Mathematical Problems of Computer Science 22,2001, 100-112.

Parallel Programming in Caper

Sergey R. Vartanov

Chief Resesrch and Project Manager,
Memco Inc. Greenwich, USA.

Abstract

Caper i parallel programming language, which supports d_eclmtive plg:llel
oompunnol:m.mdconkol of all mhiwcmbyﬂwn[‘l].&p_uﬁlsbasedonmw

induﬂingownpmﬂelmmmmsmpu_ty.nmw
mmmmdepmdedmmdﬁusﬁnsmmtofo?mmm;,
Capu']asasdf-urgminﬁmmduynm“evm_up:owmspmm

: has various variables with d:ffuaﬁdmpe_ time of
creation and survival time. Besides, Caper has so ul]ed_"wntmll : variables” or
vﬁab?;sﬁﬁmmwmchmwwmgﬂaumofmnblubydﬂmmud

Processes

1 Introduction

Caper is a parallel programming language based on the following principles:

- possibility of calculations in terms of the main parallel models;

- parallel performing the program structure components without using the parallelizing means of

3 opmns mm; . - = - - B

- possibility of program self-organization during a computing process, dynamic compiling and

ing a source code and individual commands, dynamically composing the running code

by means of loading and removing object modules; 2

- controlling the computing process based on different class evens;

- interpreting the object-oriented programming for parallel calculations,

The version presented here is the third version (see [2], [3])- -

Caper is based on the virtual machine (CVM), which supports both sequential and parallel
programs performing. Caper commands provide synchronous and asynchronous launch of
program procedures with using Caper’s own model of pseudo-parallelism, called as "command-
by-command" [2] and the familiar model with time quantum. Caper allows the start of multiple
parallel procedures with common data, a single procedure with multiple data, multiple parallel
procedures with multiple data. ;

Caper is portable. It is independent of what calculation model (sequential or parallel) is used
on the computing set. From the viewpoint of an operating system a program in Caper can be
considered as a single task without subtasks.

100

5. R Vartanov 101

From the very beginning the possibility of program self-organization while running was put

« in Caper 10 adapt to the load and running of the program to calculation needs. Caper allows
dynamically changing a single command, or fragments of 2 running program, removing separate
object modules, compiling a source code and performing it.

All enumerated possibilities of the language machine and self-organization means allow the
transport of source codes, object modules and even fragments of the performed code with data
to different computers connected through the network or any other means.

Caper provides the possibility to describe various events and to assign the procedures of
asynchronous sequential or parallel processing. The language machine distinguishes classes and
subclasses of events. The language is provided with multiple facilities of events management: to
define events, freeze, defrecze, remove and initialize them.

All Caper's variables are polymorph and differ in scope, the way created and its time basis.
Besides usual variables Caper also has resources to manage variables. They are characterized by
states or instances, which can then be changed at any given moments of calculation. This allows
the regulation of access to the variables, and initialize calculation when the variables acquire
certain states,

The language is provided with special means, which make it easy to develop re-enterable
procedures: any program module is either re-enterable or not re-enterable according to the way
variables are described in.

2 Program Structure

The following Caper constructions will be represented by short descriptions. :

Caper is founded on ASCII characters set. We differentiate logical and physical strings. A
physical string is the string of a text editor. A logical string is a string occupying few physical
strings and defined by sign '=>' - the sign of string continuation. All signs placed in a physical
string after '=>' are ignored. A physical string can be divided by ';' into few logical strings.
Caper has signs for comments definition: *** and /" for a logical comment string, ‘/*’ and “*/* -
comment brackets, and some other variants.

Caper has two types of label: local and global.

A program in Caper is an aggregate of so called blocks. Blocks have different types: blocks
of commands, data, text, image, array and string. Blocks of commands are general logical
executable units of programs in Caper. Any command is either a sequence of arithmetical or
logical expressions or a control statement. Caper expressions are constructed from arithmetic,
comparing, logical, binary, assignment and some other operators. All commands are placed in
logical strings.

A block is a general aggregate of executable commands and different data.

BLOCK <blockname> [STATIC] [(<fparm 12, ..., <fparm N>)] [AS <blocktype>]

ENDBLOCK

<blockname> is an identifier.
STATIC keyword prescribes to compiler to place the parameters into the module body.
<fparm 1> - <fparm N> are block formal parameters.
<blocktype> - COMMAND for a commands block.
DATA for a data block (the set of literal values).

TEXT for an aggregate of text strings.

Parallel programming in Caper
102
for arbitrary bytes sequence.
ARRAY for static arrays:
The block with parameters must be

ktype> is not stated, it is fixed as
ilt;;zgforcﬂmmely. If a block has IMAGE type

wmmsmmva.s.mmﬂ[ﬂkﬂlmvl

functions, which are defined by programmee: funct
'lh:blocksofmmm!nﬂs ofﬂwtwospemaltypesmﬁmctmnsmcapm

FUNCTION <block name> [(<fparm 1>, <fparm 2>, ..., <fparm N>)]

and

FLICK <block name>

Source code compilation result is Caper’s object module or an executable file. Caper
wmpilumCVMbyw-eodshdiﬁumtmgi.mu.whichmbesclmadbycapws
compiler commands. In particular, compiler can ' create so called “critical fragments”— program
fragments, which monopolize resources of CVM.

All functions are compiled as critical fragments.

Functions can be started by DO-statement or by a traditional notation. Functions are differed
from usual blocks in the following properties:
- all functions are compiled only as uninterrupted blocks (see #flow compiler statement);
. “flow” and “endflow” statements don't change the regime of compiling.
- functions return values directly and can be essigned to variables.

FLICK is a type of function which has all function properties and additionally changes CVM
ngimemsgm—bluckhgﬂminmemmachineofcmmmmm&omﬂickchmges
CVM regime and restores the CVM regime.

Since block names can be public and visible in the entire program, to differentiate the name of
the block in various modules the word INTERNAL is introduced to limit the scope to the given
module and is represented as follows:

INTERNAL <block namel>, <block name2>, ..., <block name N>

! S. R Vartanov 103

£3 Variables and Places

Variables in Caper are polymorph. Caper has so called “controlled variables”, or Places.
1They are global variables with status. All the variables are internally typified and do not demand
litheir types controlling mechanism - Caper machine does that. Any variable or place can be
uundefined ~ NULL type.

Caper doesn't permit direct access to computer memory.

The strings of Caper are arrays of bytes (symbols), which can be addressed as arrays
selements. At the same time, string can be considered as a whole unit of data.

Places of Caper have a special meaning. Every place-variable has one of the following
astatuses: WRITE_ONLY, READ_ONLY, LOCKED, FREE or UNLOCKED (synonyms).
\Places usage is controlled by CVM.

At first all defined places have FREE status. A place owner is the block, which is the first to
1set a not FREE place status. Any attempls to use a place or its value from the block that is not
ithe place owner and conflicts with the place status will cause an internal CVM error.

The control of place is a mean of controlling the resource, which is represented by this place.
\All Caper has various variables with multitude of scopes; the period in which the variable is
icreated and the length of its operational life. There are Public (global), Private and Local
wvariables. The statements of variables definition are formed by

{ PUBLIC | PLACES | PRIVATE | DEFINE | LOCAL } <var. list with initialization>

<var. list with initialization> is assignment expressions list.

Public variables and places are created in intemal memory of CVM and can be defined and
deleted in any place of the program. They can be redefined.

Private variables that were defined in a block are visible only in the block and its sub-blocks.
If private variables are defined outside of module blocks then their scope effects the entire
program module. Private variables are static. They are placed in object module’s body. These
variables are being deleted with the module’s body. DEFINE statement forms dynamic private
variables at the moment of module's execution. This definition ensures the ability to reenter in
the module’s blocks, such as in the case where every parallel thread creates its own copy of
private variables pool.

Local variables scope is only a block body. These variables are created after executing
LOCAL statement, and deleted after the block termination.

Block parameters have the same meaning as local variables. They are created at the moment
of the block call and deleted afier the block termination.

If public-, private-, define-variables are lead by INITIAL keyword then repetitive
nitialization of variables is prohibited.

LockF(<place name>, <status>) assigns the status of a place. <status> is one of above
numerated statuses. Caper allows defining a set of user statuses of places in a program,

Public variable and places can be deleted by DELETE statement with the list of variable or
nlace names.

4 Control Statements: Iterations and Alternatives

Caper has both traditional control constructions and unique ones.
IF

pmuelpmgumm‘nsincw

104

{ ELSEIE ---]

[ELSE]

ENDIF
'Ihes}ﬂl'ﬂﬂconstmcﬁmhuswme

ression 0 > 1oz
[Q&SE.[::gmsionl> |¢strinsornummchtad>]]
literal >]]

[‘g-&:sﬁ[«:expmsionN:Hsuingornumuic
e o i e
SWITCH, ol or unconditionl local and global jum

LIE <expression>] GO <label> and [IE <expression>] GGO <label>

ps are realized by statements:

Caper has traditional iteration means:
WHILE
ENDW

REPEAT

All iterations can be terminated by
[IF <expression>] BREAK 5
or continued by
[IF <expression>] CONTINUE.
FOR <initialization 1>, <initialization 2>, . . ., <initialization K
[TQ <condition 1>, <condition 2>, . . ., <condition L>]
[BY <step 1>, <step 2>, .. ., <step M>]
DO <DO-descriptor>
introduced in Caper for optimized calls of the parallel processes and will be described further.

S. R. Vartanov 105

5 Calls of Blocks and Parallel Computations Initiation

The simplest call of any commands block (including FUNCTION and ELICK) is realized by the
traditional notation:

<block_name>([<parm1>, <parm2>,..., <parmN>1)
But more general statement of block calls (DO-notation)is

DO [SEQ/SYNCH/ASYNCH] bl1,b2,...,bIK
[WITH quant],quant2,...,quantL]
[WITHIN med1,med2,.... medK]

and a conditional call
IE < expression > DQ <DO-descriptors>
where bl1, bl2,..., bIK is a blocks descriptors list, which has the following possible forms:

1) <bl_name> ([<parm1>, <parm2>, . . ., <parmN>])] ‘or
2) (<bl_name>, <bl_name2 >, . . . <bl_nameP>)
[([‘Pmlb':mz)- e --‘P'm»])]

<bl_name> is a name of block or a name contained in a variable, In case 1) bl is a block name
with possible parameters. In case 2) the start of blocks bl_namel, ..., bl_nameP with the
common pool of parameters is described. Parameters number of functions and blocks call can
vary.

quantl, ..., quantL is a list of quanta for every starting block.

medl, ..., medK is a list of computers names (identifiers) of multi-computer association or
processor identifiers the block will be executed in (it was described in detail in Caper-2 [2] and
it's not a theme of this paper).

The SEQ demands a sequential execution of blocks included in the Jist. This command will be
ended when all blocks from the list are terminated. Quantum are ignored in this case. SEQ can
be omitted.

The SYNCH defines a parallel execution of enumerated blocks. Calling procedure will be
halted until all the blocks are terminated (synchronous call).

The ASYNCH defines a parallel execution of enumerated blocks, too. But the calling
procedure for execution will be continued (asynchronous call). The last living process will
inherit the results of other terminated processes. Then Caper machine sets its own regime as
sequential (turning off the parallel submachine). In asynchronous call with quantum we must set .
quantum for all called processes and a quantum for calling process,

Every block or function execution will be terminated by ENDBLOCK, ENDFUNC and
ENDFLICK statements. In all cases the retumed value is NULL. The immediate termination of a
block or function is accomplished by

[IE <expression>] RETURN [<expression>] [IQ <block name>

06 paralle] programming in Caper
1

statements return a value t© the calling block or t0 another block, which occurs earlier in
Tth};ﬁll stack.e?ftsm d:l:ck neme> is omitted, then CVM returns a value to the calling block. If
we return from MAIN block or from a single executable block, then (:VMW1 retums t::;s shell.

For paralle] executable processes the internal may.of the returned = :11:: is m:1 The
returned values are placed intothamyynmdex,whmh - c‘l):‘nhul;m
identifier. We can get this value by function I:d.d;“ll;:‘-'pm id.>), <proc. id.> - snd

i i el numeric A :

e e o e 26 Gl s e s
local variables, parameters, defined private variables ‘will be eliminated by Caper machine.

FOR <initialization 1>, <initialization 2>; - - -» <initialization K

DO <DO-descriptor> i

[TO -:cundiﬁonpb. <condition 2>, . . » <condition 1>

[BY <step 1>, <step 2>, . + ., <step M>1]
Supports the paramelers preparation beginning with initial
change in the value by <step> expressions
<initialization 1>, <jnitialization 2, . . «» <initialization K> are asmsflmmt expressions.
<condition 1>, <condition - <condition L> are logical expressions,
which abounds FOR statement execution: calculation will be stopped, if a minimum of one of
the conditions is false.
<step 1>, <step 2>, - - » <st=pWar=qxp1usionswhich change variables values.
<DO-notation> represents the starting blocks.

FOR statement has the following interpretation: after initialization <step> expressions will be

executed until <condition> expressions are true. During the execution CVM forms parameter
pools for all starting blocks. :

Example of parallel starts in Caper:

values to stated conditions and

Private i, j, k

for i:=1, j:=10, k=100 =
do asynch procl(x, ¥, i, z), proc2(z), proc3(x,j), procd(k) =>
to i<=10, j<100, k<1000 =
byi+=1,j+=1, k+=10

will form the list of starting processes
procl(x,y, 1, z), proc2(z), proc3(x, 10), procd(100),
proci(x,Y,2,), proc(z), proc3(x, 11), proc4(110),
procl(x,y, 3,), proc2(z), proc3(x, 12), proc4(120),
procl(x, ¥, 10, z), proc2(z), proc3(x, 19), proe4(190)

andgtmmun when & minimum of one of the conditions is false (40 parallel processes in this
case).

The one of the ways of processes multiplication is:

5. R Vartanov 107

j=10, k=100

i=0

while (i+=1) <= 10 && j<100 && k <1000
do asynch procl(x, y, i,z), proc2(z), proc3(x,j), procd(k)
=1, k+=10

endw

The other example of paralle] start:

do synch (procl, proc2)(x, y, i,z), proc3(x,j), =>
proc4(100), procd(110), proc1(1,2,3,4)

starts procl mdpmczwilhmmmpmmmwodiﬂ‘umpmm procd
with different parameters and procl with yet separate parameters.

6 Caper Virtual Machine

Caper virtual machine can start in three different ways:

- starting object code implanted in Caper executable code.

- loading a source code file (source code module);

- loading an object module.

If it is source code module, then Caper compiles this code and creates the first executable
module and block (every module is represented by corresponding block). This module is named
automatically as MAIN.

If it is object module, then the module will be loaded and named as MAIN automatically.
Implanted module and block have the MAIN name, as well.

In fact, Caper machine consists of three sub-machines (a sequential machine, a parallel
machine and events machine).

Caper parallel machine executes command-by-command each started parallel processes. The
switching from a parallel process to other CVM carry out after every command of executed
blocks or in special points, which is defined by program commands or compiler commands,
All asynchronous events are accepted by Caper events machine, which starts an events
processing block at the special control moment called "a virtual machine step". If an event-
processing block was set, then the machine calls this block in the current parallel branch or
initiates a new parallel branch for this block. Every parallel branch has its own call stack.
Parallel branches can be halted or broken.

CVM has three regimes: PRIMARY, when CVM dominates over operating system (OS),
SECONDARY, when CVM activity depends on OS, and SOLE, when OS is suppressed by
CVM to monopolize computer resources.

7 Events and Events Machine

Caper has very powerful means for asynchronous events processing. All events are divided
into the following groups: logical events, program events, virtual machine events, operating
sysiem events.

Logical events and their processing blocks are defined by

o Parallel programming in Caper

WHEN <event> DO <DO-descriptor=
i i i i« command prescribes to execute the blocks
- logi ormt.hmwcaq)mslon.mw. .
:ﬂh\;?i:gicﬂmgipg:ln value is true. WHEN-events settings are supported by control functions,
wm‘lc:eﬁﬁ:d{ncipd construction is ammmmdwmnnsforasynchronous event

WAIT < event > [BX<blockname>]
is command the mthccununpmﬂelpr_omswhiletheempmsionvelui,
fa].:n';'he waiting i;h::cm ;F;og;nplmed by block execution. WHEN and WAIT combination
allows to introduce very comfortable style of pmgmnms)

All types of events are supported by collection of fimctions united b_y 2 common atylo'of
setting, "freezing", nde-freezing" and deleting events. 'I‘ho style of setting events processing
block is shown on the example of mouse events : :SotMo::mEvnRg_n(y0, x0, y1, x1,
bl name, filter, procld, selfld), where y0, x0, y1, x1 are display region coordinates; bl_name —
processing block name; filter pal"ﬂ:ikﬂﬂ'is ;e iilt::'1 g :.w:u fﬁ% ths:fli:;rugl m
""pmom'gblmusts y es
e : 1ed block as & new parallel process; selfld is a
i by events machine; CVM retums this
lar functions support keyboard, timers

and other events.

8 Parallel Computation Control

Caper has a lot of facilities to support parallel processes control and interactions.
First, Caperhasthuabiﬁtymdunﬁme,acﬁvucorbmak?mmlpmmbymm of the
following statements (every statement has equivalent function):

STOP <proc. id. 1>, <proc. id. 2>, +«+5 <proc, id. N>
<proc. id. 1>, <proc. id. 2>, +.., <proc. id. N>

ACTIVATE
EBEAKEB.QQESSW.MP.W.M.D,...,WM»

m&nywmdmbeuwdinstudof@midPtnm, activate or break all processes
except the current one. ! T

Stoppedpmcusescanmninnotwﬁvated (in fact, all other processes can be terminated;
¢.g. there will be no acﬁvepmcessthn:cnuldacﬁvmmppedones}. In this case the program
will be terminated and all stopped processes will be deleted by Caper machine (just as local and
private variables, input parameters and others).

All parallel processes can be terminated also by

PARABREAK [TQ <proc.id.>]

mh?;mmdhgsdiﬁemimmmmﬁonforsynchmnommdasynchmmumﬁmu.h
synch nn@mcwmmﬂmmummmmmmdmt
fmc.'m.>dwﬂ1bemommuymhommmgimnanpmexqepﬁngw.ibw&llbe

I 5. R Vartanov 109

Caper controls the moment of switching over to the next paralle] process. At these moments
*,we can call a selected block or function: SetNext([<block name>]) sets the block, which will be
i called at the switching moments. Such setting can be frozen, de-frozen, changed or deleted.

' 9 Arrays, Strings, Regions, File-arrays and Collections

Caper supports dynamic and static multidimensional arrays, strings, so called “regions”™ -
virtual arrays, which are defined as sub-arrays of created arrays. File-arrays support a work with
files as it does with arrays.

Arrays can be of any type, including arrays of collections, strings, arrays, blocks.

Collection is a variables group, which must be described and created dynamically or statically
in a module body. Collections descriptions can be redefined during calculations time, collections
can be removed from memory.

COLLECTION <collection tag> { <variable name 1>,
<variable name 2>,

wl;uble name N>
}

<collection tag> - identifier, which represents collection;
<variable name> - collection internal variable name.

Any variable of collection can contain data of any type.
We can create collection by

STATIC <collection tag>[{ [<initialization value 1>,
<initialization value 2>,
<initialization value N>

}] <variable 1>, ..., <variable N>

or

<variable> := <collection tag>{ [<initialization value 1>,
<initialization value 2>,

aializaton e >
11}

The STATIC keyword prescribes that collection must be created in current module body. In
other cases, collection will be created in dynamic memory.
<variable 1>, ..., <variable N> must be defined in any way as Local, Private or Public variables.
<initialization value> initiates the collection intemnal variable. If <initial values> are omitted,
then all variables have NULL value.

To address a variable within the collection is done as follows:

110 Parallel pmgmmmmg in Caper

<collection name>.<variable name>

Example of Caper's code:

#macro false 0

il :ﬁl’ ; tstFunc

internal urnc, . =y
pl:-hmtem':ﬂ array(‘T, 0,10, 20), str:= string(200, ‘A’)

collection ta.gColl{ time, day, month, year, name, function }

block tBlock1(parml, parm2)
private coll
Jocal year :=1999

coll +=tagColl{*10:00", 12, 12, year+1 }
coll."name” = “Armine"
coll."function" :=sumFunc
+= coll."function"(arT, year)
coll."day" +=1
return year to Main_block

func sumFunc statle (parm1, parm2)
private i, j, k=0
if !tstFunc() return false
i=0,j=10
while (i+=1)<=j
k+=1
parml[i,k] =i*parm2
endw
return k
endfunc

func tstFunc
if coll==null return false
return true

endfunc

endblock

10 Processes Interaction by Data and Events

Besides using public resources (variables, places, blocks) interaction of parallel and
sequgmﬂmubymmoflocﬂvmiablmmdpmﬁmnﬂingmdmwiﬁngis
permm:;d;sml means are grouped by functions of reading and writing local variables and
parameters.]

' 5. R Vartanov 111

CVM supports a set of events, which can asynchronously inform about parallel computation
., states: whether the parallel process was started, stopped, terminated and so on.

11 Dynamic Compilation and Loading
Caper has the following constructions for dynamic compilation:
COMPILE [EILE | BLOCK] <file/block name> [IN <block name>]
or
CompileFile(<file name>, <block name> [, <replacement> [, <saving file>]])

which allows compiling a source code from a file or block and to place compiled code into the
selected block or create a new block with the compiled code, and where

<file name> is a file with a source code to be compiled;

<block name> is the name of a block which is a target for the compiled code;

<replacement> sets a regime for the replacement of existing blocks with new ones; otherwise, if
the block name exists then Caper compiler will initiate an error.

<saving file> is the file name in which compiled code will be saved as a module.

LoadModule(<file name> , <block name> [, <replacement>]) loads the Caper object module

from a file as a block with <block name>. <replacement> has the same meaning as in
CompileFile. The following statement and function

DELETE BLOCK <bl_namel>, ..., <bl_nameN>
or

DeleteBlock(< bl _namel>, ..., <bl nameN>)
deletes the selected block (which can be a module) with its sub-blocks.

CompileCommand(<string>) compiles given string, creates Caper machine code and returns

a special pointer-identifier to it. DoCommand(<pointer-identifier>) executes pointed command.
DelCommand(<pointer-identifier>) deletes a pointed command.
IMPORT <file name> AS <block name>

loads Caper’s module as block with internal block name.

REMOVE <block name>[, <block name> ...] | ME
removes blocks from memory. The variant REMOVE ME removes current executed module, in
which this statement is placed.

112 Parallel pmqru.mming in Caper

12 Resume

ofmrm-:gimmniduofcwinashqﬂp-pﬂ-mdwtaﬂpmpﬂﬁm.
abilities of the language and fulfill our experience of its usage. I'm giving some examples and
characteristics of Caper we have an experience with about 100 thousand
cvM';pmualpmminuinslepmmsor(Pmﬁm).mmutmmm and effective
realizations of such components &5 pop-up mems with animations (10-20 items), parallel reading
mdp;omﬁngﬁle&puﬂle]mhinsinmmmdiﬂmm- (in [3] a few algorithms
of image processing were described; their real parallel execution for 7 computers in network was
made in Caper-2 and represented in [21)-

Caper continues to develop and expand and realize its full potential.

References

[1] M. Flynn, Ultraspeed
1966.
[2] S. Vartanov, On ' Parallel Programming Language Caper. Lect, Notes in Computer Sci,

HPCN-2001, 565-569.
[3] S. Vartanov, The CAPER Programming Language. Preprint 97-5. National Academy of
Sciences of Ukraine, Glushkov Institute of Cybernetics. Kiev (1997)

Computing Systems. IEEE Trans.Comp., vol. 54, no. 12., 311-320,

9mquhhn dpwgpuiynpnid CAPER—nui
U. . dwpnuliny

Uithnhnu

nnujmbmul Gwpwgmnud £ gmguhbn Spuguuninpdwd 1hqmG — CAPER-p, npp wigwhunfunud &

pojop hunfwlwnpuihli quubph’ pun Flinni:
CAPER-p mh yppunuuy SbphGwlbph hufwhwng Gwh pp umpuiwG gniquhbn hpnoiug

dbphiwi:
CAPER-p mbh hGpGwlwqiulbpupiug L wuhGupnG wunwhwpGbph - dpuopuijnpiwl

Uhenglbp:

