Mathematical Problems of Computer Science 23, 2004, 12-19.

Constraint Management in Database Applications via
Checker Framework

Armen J. Asatryan

Institue for Informatics and Automation Problems of NAS of RA
UNICAD CJSC

e-mail armen.asatryan@unicad.am

Abstract

presents concepts and ideas underlying an approach for constraint man-
mthpml design database applications and designs flows. In this approach
constraints are defined as scripts of EVA strongly typed scripting language and stored
in meta—-databases called check catalogue. Interaction of applications with check cata-
logue is supported by subsystem of DBMS called Checker Framework. Checker Frame-
work provides facilities for creation, modification and deletion of the constraints and
has several features that enhance the constraint management in database applications.

consistency constraints, object-oriented database systems, scripting.

1 Introduction

In this paper, we propose an efficient technique for constraint management in VLSI database
applications and design flows. VLSI design databases generally use an OO data model and
have specific features that do not present in ordinary, non-engineering databases. They fill
up progressively and iteratively, i.e. data is imported step by step (first comes technology
data, then libraries, then design data) and usually design flows are defined on them.

In our approach we try to use the specificity of VLSI design databases for organization
of constraint management in applications defined on them. The well-known techniques are
unapplicable here because of many disadvantages and inefficiency. The usage of application—
driven technique [8, 9, 10], where constraints are maintained by encoding them into applica-
tions, gives disadvantages like redundancy i.e. constraint must be specified in every method
that might violate it, and understandability for semantics of constraints since they are en-
coded in statements of a programming language. Of course, in some cases precautions that
have already been taken by the programmer inside class methods are the best solution,
they eliminate the redundant run-time integrity checking and the user doesn’t have to suffer
from mysterious program failures. However, we can't make sure that precautions are indeed
sufficient and these methods will never violate the constraints. Another disadvantage of
application-oriented technique is that constraints are scattered in application and modify-
ing of the constraints is a hard task. :

A. J. Asatrysn 13

IJsing of event—condition-action (ECA) rules facilities for maintaining consistency [2, 3, 5,
f, 7], gives us a possibility of disabling and enabling constraints, butmodxﬁymgconstrmms
is still & problem. Besides, this approach becomes useless, because of the absence of reacting
behavior in VLSI design databases.

Unlike non-engineering databases, VLSI design databases inherit plain storage strategy, i.e.
the engineering data stored in database is bound by weak constraints. Database itself can
be consistent, but can contain inconsistent data with regard to applications/design flows.
For example, assume that our database store VLSI design technology information containing
layer data - width, spacing, height, etc. A reasonable constraint imposed on these data by
application could be

The width of any layer must belong to the [Won, Winas] range.

Database itself can permit the layers with the unspecified width values. The layer that
cdoesn’t have its width value specified doesn’t violate the database integrity constraint. This
constraint imposes conditions driven by epplication. The introduction of precautions into
members of database classes that prevent the importing of layers that don’t violate the spec-
ified constraint is unacceptable and results in an unnecessary loss of information. Moreover,
compliance to the constraints of one application can violate constraints defined by others.
We propose an approach of the centralized constraint maintenance via Checker Framework
(CF). The main purpose of CF is to share constraint management between database and
applications/flows and separate the constraint specifications from applications, thus to pro-
vide the independence of constraint maintenance to this approach..

In VLSI design database applications constraints are distinguished by high complexity and
therefore usually encoded in application classes and methods. To manage the high com-
plexity of constraints the powerful constraint definition language is needed and a scripting
language seemed like an ideal solution. Unfortunately typeless nature of scripting languages
could allow certain kind of errors to go undetected. EVA scripting language is our solution
to this problem. It’s a strongly typed language and has a capability of importing types of
database objects, i.e. object types becomes accessible from EVA language. Application
constraints can be encoded in EVA-scripts which will give us a possibility to easily do mod-
ifications on constraints as well as enable or disable them.

The reminder of the paper is organized as follows: Section 2 presents a quick review of EVA
scripting language. How constraints are defined in EVA language is described in Section
3. In Section 4 we discuss the structure of Checker Framework and an issue of consistency
enforcement by using CF. We end with concluding remarks in Section 5.

2 EVA Scripting Language

EVA scripting language is designed in the form of traditional programming languages [16, 15]
and has constructs that are unique in it. Language is defined as a synthesis of programming
languages C/C++/Java [18, 19]. An important and useful feature of EVA is its capability
of importing the types of database objects, i.e. object types become accessible from EVA
language. Such facilities are provided also by SWIG [13]. It takes C/C++ declarations
and creates the wrappers needed to access those declarations from other scripting languages
including Tel, Perl, Java, etc. In contrast, EVA generates the wrappers and integrates them
into EVA compiler.

14 Constraint Management in Database Applications via Checker Framework

Figure 1. Structure of Library Generator

e importing process is performed by the tool called Library Generator (Figure 1).
Eeﬂgpmm zf the Library Generator is YACC [20] parser for reading class declarations of
database schema along with some utility functions. To generate wrappers, Library Gen-
erator calls a dozen of functions to write the wrapper code of storing the extracted type
information, like class names, types of members and member functions’ arguments, return
types of functions, values of enumerations, etc., into EVA compiler. Then, after l:m-guage
compilation, beside of built-in types provided by language itself, we obbain__t.he extension of
EVA called ezported types. This makes EVA a strongly typed language, unlike Tcl [17], and
helps manage complexity and detect errors at compile time.

Types, names, variables and arithmetic. Language syntax has C family languages style
and implements reference semantic, like in Java [19]. Variable names and scope resolution
rules are defined in the same way as in C family languages. The concise set of operations
defined in EVA forms a subset of C++ operations. The arithmetic, logical, comparison and
assignment operations defined for built-in types (boolean, integer, float and string) have the
same semantics as in C++. EVA has a keyword const to indicate that the variable value
should not be changed. .

Language provides a conventional set of statements for expressing selection and looping:
if-else, while and for. The break and continue statements can be used to control loop
flow. The semantics of these constructs are the same as in C, only controlling expressions
should have boolean type, and not an integral.

Enumerations are also supported in EVA and have the same semantics as in C++, but lan-
guage doesn’t provide facilities for definition of compound statements like unions, structures
and arrays.

Functions. In EVA function definition has the same style as in C, except that it doesnt use
extern declaration. Function name could be overloaded and cannot be declared inline like
in C++. Default arguments, pointers to functions and ellipsis(...) in the function argument
list are not supported.

EVA also supports the reference type construct to provide the way of passing references of
the built-in type variables to functions for changing their values. The following example
shows the usage of the references: :

void func(int param1,int& param2, Cell param3)

//change the paraml itself

A. J. Asatryan 15

paraml = 10;

//change the variable, referenced by param2 Pin

param2 = 20;

// change the object because it's a reference

Pin newPin = param3.addPin("VDD");
}
Object creation/destruction Reference semantic requires usage of operator new for a
new object creation, like in Java, and a garbage collector that will free unused memory.
Semantic that is provided by EVA is very simple:

TypeName obj = newTypeName(argsoy);

The following solution for garbage collection is used: EVA hes a special keyword local,
which tells the collector that it should free the memory before going out of scope:

int i;
for(i = 0; i < 100; i +=2)

{
Polygon poly = new Polygon();
// do something with poly

} ,’/mt the block; all allocated polygons will be freed later
for (i =0; i < 100; i +=2)

local Polygon poly = nawPongon(]
// do something with poly

ﬁ tries to free memory for poly before next cycle
} // exit the block, all allocated polygons are freed

I/0O and preprocessor. Currently EVA doesn’t support file input/output interface. As a
mechanism of other file inclusion EVA has a statement include string, whe.re string is a file

name to include.

3 Constraints

We propose a unified modelling of the application constraints via EVA scripting language.
All application constraints are defined as scripts in EVA scripting language - checks. The
compound checks are built from existing ones using the include construct of EVA language.
Seript execution results true if the constraint holds on current database state. Otherwise, if
constraint is violated, false is returned as a result of script execution. Advantage of encoding
constraints into scripts is that violation handling of the latters is encapsulated in scripts. As
a result, the application’ programmers can concentrate their efforts only on the violations of
their own checks.

Here is & EVA-program segment that illustrates how the width-restriction constraint, defined
in pervious sections, can be expressed in EVA langauge (note that TechLayer, TechLayerCol-
lection and DB are ezported types):

16 Constraint Management in Database Applications vis Checker Framework

bool res = true; ,
TechLayerCollection::const._ iterator it = DB—slayers().begin();

TechLayerCollection::const_ iterator end = DB—layers().end();
for(; it = end; +-+it)

TechLayer layer = *it;
- if(layer.width() < Wmin && layer.width() >. Wmax)

//violation handling

res = false;
}
}

4 Checker Framework

One of the important aspects of constraint management is to provide the feature of inde-
pendence of constraint maintenance [11, 12], i.e. ability to change constraints specifications
without changing the application programs. To provide this feature for our approach we
separate constraint specifications from applications using a meta-database called check cai-
alogue which is a repository of all information about applications constraints. This gives us
another advantage, since all constraints are placed together, their modification becomes an
easy task.

The proposed Checker Framework is the subsystem of the DBMS and supports interaction
of the applications/flows with the check catalogue. The check catalogue is the library of
checks defined as EVA-scripts. Because of the iterative functioning behavior of the VLSI
design databases, each application represents a working stage and consistency checks can
be performed only once at a stage. DBMS provides interface for creation, modification and
deletion of application checks. Each check is compiled and stored in the check catalogue.
During the working stage the application requests CF for execution of corresponding check
and in presence of violations the stage execution is stopped and violation handling operations
are performed. Schematically interaction of the applications with CF i shown in Figure 2.

[l
i

Figure 2. Constraint maintenance in database applications

A. J. Asatryan 17

(lonstreint management in design flows is based on interleaving the design process with
checkpoints. At each checkpoint corresponding checks are executed and in presence of viole-
tions repairing actions are performed (Figure 3).

i
]

Figure 3. Constraint maintenance in design flows

5 Conclusion

In this paper, we have proposed a framework for constraint management of applications
and design flows on VLSI design databases. Based on specificity of VLSI design databases,
our approach provides effective means to maintain correctness of database applications and
design flows.
In comparison to other approaches to constraints maintenance of database applications, our
is characterized by two main advantages - first, constraints are specified declara-
tively using the EVA-scripting language and second, constraints are separated from appli-
cations using a CF, thus providing the independence of constraint maintenance.

6 Acknowledgments

The author is very grateful to Prof. Hrant Marandjian for his useful comments and sugges-
tions.

References

(1) A. Asatryan, "An Approach for Constraint Management of VLSI Design Database
Applications and Design Flows ", Proceedings of the Conference on Computer Science
and Information Technologies, Yerwm, Armenia, September, pp. 375-378, 2003.

[2] N. W. Paton and O. Diaz, ” Active Database Systems”, ACM Computing Surveys, vol.
* 1, no. 31, pp. 63-103, 1999,
citeseer.nj.nec.com/paton99active.html.

[3] K. R. Dittrich and S. Gatziu and A. Geppert, ”The Active Database Management
System Manifesto: A Rulebase of a ADBMS Features”, Proceedings of the 2nd Inter-
national Workshop on Rules in Database Systems, vol. 985, Springer, pp. 3-20, 1995,
citeseer.nj.nec.com/dittrich95active. html.

[4] U. Jaeger and J. C. Freytag, " An Annotated Bibliography on Acnvew SIG- S
MOD Record , vol. 24, no. 1, pp. 58-69, 1995, : '
cileseer.nj.nec.com/article/joeger95annotated. himl.

18 Wu:mwmmnmmﬁmummm&mmk
jvi i Mainte-

S. Ceri and J. Widom, "Deriving Production Rules for Constraint

5 nance” , Proceedings of the 16th VLDB Conference, Brisbane, Australia, D. McLeod and
R. Sacks-Davis and H. Schek, pp. 566-577, 1990,
citeseer.nj.nec. com/ceri90deriving. himl. g

. Ceri and P. Fraternali and S. Paraboschi and L. Tanca, " Automatic generation

k) gmm rules for integrity maintenance”, ACM Trans. Database Syst., vol. 19, no.
3, ACM Press, pp. 367-422, 1994, issn 0362-5915,
hﬁp://dai.mm/10.1145/185887.185828.

[7] Stefano Ceri, Piero Fraternali and Stefano Paraboschi, ”Constraint Management in
Chimera”, IEEE Data Eng. Bull., vol. 17, no. 2, pp. 4-8, 1994.

[8] V. Benzaken and X. Schaefer, "Static Int.egritylcanstra.int Management in Object-
Osi

riented Database Programming Languages }ria
Predicate Transformers”, Lecture Notes in Computer Science , vol. 1241, 1997, cite-
seer.nj.nec.com/article/benzaken97static. himl.

[8] H. V. Jagadish and X. Qian, "Integrity Maintenance in Object-Oriented Databases”,
Proceedings of the 18th Conference on Very Large Databases, Morgan Kaufman, (Los
Altos CA), Vancouver , 1992, citeseer.nj.nec.com/jagadish92integrity.html.

[10] N. H. Gehani and H. V. Jagadish, "Ode as an Active Database: Constraints and Trig-
gers”, Proceedings of the 17th Conference on Very Large Databases, Morgan Kaufman
, (Los Altos CA), Barcelona , 1991, citeseer.nj.nec.com/gehani9lode. html.

[11] H. Oakasha and S. Conrad and G. Saake, ”Consistency management in object-oriented
databases”, Concurrency and Computation: Practice and Experience, vol. 13, no. 11,
pp. 955-985, 2001, citeseer.nj.nec.com/296653.himl.

[12] Oakasha, H. and Saske, G., "Integrity -Independence in Object-Oriented Database
Systems”, Kurzfassungen — 10. Workshop “Grundlagen von Datenbanken”, Kon-
stanz (02.06.-05.06.98), no. 63, Universitit Konstanz, Fachbereich Informatik, M.
H. Scholl and H. Riedel and T. Grust and D. Gluche , pp. 94-98, 1998, cite-
seer.nj.nec.com/oakasha98integrity.html -)

[13] D. M. Beazley, "SWIG : An Easy to Use Tool for Integrating Scripting Languages with
C and C++”, 4th Annual Tel/Tk Workshop, July, 1996.

[14] J. K. Ousterhout, ”Scripting: Higher-Level Programming for the 21st Century”, IEEE
Computer magazine , March, 1998. ¥ .

[15] A.V. Aho and R. Sethi and J. D. Ullman, ” Compilers principles, techniques, and tools”,

_ Addison-Wesley, 1986.

[16] T. W. Pratt and M. V. Zelkowitz, "Programming Languages: Design and Implementa-
tion”, Prentice-Hall, 1996.

(17] J. K. Ousterhout, "Tecl and the Tk Toolkit”, Addison-Wesley, 1994.

[18] B. Stroustrup, "The C++ Programming Language (3rd Edition)”,- publ. Addison-
Wesley, 1997.

(19] D. Flanagan, "Java In A Nutshell (2nd Edition)”, publ. O'Reilly & Associates, 1997.

[20] J. R. Levine and T. Mason and D. Brown, " Java In A Nutshell (2nd Edition)”, Addison-
Wesley, 1992.

A. J. Asatryan 19

SyjwGbph hlpbph Yhpwnwliwl dpwgpbnh vwhiwGwhwymiGhph dwlmd
unnighsGbph hwdwlwpgh Yhpuwndunip

U 2. Uvunnpyub

Udgnthd

Uny hogyuond Gephuwjugynd t uwhiwGuhwlndGeph Wwipiwi dmobgnud
hpibs hunbgpjwde UlbdwGbph “UwjuugdtwG (VLSI design) htGpbph GhpumninuwG
opwgpbpmd @] hnupbpod: Cun wowewpiynn dnnbgiwG’ wwhinGumphwlnuiGhpp
Gbplyuwwgynui &G EVA whuhqugiwme ulphuwmughG thqih dhengny by wuwhimd b
uwnnighyGbph dtuwhbipmd: Gpuqnbph & uwnigh;Goph dhnwhbGph thnfuwgnbgnipmGp
hpwhwlwgynd & UumghyGbph Qwiwlhwpgh dhgngny, npp hwnhuwlmd t htGph
nbujupdwG hwiwhwpgh bipwhwdwiwnpg: UwmmghyGhph hwiwlwpgn wwy-nwup-
[uwp-Gwz-nm £ uwhiwGuhwinuiGbph unbnfwl, thohnodwl b gledwl huniwp,
hjubu Gwb] wwwhnjod £ dhenglbp’ dpugpbpmd uwhiwlwhwinuiGbph Swldwi
wprym Gwdbm Juqiuhbpudwl hudwp:

