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cheokiiy ;

case n=o0(m) the greedy algorithm :
complexity equal to or less than the number 108, - n+c, where 'c is a constant number.
The discussion of some questions in discrete mathematics (finite set-covering, clarification

of the condition of 2 scheme) draws to the follm@ingproblun. :
The matrix T of elements 0-1 isgiveu,mthcolumnscachcommmnsulmstona 1. Each

colmmmfthesuhmanix,dnivedﬁommsmofmmofﬂlematrix also contains one 1. The set
ofth:mwaofthcmmixiscalladacheckinngewducallmln‘lbﬂ'ofmwsofthesubmm

the complexity of the checking test.
iven matrix T it is necessary to find a checking test

The problem is the following: for a gi
with the minimum complexity, which will be called the optimal or minimal test for the matrix T',

Let’s define some concepls.

B ={ala= (ana:!""aq)}
the number Iai=ia, , the norm of the collestion & € B™.

=1 .

Suppose M (m) is some finite set, and the pumber of elements of the set is denoted by
| (m)|. Let's also suppose that some property O is given and each element of the set M (m)
either satisfies or not to that property. We will denote the subset of elements of the set M (m)
satisfying to the property O by M(Q,m). We will call the mlaﬁonxhip-lj%(?'—';l)l the part of

m

clements of the set M satisfying to the property 0.

We will say that almost all the elements of the set M (m), satisfy to the property O, if
imM@m_,
== [M@m)]|

Let’s prove some auxiliary statements.
Lemma 1; For almost all collections & € B™ the following is true: ﬁ'-ﬂ.
; ' 2

is the set of vertices of a unit cube of size m . We will call
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Let's observe B™ as a space of events, where the probability of occurrence of each event
deB” is E)- Let’s define the arbitrary value w=u(@) as [E!:k. It acquires the values

k=0,1.2,..,n by the probability P(u = k) = ?l"[:]
Let's calculate Mu mathematical expectation and Du dispersion of the arbitrary value u .
Let's observe the Newton Bynum  (1+x)" =§(:Jx' . We will take the derivative and
multiple the result by x:
mx(l+x)~ =gb[:'}l’ :
After taking the derivative once again, we will get
m(1+x)"" +m(m—1)x(1+x)"? =§k’(:’]x‘" ¥
By plugging x=1 into the resulted recurrences, it will be easy to see that
Mu=ij4p(u=k)=ikl_("j=g.

2 2
My =3 | O T)) m o
D“m(m)éz'[]al Bios Rk oA
Using the Chebishev inequality for any number 20 we will get
P@-Mulzr)s%.

Let’s apply this inequality to the above-mentioned arbitrary value u . We will have

_ﬂlz.LJSEM
2| log,m" ™ 4m '

or as the same

e

Therefore P(u-;]-—»l.when m —» o, This fact implies the proof of the lemma 1.

Lemma 2: If @(m)—> e, when m — and @*(m)=0(m), then |E'|>%(l— ) for

@(m)
almost all collections & e B™. Moreover, the part of collection for which the above-mentioned

2]
inequality holds is at least 1— %f")- :

into the above-mentioned Chebishev inequality, we will get

By plugging = =
2p(m)

+‘ _| b P:')

Therefore,
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wemmimplymmmmemﬂmty
L ypy -2
P(IJ')'EU‘ M’) m
holds and the lemma 2 is proven. ntaining the elements O or 1 by T7,,.

£ all matrices of mxn order co
possible to mention @
*(m) =o(m), that for almost all matrices TeT,, each

We will denote the set 0
]_m3;1f,|=g(m),thmitia
function, satisfying to the conditions @

m 1
< ot Jeast -(1———) many Is.
column contains at least 2(1 )

(m) — =, when m —» o0, and such a

function ¢, which satisfies the

We have Lt
n

conditions @*(m) = o(w(m)), ¢’ (m)=o(m)
We will denote by z,, the part of such

-w(m)-uu,whm n = 0. Let's select some

and w(m)-»w.whm m—»c,
matrices T €T, , for which each column contains

m 1
Moy 1
at least 2(1 ¢(m))my 5.

1t’s casy to see that z_, > (-

@ (mye.
o ]
- Ly e 2L
As the inequality (1-—)" >e * holds for the case x22, then z,, >€ =
x
Itiseesymchecktha:inthzcasctheabovemenﬁonedcondiﬁommm
2
i'~-qp’(m)(‘l+p (m))—»o,whmm—rw,md,thmfore, z,,—1,when m— .
m m
Nowlct'sdeﬁnethegreedyalgoﬁtbmeofﬁndingachnckingm

The algorithm @ includﬁ!hemWwiihthelﬂstnumberandoontainingﬂiemostnm

of 1sof the set T inthechecldnsteatmpokedstepbystep.m_ermrd&itdelmmatmw
from the matrix T.aswellasa]lthemhmnspassingthmughtheelmems 1 of that row. The
mentioned action is repeated with the resulted matrix unless all the columns of the matrix are

deleted.
Theorem 1. For any &>0 number in the case of n=o(m) the greedy algorithm finds a

checking test for almost all matrices TeT,,, which has a complexity not Bxceeding the number
log,, -+ n+e, where ¢ is a constant number.

Suppose n = o(m) . Let’s select such function @(m), that the conditions of the lemma 3 are
satisfied. Suppose TeZ,, is a matrx, each column of which contains at least

my = E('l ——1—) many ls.

2" @(m)
During the work of the algorithm ® rows and columns are sequentially deleted from the
matrix T. Let’s notice that after such deletion each column of the resulted matrices will also

contain at least my many ls.
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We will denote the number of columns of matrix 7, , resulted after » steps of work of the
* algorithm ©, by né, . As the matrix T, contains at least n5,my many 1s, then the selected row
in the r+lst=pofdlealgwiﬂnn9willwuuinnlﬂn né,y many ls.

Therefore né,,, <nd, —né,y,orasthesame 8., <4,(1-y).

Thus &, <(1-y)" .r-I,Z.S,...IndJ,wl.

It’s not difficult to see that for any value r=1,23,... the number of rows selected by the
algorithm - ©(T), does not exceed the number r +nd, .

Let’s observe the function f(r)=r+n(l+7)".

Wehave f'(r)=1+n(l+y7) In(l-y) and f*(r)>0.

1

We will find the value of (1-7)* =————— from the equation f'(r)=0.
nln(l-7)
It's clear that
1
eT)sr,- -
i, In(l-7)

and, moreover, 7, =log,_ ., nln(l-7)" =log, .n+log, . In(1-»)".
For a given number &> 0 w.-. will scleet such value of m, that the following condition
)>—(1 &). It's easy to check that it is possible to

holds <¢£. In this case y—-[l—

m)
select such constant number ¢, that the followmg inequality also holds ©(T) slogwm.. n+c.
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0-1 duwnphgGtiph huniwp uinnignn Ywi wnnnpnznn phun quGhn fuGnph pedwi
wquwh wignphpiih th piowpwignhsh Gwuh

ElL bnpwquppug, o0 Solojud
Unithmpinui

Upfuwnnw Gpnud hbunwgqnungmd & wquh wignphpdh ywppp mxn Yupgh 0-1 Swinphgh
uwnniqnn phuwn gk funph hundwp: Unwgnigynul b, np guwilugwd £>0 pyh hwiwp
n=o(m) nbypmd wquwh wignphpip hwiwpw pnnp Sunnphglbph hunfwp gunGn
unniqon pbuw, nph pwpnmpmbp jh qbpuqubgnud Iogm_n.. n+c pyhl, npnbn c-G

huwnnnuinni( k:



