z* + 1 splits into the product of 2*~¢ irreducible

binomials over Fy : \
2 41= I (- ),
uely

where U C F, is the set of all primitive 25"1~4th roots of unity.
Proof. See[3]. :

For fixed A and increasing k the number of factors is equal to 259 as longas k < A —1
and is equal to 24~ for all £ > A — 1. In particular beginning with k = A — 1 all 24th
primitive roots of unity in F; are used in factorization. -

We fix one of these roots, say r, and write the quotient in (14) in the following way:

© k—d

2 +1 241 1 1 —d-1 o) —d—j
== (@) (@ ) (P )= (= )
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Now we define the images of the partial product of this expension: 8%, := 8. and for
1<igk—d
L
= ([T +77) ) o

o= (7 ) 0 (15)
In this setting problem (14) is

which recursively reads:

Bl #0 7
This is obviously equivalent to:

Bl#0, 1<i<k—d (16)

Based on the results obtained by Meyn|[3], we suggest a more general result:

Lemma 1, The elements satisfy forall 1<i<k—d—1:

(@)os—s1fy = C¥ -1« B, Jos, where the primitive 2+?nd root of unity (¥ =
e nnfi :

{b}( ,,21)2 =208y ;-0 (api1 £1)* ", where c(i) is a certain ezponentially
increasing function of i.

Proof. We will proof this lemma by induction on i.

i = 0. By (12) we have 82, = 2040 so that ¢(0) = 1. Further from (6) and (11)
we find 0,182, = =2 -n* - fi/os and the quotient ox—18%,,/8¢,, = —n*/c?. It follows
that ox—18k41 = €@ - 7« Brpa/ox, where (9 is one of two primitive 4-th roots of unity,
ie. (@ = £r*™". The strategy for the induction step is as follows: we have to square
the element 8L, i + 1 times in total which will be done in portions 1+ (i — 1) + 1. The

first squaring gives a relation between (ﬁﬂ:)a and (ﬂfﬁn)z. After squaring another i — 1

times we are in position to apply induction hypothesis (b). By squaring for a last time, the
induction for (b) is complete and the action of automorphism o—;—; becomes computable.
In the end, all these squarings prove to be reversible with (a). i:0— 1

(ﬁﬂl)z = (ﬂk-lﬂlﬂ-l “|"'ﬂ"_.'_lﬁla+1)I = Brn e (1£n/a)’ =
Bl o (n k)’ = B r* T 0t 2 (apr ) =
2-Br-op-r " apt 2 (o £0) =2 B ok 1)
( g?.l)gz =B 2y (g ) = 22 Bt 2 ap - (Qpea £ 1) =
2. By -0}y - (an-2%7)

2 2
Ok-2 (ﬁﬂ; _ Ok-2Bk1  Ok20% _ (_ﬁ*-‘}'("'"'“ﬁl) (o=
(ﬁiﬂ,’l‘ﬁL_ [T B Ber 0y et

By taking 4th root from this we get

0&—25121 =(®.q. ﬁlt:l!‘.l/ Q-1
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where ¢ is the 2°rd primitive root of unity.
bl —d-3 2
| G (ﬂ(g) )9 = (Jb-lﬁ(blzl rzh ﬂtlji)

From previous step we have op-2B8 =¢W- fj B2 /ax-1, so that

(ﬂfbl) = (ﬂ’b-lﬂﬂ: +r27 ﬁﬁx) = ((=|=f" _H) - B o+ )
(5&’1)’ A ag? - (e )’ = (»3(1)1)2 M ag 2 (k) =
(ﬂﬂl) = (a2 ) 05?2 (e k)’ =
2. 6, 1 -0?_ - (apeg £ 1) (~1) - 052 -2 (apa £ 1) = (=1)- 2022 B - (g £ 7)°
(ﬁg}l)” = 2027 -ﬂi_l-((a,,_, + ﬂ)s)s =2% -2”-2-;9;-2'0&-2'(2 o3 (g3 £ ﬂ)’)a =
2@ fig-of 5 (or-3£n)°

ons (BE%)” : ~for) - (1P 0iy)”
B
' Again, by taking 2°rd root we get
o3t =P - B fona,

where (@ mthe?‘thpnmtwe root of unity.
We start by squaring A = ok-iByss +77

according to (a):
OB = £ g BN foy iy
( (i) ) (ﬂ_l ﬁk+ 1) | ottt ﬂ(a—lz)) - (ﬂfgtll)) P :3' 0 G -'kﬂ)
. (ﬂg_—ln) ""‘-‘ﬁ’-azﬂl-i!-(a“:l:n).'
By taking to the power 2! this relation becomes:
AR _1pn 2 1 -
(5‘&21) = (ﬂgl-ll)) T a;.’;l P ) L
Now by the induction hypothesis in part (b) we have:
(ﬁ{ 1-1))9 =20 5y AR (-PEY) i

(B)" =249 s - 0B - (s 0 (1) 27 g (ons )™ =
(-1)- 269977 511 - (api k)™,
Andbysquaﬁngforthe]aaﬁmemget:

(ﬁ(h‘-t)-l)gm = 2%l-1) .97, ﬁf—-h-: > ((ﬂk—i + 7.\‘)2) o

ﬁ{‘"“ thereby using the induction hypothesis
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Now by using (12) and (13) and updating the function c by collecting the powers of 2 we get
()" =240 2B on i+ 2 k- (s £ 1) =
g3e(l) . Bi—i - af_.‘ (op—ia = ﬂ}rpl ’

which completes the proof of (b).
From (10) and (5) we have
1

Ug—.'-:!ﬁﬂ.:!w _( 1} ',zun: a_zu-l.
. Wi X X H

(6%:)
By extracting 2*1st roots we get
ki1 By =€ 0+ B s, (17)

To finish the proof of (a) we have to identify primitive 2**'st root of unity ¢ up to sign
with r¥-4=*=1_ By applying o to (17) and substituting (17) again we get

al’—iﬁ(k-?-l = (Cm)’ 'ﬂﬂl (15}

On the other hand by definition of 8{,
Oh-iBi = Ot (OBl + 7 BE) = Ousir D + 77 oy BlTD
By induction hypothesis (¢%-D)" = (r*~*")". Now by using (18) we get
OB = (C‘H))z BN 4 gy fED =
S (rz*-‘-- g ﬁ(a::l) b O‘k—iﬁ(a':f)) S e ;;iu

If we compare this result with (15) we find (¢®9)” = 1", which leads to the assertion in
(a) by taking square roots. The proof of Lemma 1 is complete.
To finish the proof of Theorem 2 we show how (16) is solved by the Lemma 1: If for

some 1 < i < k — d the element A{), is zero then this means by (15) that g8 =
! -q-ﬁf;]” - but part (a) of Lemma tells us that 0;.4-13‘,,21 = 42 'ﬂ'ﬂﬁ]/ﬂi_i.
So we arrive at o4y = =1 which is a contradiction, cause none of the defining elements is

contained in base field.
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