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Abstract

The model of information hiding system, introduced and studied by P. Moulin and
J. A. O'Sullivan [1] is explored. The rate-reliability-distortion function for this system

is investigated. Upper and lower estimates of rate-reliability-distortion function, called
the random coding and the sphere packing bounds are constructed. The limit of
random coding bound, when E — 0, coincides with the information hiding capacity

stated by P. Moulin and J. A. O'Sullivan.

1 Introduction

Many application areas, such as the copyright protection for digital media, watermarking,
fingerprinting, steganography and data embedding have a certain generality, which can be
formulated as information hiding problem [2, 3]. We explore the generic information hiding
system, introduced and studied by P. Moulin and J. A. O'Sullivan [1].

Attack Channel  Decoder Receiver
M |

Encoder ’
Nomge [ m = 7 P ao}{ ¢
T | ,

Side k
L ; N
information | rc¥ |
Fig. 1. The generic model of information hiding system

The message (watermark, fingerprint, etc.) needs to be embedded in the host data set
(which can be the blocks from the audio, image and video data) and to be reliably transmitted
to a receiver via unknown channel, called the attack channel as it can be subject to random
attacks of attacker. Side information, which can be cryptographic keys, properties of the
host data, features of audio, image or video data or locations of watermarks, is available both
to encoder and decoder. The encoding and decoding functions are known to the attacker,
the side information is not. :
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The information hider introduces certain distortion in the host data set for the data
embedding. The attacker trying to change or remove this hidden information, introduces
some other distortion. The information hiding system must satisfy two main requirements,
which are called transparency (the distortion introduced by information hider must not
exceed the allowable level) and robustness (the distortion introduced by the attacker should
be restricted by corresponding level).

Here we investigate the rate-reliability-distortion function, called information hiding E-
eapacity, which is the generalization of the notions of rate-distortion function, introduced
by P. Moulin and J. A. O'Sullivan [1] and E-capacity introduced by E. A. Haroutunian
[4]. The information hiding E-capacity expresses the dependence of the information hiding
rate from reliability and distortion levels for information hider and attacker. The lower
bound of information hiding E-capacity [5), called the random coding bound, and the upper
bound, called the sphere packing bound are derived. The limit of random coding bound,
when E — 0, coincides with the information hiding capacity stated by P. Moulin and J. A.
O'Sullivan [5].

2 Statement of the Problem

In description of the system and for definition of principal notions we follow formulations
of [1]. Host data source (fig. 1) is described by the random variable S, which takes values
in the discrete finite set S, according to the probability distribution Qo = {Q(s), s € S}
and generates N-length data blocks s = (8, 83, ..., 8) € SV of independent and identically
distributed components. The message source creates equiprobable and independent messages
m, from the message set M, which must be transmitted to the receiver. The side information
source is described by the random variable K, which takes values in the discrete finite set K,
and in the most general case has the given joint probability distribution @ = {Q(s,k), s €
S, k € K} with the random variable S. In particular case, when the side information is a
eryptographic key, S and K are distributed independently. The side information in the form
of N-length sequences k = (ky, kg, ..., kn) € KV of independent and identically distributed
components is available to the encoder and decoder.

The information hider (encoder) embeds the message m € M in the host data blocks
g € SV using the side information k € XN. The resulting codeword x € AV is transmitted
via attack channel with the finite input and output alphabets X and Y. The attacker trying
to change or remove the message m, transforms the data blocks x € XV into corrupted
blocks y € YN. The decoder, which knows the side information, decodes the data block
y € YV, deriving the message m. We assume, that the attacker knows the distributions of
all random variables but not the side information.

Let the mappings d; : § X X — [0,00), d3 : X x Y — [0,00) are distortion functions
and positive numbers A;, A; are allowed distortion levels for the information hider and the
attacker, respectively. The distortion functions are supposed to be symmetric: di(s,z) =
dy(z,8),do(z,y) = da(v, ) and dy(s,z) = 0, if s = =7,dy(z,y) =.0, if z = y. Distortion
functions for the N-length vectors are

N
#(63) = 5 3 dilonz), 253) = 37 3 o).

Consider an auxiliary random variable U, taking values in the discrete finite set & and
forming the Markov chain (U, S, K) — X — Y with random variables S, K, X, Y.
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1. The informa tion hiding N-length code (f,g) iaa-pairafmq{pinga _
??ﬂﬁﬂxﬂxﬂ—.x" and g: YN x KN — M, where f is the encoding and g is the

Q : i i ion hider, ject io
Definiti Q.Amww!uamﬂdmnndﬂdmgnﬂibyw ider, subj
&storﬁo:nleudﬁl,isafmcynmuforpmbnbﬂitydmrmP={P(mz|a,k),uE
U, z€ X, s€S, k €K} such, that

> di(s, z)P(u,z|s, K)Q(s, k) < Ay
uzak

Denote by P(Q,A;) the set of all covert channels, subject to distortion level A;. The
N—lengthmemorylesamcprwaionforthecovutchmnel}’is:

PN(u,x[s, k) = f[ P(tn, Zn |81, K)-
n=1

Definition 3. Ammmylesadtackdmnd&desigmdbynﬂm&ar,aubjmtom
level Ay, under the condition of covert channel P € P(Q, A1), is defined by a probability

distribution A = {A(y|z), y €Y, z € X} such, that
Y. da(z,v)A(yl) P(u, z[s, k)Q(s, k) < As.
PESTER

Denote by .A(Q, P, Az) the set of all attack channels, under the condition of covert channel

P € P(Q,A;) and subject to distortion level Aj. :
The N-length memoryless expression for the attack channel A is:

A¥(y]x) = I AQalzn)-
n=l

The nonnegative number
1
wloeM
is called the information hiding code rate, where M is the cardinality of the set M.

The probability of erroneous reconstruction of the message m € M for (s,k) € S x K
" via channel A is: ]

e(f,9,N,m,8,k, A) = AN{(Y - g7 (mlk)|f(m, s, k)}. ®

The error probability of the message m averaged over all (s,k) € S x K equals to

e(f!giNl'n'QlA} - Z Q"[s,k}e(f,g,N,m,s,k,A).
(s.k)e SN xxN

The error probability of the code, for any message m € M, maximal over all attack channels
A(Q, P, Ag) is denoted by:

e(f:Q!N-m:QtP|A2J =AwnlagA’)B(f,§,N,m,Q,A}.

Th“e.xalsma::ma! error probability of the code, maximal over all attack channels from A(Q, P, Ay)
eq :
B{f.g, N:m! Q! A):

e{f}Qr”le-PpAQJ == E&A

max
€AQ,7 49)
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and the average error probability of the code, maximal over all attack channels from A(P, A;)
equals to:

(o NQPM) = T s, el N.mQ,A) 2

Consider the codes, the maximal error probability of which exponentially decreases with
the given exponent E > 0, (called the reliability)

eU!Ql N, Ql P, A’) Sexp{_NE}‘ . {3}

Denote by M(Q, E, N, Ay, AA;) the highest volume of the code, satisfying the condition
(3) for the given reliability E end the distortion levels A;, Aj.

The rate-reliability-distortion function, which we call information hiding E-capacity by
analogy with the information hiding capacity [1] and with E-capacity of ordinary channel
[4], is defined as:

R(Q.E, b, Bg) = O(Q, B, Ar, 8a) 2 - Tog M(Q,E, N, A, Aa).

By C(Q,E, Ay, A;) and T(Q, E, Ay, Ay) we denote the information hiding E-capacity
for maximal and average error probabilities respectively.

In this paper the lower and upper bounds of information hiding E-capacity for maximal
and average error probabilities are constructed. It must be noted, that the solution of
the problem has certain analogy with the construction of the lower and upper bounds of
[E-capacity for channel with random parameter 6, 7, 8].

In [9] the lower bound of the error exponent for the situation, when the decoder is
informed of the attack strategy and host data realization, was performed. The results of [9]
were extended in [10].

3 Formulation of Results

For the formulation of our results we use notations from [11, 12, 7] of the well known in

information theory notions of conditional mutual informations Ig p(S A U|K), Igpyv(X A

Y18, K), informational divergences D(Q||Q’), D(V||A|Q, P), and the notion of type, where

V = {V(yjz), y € Y, = € X}. We denote by T}'(S, K) the set of N-length vectors (s, k)

of the type @, and by T4p(U]s, k) the set of N-length vectors u of conditional type P, for

given (s, k) € 73'(S, K). All logarithms and exponents in the paper are of the base 2.
Consider the following function, which we call random coding bound

Re(Q B0y, 00) = e, Buin v oqeigeponss 1@ pv Y AUIK)-

~Igp(SAUIK)+D(@ o PoV||QoPo A) - E[",
and the function, called the sphere packing bound

Royp(Q, E, Ay, Ag) = Ippv(X AYIS,K).

max i min
PeP(Q,A1) ACA(Q,P,A7) Q',V:D(Q'oPoV[|QoPoA)<E
Note that in the last function
P = {P(z|s,k) = Y P(u,z|s,k) : P(u,zls,k) € P(A), u€lU, z€X, s€S, kEK}.
ueld
(4)
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; ; s3 o . L

Theorem 1. For all E > 0, for htdmgsymmmﬁldm‘,oruanlm_ 1, Da,

the random coding bound R.(Q, B, Ay, Ag) t‘.aﬂulmncrb?und andﬂwa'phmpachflgbmmd

R(Q,E, A, Ag) is the upper bound of information hiding E-capacity for mazimal and
babilities:

average ervor pro
-Rr(Qt E| b'.l: AS) S G(Ql El All AS) SU(Q| E! All AB) S RJp(Q- E-_ ﬁlu Aﬂ)-

In [1] it was stated that the cardinality of the set I/ can be restricted to |U| = | |||+ 1,

where Q@ = {(s,k) € 8 x K : Q(s,k) #0}.
Gororlfryit.aﬁzhin;—oﬂw:obtainﬂwbwermdupperbamdsofﬁ;famnﬁmhidiug

capacity:
R(Q 0,0 = max  min {Igra(Y AUIK)- Iqr(SAUIK)}, ()

= i AY
Ryp(@, A1, A7) pBBX o D, qu.p..;(x S, K),

where the lower bound (5) coincides with the information hiding capacity, obtained by P.
Moulin and J. A. O’Sullivan [1].

4 Proof of the Lower Bound

The lower bound in theorem 1 is proved by the Shannon’s random coding arguments, using
the method of types and demonstration of a generalization of packing lemma [11, 12, 7).
Denote by £(73' (S, K)) the family of all matrices

N
L = {ux(m, 5, K)} 950 &,

where ux(m, s, k) = u(m, 8, k)x(m, s, k), such that the rows
: L(s, k) = (ux(1,8,k), ux(2,s,k),..., ux(M,s,k))

are collections of not necessarily distinct vector pairs, the majority of which are from
q-QN'p(U, XIS, k}.
Denote by fg,p(m, s, k) for any m € M and (s, k) € 73'(S, K) the random event

Ba,p(m,8,k) £ {ux(m, 5,k) € T8(U, X|s, k)}3
and consider the following sets: '
SK(m,Q, P) £ {(s,k) € T¥(S, K) : for which fg »(m, s,k) takes place}, m € M,
M(s,k,Q, P) £ {m € M : for which gp(m,s, k) takes place}, (s,k) € 72'(S, K),

MSK(Q,P) £ {(m,s,k),m € M, (s,k) € T2'(S, K) : for which g »(m, s, k) takes place}.
Lemma 1. For all E > 25 > 0, type Q, covert channel P € P(Q,A,) and the set of attack

channels A(Q, P, A;) there exists a matriz L = {ux(m,s, k}}::g‘f (B vith

M= N i i =
R { AEA(%I.I}.A:J ?:Dmn}iﬂajgs Hapv(Y A UlK)
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—Igq.p(S AUIK)+ D(V|AIQ.P) — E + 25"},

such that for each vector pair (s,k) € TZ'(S,K) vectors ux(m,s,k) for different m €
M(s, k,Q, P) are distinct and

Pr{fg,»(m,s,k)} < exp{—exp{Né/4}}, (6)

and for any triple (m,s,k) € MSK(Q, P), conditional types V,V : X — Y for sufficiently
large N, the following inequality holds:

T3py (Y lux(m, 5,k),8,k) [ U U  Tlv
m'#ms’:(¢’ k)eSKIm' ,Q,P)

} ™

Lemma 1 is the generalization of packing lemma [11, 7], and proved by the method of
types [12]. Lemma 2 follows from lemma 1.
Lemma 2. For all E > 26 > 0, type @, such that D(Q|Q) < E, covert channel P €

P(Q, A;) and the set ofattackchmndsA(Q.P Aj) there ezists a mairiz

L = {ux(m, 5, K} 0520 wigh

<17 qpv(!’lux(m.s.k).nk)!ﬁp{—ﬁ £~ o n, 271410.P)

MR [Nﬂu?t]?.”}’m)v:ma-m%,ﬂlquvw AU|K)-

~Igp(SAUIK) + D(Q o PoV||Qo Po A) — E +24[*},

such that for each vector pair (s,k) € T3 (S, K) vectors ux(m,s,k) for different m €
M(s k,@, P) are distinct and

Pr{Bq.p(m,s,K)} < exp{—exp{N6/4}}, ®)

and for any triple (m,s,k) € MSK.'(Q', P), conditional types V,V : X — Y for sufficiently
large N the following inequality ho

'

T py (¥ [ux(m,8,k),8, ) U
m'#m o'i(s’ k)ESK(m', Q' ,P)

)

In the proof of theorem 1 we use the statement of lemma 3, which follow from lemma 2.

Let us denote
K= U TYSK).
. QDIQIQ)<E

< [T py (¥ Jux(m, 8, k), 5, k)] exp {—NlE - i, D(@oPoV[QoPoA)
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A;) and the set of attack channels

Lemma 3. ForaHE:vZJzD.couﬂdmmslPeP{Q.
, with

A(@, P, Aa) there ezists a matriz L= {ux(ms, ) g

= i I AU|K)—
M ‘W{Na 43 00y oi B ianrenr<s! ary ¥ AUIK)

—Igp(SAUIK)+D(@oPoV|QoPoA)—E+ 25}, (9)

such that for each @ : D(Q'[|Q) < E, vector pairs (s,k) € T (S, K) vectors ux(m, s, k)
for different m € M(s,k, @, P) are distinct and (8) is true and for any triple (m,8,k) €
MSK(Q, P), conditional types V.V : X =Y, type Q, such that D(QIQ) < E, for suffi-
ciently large N the following inequalily holds:

<

Tgﬂvmm(m,s.k).a.k}nwLLN#mLi{ wﬂ‘rgmmux(mf,g,k),a',k)

. +
< |73 v (¥ [ux(m, 5, k), 8, k)| exp {—N‘E—Mnggm,ﬂtﬁo PoV|QoP oA)i }
(10)

Nawtopmvet.hsrandomoodjngbound,wemuatahowtheendstenoeofaoode,thatfor
myO(e(E.t.hefo]lowinsinequnlityt.nkeapla.ce

; e(f,9,N,m,Q, P, A7) < exp{—N(E —e)}-
We shall construct the code only for (s, k) from 75 (S, K), because for sufficiently large

Pr{(s,k) ¢ 75(S, K)} < exp{-ND(Q'|Q)} < exp{—N(E —e)} (11)
(we consider only such types @', for which D(Q' [[#)] 'stJ' :
- The existence of a matrix L = {ux(m,s, k}}:"_kf}g“‘ (H'm, satisfying (6), (9) and (10) is
guaranteed by lemma 3. ¢ 1
Consider
SK§(m, P) = U 8Km,Q,P).
© QDQIQ)<E .
We apply the following decoding rule for the decoder g: each y and k are decoded to
such m, for which y € Tffy(ﬂux{m,s.k),s, k), where @', P,V are such that

AEA(%,%A,)D(Q"’PDV Qo Po A) is minimal.
The decoder g can make an error when the message m is transmitted if Bg, p(m, s, k) takes

place or if (s,k) € SK5(m, P), but there exist m’ # m, type @ (such that D(Q||Q) < E), -
V, vector pair (¢, k) € SK(m', @, P) such that

ye Tgfnv(ylu(m! 5, k)! 8, k) nTo,p.p'(w“x(m'. B’, k_], B‘, k)

D(@oPoV||QoPoA)< min )D(Q’oPoV"QoPoA). (12)

min
AcA(Q.PAz) AEAQ,PA;
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Denocte
'D={o,14ir:(12)isnud}.

The error probability of the code for any message m € M, maximal over all attack
channels A € A(Q, P, A;) can be upper bounded in the following way:

B{fvm N' m, Q‘ Pl A’J < A Q"P'o‘)(.m%(mqu(" k}e[f!g! N: m-’-k‘A)'i'Exp{"“N(E—e)}.

which follows from (11). Then from (8) we have

AEA(Q.PnﬂaJ (“)ETZJ(S,K] QN(& k}e(f, 9, N m, slk’A) <

(s )eTF (5, K\SKE(m,P)

Y - @ik xAY {U ey |ux(m,s,]r.),s, KN

Awm
QP8I se)e8 KB (m,P)

ﬂ U U a'pp(ﬂ'llx(m g,k),g, k)lx(m,s,k)}
mim gt (s k)ESK(m',Q,P)

< > Q" (s, k) exp{— exp{N5/4}}+
(s, K)ETE(S,K)\SKE(m.P)

): T py (Y Jux(m,s,k),s,k) (] U U T po (Y ux(m’, &', k), &', k)| x
m'sm . (¢ k)ESK(m' Q,P)

* wBifFon,, H% o, QAT

Taking into account the inequality (10) and the following combinatorial expressions [11,
12) -

|7 py (Y [ux(m, 8,k),8,k| < exp{NHgpv(Y|U, X, S, K)} < exp{NHepv(Y|X)},
for (s,k) € T (S, K), x € T p(X), ¥y € T py(Y|X)

Q"(s,k) = exp{~N(Hg (8, K) + D(Q|Q))}, (13)
A (y[x) = exp{—N(Hgpv(Y|X) + D(V||A|Q, P))}, (14)
D(Q|Q) + D(V||AIQ', P) = D(Q e PoV|Qoe Po A), (%)

we can bound error probability from above by
e(f,9,N,m,Q, P,A) < (N + 1) exp{— exp{N6/4}} + exp{—N(E — e2) }+

+§up{NHo.nv{Y|XJ}exp{—N(E Au%&)D(QoPoVquPmn}x
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V|AlQ, P)} <
X e, fexe{= —N(He.p(Y1X) +D(@IQ) + D(VIAIQ, P)}] <
< exp{— exp{N6/4} + N&,} + exp{—N(E —e)}+

oL 2 exp{ N (HgrvY|X )—E— Ho pv(YIX )—

min D(Q’oPnV“QnPnA) s ’D(QoPnV"QaPoA))}S

T ACAQ/P,
< exp{— exp{N§/4}+ Né1} +exp{-N(E—en)}+(N +1)SICHEX I exp{—NE} <
< exp{—N(E —e)}.
Therefore, for N large enough e(f,g, N, @, P,82) < exp{—N(E — e)}, for all A €
A(Q, P, Ag).

Thelowerhoundmthaoremlmpraved (

5 Proof of the Upper Bound
Latnce(EissnypositivanumbarandPe?(Q,A;)isanyﬁxedoovertchmnel (defined
in (4)).-

Consider the given code (f, g), average error probability of which over all attack channels
A(Q, P, Ap) satisfies the condition :

E{f|9|Ns QP A?) < e:'c.l""{"""\r("l';" s B)}
According to (1) and (2), it means that
Y @YEXAYN - g7 (mlk)|f(m,8,k)} < exp{-N(E—e)}.

L5 mex Y.
M ACAIQPA) i (s 1) SN xKN
Theleﬂpmofmmeqmwmonlyde&m,'ﬁmmm ;
of ey el type O . e sum by vector pairs (s, k)
max 2L Y Qe AN - g (mlk <
AEA(Q,P,A,)(*Jgg{m REIAAR { g ( ‘| ) f(m,s,k)} <
< Mexp{—N(E —e)},

where f(M, 8, k) is the set of all codewords, used for the
vector pair (s, k) € 7J/(S, K). Fix

I:hecondmonaltype}’mdmnmderthem K h

pair (s,k) € 72/(S, K). Then x(m, s, k) from T/ p(X|s, k) for each vector

M= 2|f{M 8,k) 73 p(X|s, k)|

s~ 1
M= TN ucim S M8 )N T (X )
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Taking into account that the number of types P is not greater than (N + 1)K 111, 12],
we have

M VAN ey M SN T (Xl )
-4

Then there exists at least one type P, such that

MITZS. KN+ < 3 (M, 0)NTZp(XIs. k). (15)
(sk)ET(S.K)

For any conditional type V' we have

max Q" (s, ) AN (T oy (Y [x(m, 5, k), 5, k)~
ACHQLPLS) ( yieTli (sK) ximak)ef(Mak) T p(Xlek)

—g7 (m]k)|x(m,s,k)} < Mexp{-N(E —e)}.

As A" (y|x) and Q¥ (s,k) are constant for all (s,k) € 7J(s,k), x € T3 p(X[s, k), y €
T4 py(Yx,8,k), we obtain

23 Q¥ (s, k) A" (y[x)x

e >
CAQPLI) ()T (S.K) xmak)es M) NTE,p Xink)

([T py (Y [x(m,5,K))| — lg™ (mk) T oy (¥ [x(m, 5, k), 8, k)|} < Mexp{—~N(E —e)},

or

: {174 oy (Y |x(m, 5, k), s, k)|~

(BRIETHSK) x(msk)El(Mak) T p(XIsk) i
M exp{—N(E — e)}

(| N

Taking into account (13) and (14) we obtain

{1TQJ’V.P.V(Y]x(m| B, k)! 8, k) |_
(SMETH(SK) x(msdEMINVTY, 5y (XIsk)

5 Mexp{-N(E - )} >
exp{—-N(Hg(5,K) + D(QIQ) + Hapy(Y1X) + , _jmin D(V||AlQ, P))}
< Z Z |g_l(mik)nTgf,V(le(mlsrk)|slk)i}'

 MIETHK) XmakIENMINTY, p(XInk)
The right. part of the last inequality can be upper bounded by

Y 11 ev(Ys k)
(=X)ETH(EK)

as the sets g~1(m|k), are disjoint for different m € M.
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Taking into account the following properties of types [11, 12]
(N + 1}-‘9’“3“3”” G’FP{NHQ'.HV(”X: S, K)} < |Tg.P.V(YIx(m| B, k)a 8, k)l

and (11) we have
>> £ (M, 8,6) T2 p(X 8, K)|(N + 1)~ IRl
(s K)ETH(S.K)

x exp{NHg py(Y|X, 5, K)} — M exp{N(Ho (5, K) + Herpv (Y1X) +

+, min, D@oPoVIQoPod)—E+e}< Y exp{NHqrv(YIS K)}
AcAQ.P 21 (s l)ET(S.K)

As the random variables X, Y, S, K form the following Markov chain (5, K) — X —Y,
then Hg py(Y|X) = Hgpv(Y1X, S, K). Then, taking into account (15) we obtain

Mexp{N(Hg (S, K) + He py(Y|X, 5, K))} (N + 1) ¥IOHSIED

_m{N (m'ﬁ;’j‘u D(@oPoV||QoPoA) - E+e)}]
< exp{N(He/(S, K) + Ho py (Y15, K))},

or

exp{N(Hg rpv(Y1S,K) — Ho py(Y|X, 5, K))} y"
(N + 1)-1x101+SIKD — exp {N (AEA?I.]}:’A ’D(Q'o PoV||QePoA)—E+ g) }

M<

_ exp{N(Hgpy(Y|S, K) — Hgpy(Y|X, S, K’))}
AEA(Q,P.A-:} (N + 1)®I0MHSIKD — exp {N (D(Q' o Po V|[|Qo Po A) — E+e)}
For each A € A(Q, P, A;) the function in the right part of this inequality can be mini-
mized by the choice of types @', V, keeping positive the denominator, for which the following
inequality must be satisfied

D(Q’oPoVHQoPoA} <E.

'Ihlnngmt.o munttheoontmmtyofallexpmonswecanmunmnot only by types,
but also by any conditional probability distributions V' and @’'. Then it can be maximized
by the choice of the covert channel P € P(Q, A;).

It remains to notice that Hg: pv(Y|S, K) — Hg pv(Y|X, S, K) = Ig pv(Y AXlS K).

The upper bound is proved.
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SujuGtp pwpglnn hwiwlwpgbph huniwp
wnwgnipjniG-hnwwihnipimG-ybnmd poGyghwih gfwhwmnwlwGGhph YwuhG

U. b, 4wpmpmGui L U. U. SnGnjwG

Uiithnthnud

Wuwnwlpnd mumdGwuppjwd t M. UmyhGh L 2 OUnypjwGh Ynmihg
nhnwplpfwd mjuiGhp pwpglnn hudwljpupgh plnhwGnip donbip: W hunfwiwpgh hudwp
(ibpimonjwd & wpwqmp)ntG-hntuwihmpym G-phnmd o Gyghuwh quinuithwinp, nph hudwp
ywnmgud b6 wnnphG L Jophl qfwhuinwiwGibp, npnip hudwunnonfunGwpwn
yngnul b6 wwnwhwijwl Ynqpuojnpiwt L ubbpubbph grwpbpunnpiwl wmhiwGabp:
Uwnnpht gGwhwinwlwGp uwhiwGwihl ghupmd, tpp E — 0, hunfpymd & hwiwlwpgh
nifiwlmpjwb hbwn: .



