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Abstract

The matrix of asymptotic interdependencies (reliability—reliability functions) of all
possible pairs of the error probability exponents (reliabilities) in testing of multiple
statistical hypotheses is studied for arbitrarily varying object with the current states
sequence known to the statistician. The case of two hypotheses when state sequences
are not known to the decision maker was studied by Fu and Shen, and when decision is
founded on the known states sequence was considered by Ahlswede, Haroutunian and

Aloyan.
In the same way as Fu and Shen we obtain from the main result rate-reliability and

reliability-rate functions for arbitrarily varying source coding with side information.
An illustrative example is presented. :

1. Formulation of Results

The problem solved here is induced by the ideas of the paper of R. Ahlswede [1] concerning
arbitrarily varying sources. It is natural generalization of the problem considered in [2], [3] in
resolution of the problem proposed by R. L. Dobrushin [4] and devoted to discrete memoryless
sources. The case of two hypotheses was considered in [5]. An arbitrarily varying object is a
generalized model of the discrete memoryless one. Let X be a finite sef of values of random
variable X, and & is an alphabet of states, L conditional probability distributions on X
depending on values s of states are known:

G ={Gi(z|s), z€ X,5€S}, 1=1,L.

The conditional probability distribution of the characteristic X of an object depends at
any time instant n only on current state s,. The statistician must select one among L
alternative hypotheses H; : G = G), | =T1,L. Let x = (z,...,zx) be a sequence of results
of N observations of the object. We consider the model when the source of states produces
arbitrary varying sequence 8 = (sy, .., 8iv), which is connected with the statistician who must
accept one of the hypotheses knowing sample x and the state sequence s of the same length
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N (as side information). It is supposed that for all | in each moment n the probabilities of
obeervation z, depends only on state s, and is independent of the states and observations
of other moments, that is

N
Gl (xs) & 111 Gi(zalsn), 1=TT. (1)

The procedure of decision making is a non-randomized test ¥ (x; s), it can be defined by
division of the sample space XV for each state sequence s on L disjoint subsets Al (s) =
{x: ¢"(x,5) =1}, 1 =T1,L. The set A}(s) consists of all vectors x for which the hypothesis
H is adopted knowing state sequence s. We study for all pairs I,m = T,L, m # I, the
probabilities of the erroneous acceptance of hypothesis H; provided that H,, is true

ol () = mag GLi(A (s)]s). @)
The probability to reject Hp,, when it is true, is also considered
Oin(#) = 3 0l (p) = mag Co(ATE)s) = mag(1 - GCRALGS):. @)

Corresponding error probability exponents, called *reliabilities”, are defined as

Emi(p) & Jim_ — N logal))(p), m,1=T,L. (4)
In the paper functions exp and log are considered at the base 2. It follows from (3) that
Emfm(io) = %Emll(‘?]r m=1,L. (5)

The matrix E = {En(y)} is called the reliability matrix of the tests sequence and is the
object of our investigation.

Definition 1: Following Birgé [6] we call the sequence of tests logarithmically asymptot-
ically optimal (LAQ) if for given positive values of L — 1 diagonal elements of the matriz E
the procedure provides mazimal values for other elements of it.

We exploit some combinatorial notions and facts [7], [8]. For s = (sy,.,.,sx), s € S¥,
let N(s | s) be the number of occurrences of s € § in the vector s. The type (or empirical
distribution) of s is the distribution P, = {Fa(s), s € §} defined by

Pi(s) = %N(s | 8), s€S.

For a pair of sequences x € XV and s € SV, let N(z, 5/, 8) be the number of occurences
of (z,8) € & x S in the pair of vectors (x,s). The joint type of the pair (x,s) is the
distribution Qxs = {Qx.(z,8), z € X, s € S} defined by

Qualz9) = (s xs),  z€X, s€S.
The conditional type of x for given s is the conditional distribution Qxjs = {Qxs(zls), z €
X, s € S} defined by

Qxas(2,8) _ N(z,s]x,8)

Quis(z]8) = PG - Nls) z€X, 8€S.
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variables defined by probability- distributions

dom :
Lok X aLg B8 X, € S}. The conditional entropy of X for given

P={P(s)s€S}and Q= {Q(zls),z €
e Hpa(X | 8) = = 3 P(s)Q(zls) log Q(zls)-

ullback-Leibler information) of the distribution Po @ =

s o g = respect to the distribution P o Gi={P(s) Gi(z|s),

=(P(s)Q(zls), zZEX, 8 € S} with
z€X, s€S}is

Q(zls)
D(P o QIIP > GilP) = DQIGHP) = 5 Ple)Qlele)log %JI:J IeTr

= f all possible

We denote by P(S the set of all types on & for given N, by P(S) .theseto“ P
proba]e:ﬂ.ity d.i::mlfbutiim): P on S and by @V (X|s) — the set of all pusmble'o.ondmonal types
on X for given s. Let‘fg'q(x|s}iathefam@lyofvactorsxofthemnd1t.mnalt.yp90for

given s of the type Fi. It is known [7] that
| @¥(%]s) |< (N +1)¥1, (6)
(N + 1)1l exp{ NHp, o(X]8)} <| Tq(X |8) |< exp{NHp, o(X1S)}- ™
Given positive numbers Eiyy, ..., Ep-1jz-1, let us define for each P € P(S) :

Ri(P)2{Q: DQIGIP) < Ey}, 1=TI-T, (80)

Ri(P)2{Q: D@IG|P)> By, 1=TI-T}, (85)

RM(P) & R(R)NQY(Xls), 1=TL, ses™. (8)

Ejy = Ej(By) £ By, 1=TI-T, _ (9a)

Eoy=Eny(Bw) & i8f,) oJat, D@IGwIP), m=TI, m#l, I=TI=T, (%)
iz = Epyu(Bup, Eag, s Br-11) £ o o2l DQIICnIP), m=TL=T, (%)
Epy = EEIL(Elliv  Bajgy oy Bp-qjz-1) 2 . ‘i;il_mi__l Ey. (9d)

The main result of the paper is formulated in

Theorem 1: If all conditional distributions Gy, | = 1, L, are different in the sense that
D(Gil|Gm|P) > 0, I # m, for every P € P(S), and the positive numbers Exj1, Ea, ..., Bp—1j1-1
are such that the following inequalities hold

By <min min D(Gi|Gi[P) %

‘Emlm < hl%ltng}l(ls] D(GIHGMI-PJ: and .-Emlm s l_%E;III(EIF)l m= Z l, -— 1'

then there ezists a LAO sequence of tests, ta‘:le reliability vmtm of which B* = {E;} is
defined in (9) and all elements of it are positive.
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When one of the inequalities (10) is violated, then ot least one element of the matriz E*
is equal to 0 .

Proof : For s € 8%, x € T}/ 5(X|s) with fixed Q the conditional probability of x given
s according to (1) can be presented as follows:

Gl(x|s)= ﬁ Gm(Zal8s) = HGm(:l:l s)Neaixs) Hgm(:ls)nnt-n(am 2
n=] =z b

= exp{N (- P(e)Qels) g o + P0)Qale) g Qela} = (11)

=exp {—N[D(Q || Gul|Fs) + Hp, o(X | S)]}.
Let us consider the following sequence of tests ¢" defined for each s € SV by the sets

BYs)= U THoXls), 1=TL (12)
qer{M(R,)

We can show that each x is in one and only in one of B{"(s), that is

BB E) =0, 1#m, amd [JBM(E) = 2",

=1

Really, for ! =T, — 2,m =2, L — 1, for each | < m and s € SV let us consider arbitrary x €
B™(s). It follows (from (8) and (12)) that there are Q € Q¥(X|s) such that D(Q||Gi|P.) <
Ey and x € TP o(X|s). From (8)~(10) we have Epm < Eny(Eyy) < D(Q||Gml|Ps). From
definition of B (s) we see that x ¢ BY)(s). (8) and (12) show also that

BMs)NBM(s) =0, 1=T,L-1.
Now, let us see that for m = T, LT, using (3), (6), (7), (8), (10), (11) and (12) we can
estimate oy, (¢2") as follows:
a) <

ol (") = max GA(BR(s)ls) = max X ( U T o(X1s)

mim
Q:D(Q||Gen|Pa)>Emim

< max(N + 1)i*18! s Cu(TE o(Xs)[s) £
'Egﬁ( ) Q:D(Q!IG-I;F,'-PB.. ( ( l)l)

<(N+ ]_)H-’Ilsi sup sup exp{—ND(Q||Gn|F)} <
P.ePN(5) Q:D(Q||Crm|Fa)>Emjm

<exp{~N [pelg{fs] PRI LA s D(Q||Gm|P) — on(1)]} < exp{—N[Emjm — on(1)]}, .
s) <

where ou(lj-—»[)mthN-aoo
Forl=1,L =1, m=T,L, | # m, we can obtain similar estimates:

ol (¢") = max G (B (5)ls) = ma;,cc"( U Tiq(Xls)

Q-D(Q||G1|F)<Ey,
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GN(TRo(Xls)ls) <
Q-D(Q||Gm|Pe)SEi

exp{—ND(Q||Gm|F:)} = (13)

< max(N +1)*€ sup
SEREEED

1x[is1 sup
SN+ R ) 0(alIGmIRIS
3 i GmlF) —on(1))}-
= exp{-N(, 32f o o piaidimrssn D(QICmFe) = on(t}
Now let us prove the inverse inequality
ij: q(Xls)

o N gl) = GN
o (¢") = ma Gm(Bi™" (B)l6) = 125 Cm (camang:r.}sﬂm

s) >
.GR(Tn.q(X|s)ls) 2

zf‘gﬁ Q'.D(Qlls‘;:ﬂdﬂlr ¥
> sup (N + 1)1l exp{—ND(Q||Gnl|F)} = (14)
RePN(S)

Q‘-D{QIE:IP-)SE!"
= exp{-N(, inf ooy 24 D(Q||Gm|Fs) + on(1))}-

According to the definition (4) the reliability Emu(s*) of the test sequence ¢* is the limit
superieure Jim — N~ log afy; (¢"). Taking into account (13), (14) and the continuity of the
fiinctional D(Q)|Gi|Ps) we obtain that lim —N—* log o) (") exists and in correspondence
can obtain upper and lower bounds for QS,TL{fp‘ ), m =1, L. Applying the same resonnement
we get the reliability Epmz(ip*) = Eqyz. By the definitions (3) and (9d) Epjz(¢") = Ej;.
Thus 3
Enilg*) = Jim —N"'logal(¢") = Epy, mileTL. (15)
The proof of the first part of the theorem will be accomplished if we demonstrate that
the sequence of the test * is LAO, that is for given Ey;, ..., Ep—1jz-1 and every sequence of
tests ¢ for all ,m € T, L, Eq(p) < Epy. :
Iatusoonsideranivotharsequencep“oibeﬁtawhichmdaﬁnedforeveryses”by
the sets D{"(s), ..., D} (s) such that Epy(p*™) > Epy for m,1 = T,L. This condition is
equivalent to the inequality for N large enough

o (¢7) < o). . (16)

Let us examine the sets Dfm{s)nB,(m(s), ! =T, L=1. This intersection cannot be
empty, because in that case

o) = max GY O (e)le > max G (B e)}s) >
> DS oniolBi e, O TBa(XIS)) > exp{-N(By +on(1)}.

Let us show that D{™(s) N\ BM(s) = 8, m,l = II-T,m#Ll If m&sts Q such that
D(Q||Gm|Ps) < Epym and T4 5(X|S) € DM (s), then

o (¢™) = max (D[ (6)]e) > max GX(TH! o (X[S)ls) > exp{~N (Emim + on(1)}.
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When 0 # D" (s) N T 4(X|S) # T4 4(X|S), we also obrain that
 all(e™) = mag G (D" (6)s) > mag G (D (6) TR o(X15)l8) 2 exp{~N (Emim+ox(1))}-

Thus it follows that Eny(ip™) < Emm, which contradicts to (5). Hence we obtain that
D™(s)B{"(s) = B"(s) for | = ;L — 1. The following intersection D{"(s) "N B{"’(s) is
empty too, because otherwise

ol (™) = ol (¢"),

which contradicts to (16), that D{*'(s) = B{*(s), 1 =T, L.
The proof of the second part of the Theorem 1 is simple. If one of the conditions (10) is
violated, then from (8) and (9) it follows that at least one of the elements Eny is equal to 0.

t in (10) the iti is violated. If > |
For example, let in (10) the condition m is viol E"'*"_;-;‘in P%JD(G;HG“,P),

then there are I* € m + 1, L such that Epm > ng’jfis’D(GﬂlG_IP). From latter and (9b) we
obtain that Ef., = 0. From (5) we see that Epm < a.min Ey(Ey). Theorem is proved.
laﬂl—l

It is interesting to examine the following consequences of the Theorem 1, which are gen-
eralizations of the Stein’s Lemma for the case of multiple hypotheses for arbitrarily varying
object and informed statistician. For simplicity we consider the case of three hypotheses.

Theorem 2 (Generalization of Stein’s Lemma):

When off’(p)=e, 0<&<1, 1=1,2, then:

; L M N oy . Al
A;l_l&log-jv—aml,)(am}(tp)—ed——;g}lﬂl)(&”GﬂP), m#l, m=1,238 1=12,

Jim log %af“"’u(a{ﬁ’(w =g,08(p) =€) =0, m=1,2,

; 1
Jim_log 0§ (@fi(p) = 1,035 (¢) = £2) =

= — minf mip_ D(GIl[GnlP),m #1,1=1,2, m=T3).

Proof: For aﬁf’(cp} =g, 0<g<1, I=12 the corresponding Ey; = 0. When
Ey — 0 from (15), (8) and (9) we obtain the result of Theorem 2.

2. Application to Source Coding Problem

The tight connection of the hypothesis testing problem and the problem of estimating the
optimum probability of incorrect decoding, when messages of length N from a discrete
memoryless source are block coded, was emphasized by many authors, see, say, [[7],(9]- [12]].
In source coding problem the reliability function E(R) expresses the dependence of the
reliability (exponent of the optimal error probability) from the code rate R. Sometimes it
is not less important to present the same dependence by the rate-reliability function R(E),
for 0 < E < co. In [12] Fu and Shen examined application of their corresponding result on
two hypotheses testing for arbitrarily varying source (AVS ) to obtaining of functions E(R)
and R(E) for the case when side information is absent.
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i i ing Theorem 1 (for L = 2, see also [5]) we obtain e:_cgreusionsofu'l?se
flmcI:liot.l]:J: m%a;?tlgﬁga information. Let the AVS is defined by conditional probability
distribution W = {W(zls), s € §. z E'&'}. Iy

Definition 2: A code (f,g) is 6 pair of mappings:

decoder g : (1,2, .y M ) x SN¥ — XN,
MdF‘ur giv:ngoide (f,9) l{e}pus consider the set A € XV of vectors which are decoded

correctly, A= {x: g(f(x),8) = }. Then the error probability of the code will be
e(f,9, N) = 1 — mig W (Als) = mx W (Als).

encoder f : XY — (1,2,..., M(N)),

'I'henumberl.A]o.felementaoftheﬁnjtesetAismlledthevolumaofthecodeandis

denoted by M(N). 1)
Definition 3: A number R > 0 is called E-achievable rate for reliability E > 0,

if for every €>0 and sufficiently large N there exists a code (f,g) such that
e(f, 9, N) < exp{—NE}, and N~ log M(N) < R+e. We call the minimal E-achievable rate
R the jability function and denote it by R(E). It can be defined as follows:

£ Tm N Cmi M(N) =
R(E) S FmN~Ulog o 08 ey M)

= Tim N! i Al
""“’N— losACA’”: max W%)Sm[-"ﬂ! |

Theorem 3: In the presence of side information the rate-reliability function of AVS
with conditional probability distribution W, for any E > 0 has the following single-letter

presentation:
R(E) = jmgk, o o8i¥iece FralX1S):
Proof: When L = 2, we have E;; = Ey3 and from Theorem 1 it follows that

Eap (Bvp) = Pg&} Snd Oﬁ]tl_hmmslfus D(Q| Ga| P). (17)

According to the definition of Eg) (Ey3) we have
i - iy L 5 1 3
By (Eyja) - oo - N B} JE_W N~'logag), () =

= sup z im — N~ logmax G¥(M|s) = 18
ACEN: _'g;ﬁﬂfm-lsup{—h'&:slﬁ sesN 2 (Ot) (18)

= K —N‘k] inf N
E “Amy:mﬁw@,m_ﬂsm} Pe‘.s‘a}*‘ Gy (Als).

From (17) and (18) we obtain that

Ean(Bup) = Jm — N~ log max G (Als) =

inf
ACHN: mex OF (Ae)<exp-NEy} ses™

= P& apalies,, D@ 1 621 P)- . (19)
Let us define the probability distribution Py € P(X) by Py(z) = 1/|X|, = € X and let
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Gy =W, Gy(:|s) = P, for every s € §. Then

A ondiincs PRIGIP) = mip ) B8, s 108IX] = Hra(X15)] =
=log|%| - max 5%, ,Hra(XI5), (20)
and

Al

inf 21
s W (Ajs)Sexp{~NE} [Eial (21)

i GY(Als) =
ACKN: .mrff?rfm-)sm{—m g% G2 (Ale)

By definition of R(E), from (19), (20) and (21) we obtain
=Tim N i =
HE) "“""‘N 105492"  max WIRI&I-)SW!—NSI M

i N i
= log |X| — JE N71llog A;x" ng.ai'ﬂl-)s-v[ P mnﬁG, (Als) =

= 225 oo & iees TPaX15).

Theorem is proved.
Corollary: When E > PE”J}D(H.HWlP}, the rate-reliability function R(E) is equal to
log |X|.

The minimal error probability among the codes with 2V® codewords for AVS with side
information is defined as

e(W", R) & max W (Als).

m"eilflﬁ?"‘ s€S’
Definition 4: The reliability function E(R) of the AVS for rate R is defined as follows:
A _ N1 N = Tm — N1 : N
E(R) = E N~'loge(W", R) E N~ logAng?fAnszﬂ may W (Als).
Theorem 4: prrgpa.(xmﬁgw(xm < R < log|X| and conditional probability distribution
W is given then the reliability function of AVS may be presented in the following form:
ER) = 5%, amm(xs)sz(Q“WlPJ ]
When for R < P‘l'll;‘lpa(xmﬂgw(xw'). then E(R) =0.
Proof: &;.{qu} is defined in (17), it can also be written as follows:

By (Brp) = - Nlog |s). (22)

1 GN
AN max G (AR)<exp|-NEyp) - G A
Let Gy =Py, Ga=W de;,,=1og|x|-R. From this notations and (22) we have

Fg (log | X| - R) —~N""log AcHN: max pgfuﬁfm{—ﬂmm R)} sesy W Gl =
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v N =

= T~ N7 198 i, Sl -NGoxl1-10) sy W (Ale) (23)
=T — N7'108 7 o max W (Als) = E(R).

Because G; = P, and G = W we see that

D@IIRIP) = ZP(a)otzla)tusQ‘ 218) _ 1og || — Hra(XIS), (24)

mia. DOVIIRP) = £ P(o)W (alo) og BACIS) — g ]~ jog, Hrw(XIS). 29

From (24) and our notations we obtain that

P58 ¢ 0@lB<En D(QIIGalP) = B & piqueiiPrsesixi-= D(Iw|P) =
D(Q|IW|P). (26)

= PEP) @ Hro(RIS)2R

By the first part of Theorem 1, when By < pénpi?s)D(G’“Gl[P) then
D(Q||G4|P). According this fact, our notations, (23),
Egp (Bap) = PEP(S)QD(QIFHIJ}JS-BI (Ql|GalP)- ding (23)

(25) and (25) we have that when %HPW(X?S} < R < log|X|, then
E(R) = D(QIIW|P).

PE?(S) Q‘HP.Q(XIFPR
By the second part of Theorem 1, if Eyjp > Pg.up'l(lls}D(GIHGﬂP) then Eyj;(Eyg) = 0.

From here, (23), (25) and (26) it follows that when R < o Hpw(X|S) then E(R) = 0.
Theorem is prove.
3. Illustrative example

Consider the set X = {0,1} and the set of states S = {0,1} each of two elements, Let
conditional probability distributions on &' for each value s € S be given as follows:

5 L
0,70 0,30\ -, _ (080 0,20
G‘=(0,m 0.75)' 'G"(o,txs 0.55 )
_ (0,08 0,97 _ [ 0,40 0,60
G"(n 3 0, ) G“(u,ao o,m)'

ResﬂtsofcalculatlonaofE‘iz(Em),form 1,3,4, and E* |3(E3|g),form-1 2,4, are
presented on respective figers.
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o 0.07;
006!\ EE) 0.06
005! 005
™ 0.04
u.oa;',_ \a 0.03 .
0.02_; \ : o 2B
ot N\ Li(Bp) 0.01 . Ei(Bw)
|GilEy) S N | Es(Ey)
001 002 003 OM 005 0088 g 0014 0® g
Fig. 1(a) Fig. 1(b)

Here we have min] anmu(aallcglm, AR D(G4||G3|P)] = 0.63 and

me!ffs D(G4||G3|P) = 0.014. In Theorem 1, when one of the inequalities (10) is violated,
then at least one element of the matrix E* is equal to 0. In the example we see that when in

(10) the second inequality is violated, that is Eg3 > 0.063, then three elements of the matrix
E* are equal to 0 (see Fig. 1()). When the third one is violated, i.e. Eg3 > 0.014, then one
element is equal to 0 (see Fig. 1(b)).
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Shbluiugywd Yhtwlwgph ynqihg Guniuwlwlnpbl hnphnjugan opjtiljuh
Gyunntup puqiwih JupluoGbph unmgnuiwG L wnpniph Yogudnpiwi
hwnwp Yhpunmpjwl TwuhG

b. U. <wpnipmbywi L @. U dwhnppub

Udihnthnnd

OumuiGwuhmib & puqiwyh qunpludibph mbunuwnnpim pipwgpmy ponp hGwnunp
qmuygbph uhuwGbph hunjwGuwlwGnemGGbph hounoihnpywi gmghgGhph thnfuljwjugwont-
pymbGbph thnyhnfunn opybipnh huntwp, nph YhSwyGbpp hwpwnbh B6 Yhdwlwophl: Gpin
Jwplwdtbph nbwpp, bpp npnzoud pirpoGonhl whwyn EyhGwyGbph hwenpmubwGntpjmin,
pGGuwpipjty £ Smh L Choh Yondhg, huy hwjnbh YhewlyGbpmy wwppbpubp ghuwply
t Ujuybnbh, {wpnipymGubh b Unywéh Yondhg: Bswbu $mi L Chlp, dhip Goylubu
umughy bp ynniGwih hipnpiwghwymy juniwywliwGopbl hothnfunn wnpjniph hwdwp
wpwgnipymG-hmuwihmpmG L howwihmpym G-wpugmpymG  SoihghwGbpp:  Lhplw-
Jugmé £ ywpqwpwinn ophful:



