Mathematical Problems of Computer Science 22, 2001, 86-90.

The Presentation of Logic Circuit’s Verilog Description
through Linear Description

Pavel Yu. Vasilyan

Tnstitute for Informatics and Automation Problems of NAS RA and YSU
E-mail: pavel-v@bi-line.am

Abstract

Linear Description of circuits is the generalization of Polish notation of arithmetic
ions. ce of the use of Linear Description of circuits is justified
by the necessity of studying the functional behavior and reliability of ::u'cult In the
article presented an algorithm is described, which acquires Linear Description from an

arbitrary logic circuit’s Verilog Gate-Level model.

It is known that contemporary Very Large Scale Integrated Circuits cannot be described
without using computer-aided techniques. Various hardware description languages are used
to define a hardware model in terms of switches, gates, RTL (Register Transfer Level) or
behavioral code, as well as to synthesize and simulate circuits. Verilog HDL is among such
languages, and has evolved as a standard hardware description language in hardware design.
This language is famous by the simplicity of description and its universality.

In order to study the functional behavior and reliability of logic circuits, as well as for
solving other problems it is convenient to use the Linear Description of circuits [1].

Thus there is a necessity for algorithms of known languages. for Linear Description and
opposite translation. These algorithms will enable to acquire the linear description of a given
circuit, as well as conduct opposite translation after solving several problems.

Hereby, an algorithm is presented, which acquires Linear Description from a Verilog
model of arbitrary gate-level circuit. =

The Linear Description of circuits is the generalization of Polish notation of arithmetic
expressions [2].

Polish notation is a way of expressing arithmetic expressions that avoids the use of
brackets to define priorities for evaluation of operators.

When this way is applied to gate-level circuits, the logic elements (logic gates) are
recorded instead of operators, and inputs of the circuit instead of operands.

While recording arbitrary logic element, its name (logic function) is written, the number
of the element as an index, and the number of inputs of the element in the parenthesis. For
example, if the i-th element has 3 inputs and implements the function AND (&), then its
record will be &)

86

%

P. Yo. Vasilyan

If the i-th element is a fanout element, then the branch
point will be noted by M;. When the i-th index occurs
the first time while moving left and up, then we will
write the mark M and move forward. When it
oceurs not the first time, we will write the mark M”
and return,
The picture shown represents the ISCAS-85 ci7
Benchmark, which consists of 5 inputs, 2 outputs
and 6 logic gates, each of which implements the logic
function *Negation of AND" (&).
In order to acquire the linear description of the circuit,
it is necessary to move up and left (towards the
direction of dashed lines shown in the picture) starting
from the first output, and recording each occurred
element. We will not record anything while returning
down and right. As a result, the linear description of
the circuit will be the following:

BT M) M B M T M 2 MM,

Let's denote the corresponding record of any circuit S by A(S). The record of the circuit S
is a finite word composed of the elements of alphabet D = {z;, f{™, M{", M®} i jn.ke
{1,2,3,...}. Clearly, not all the words are record of any circuit. For example, there is no
circuit, which has a description MM 1OM©,

The conditions noted in (1] are necessary and sufficient for any word defined in D to be
a record of some circuit.

The main advantage of the linear description of logic circuits is that there is a one-to-one
correspondence between each continuous line segment weighted —1 and some sub-circuit [1].

The Verilog model of ISCAS-85 c17 Benchmark, shown in the picture above, is the
following:

module Circuitl? (outl0, outll, inl, in8, ind, in4, in5);
// I/O Port declarations
output outll, outll;

input inl, ing, ind, in4, inf;
// Internal wire declarations
wire wh, w7, w8, wy;

// Gale instructions

nand (w6, inl, in3);

nand (w7, in9, inf);

nand (w8, in2, w7);

nand (w9, w7, inj);

nand (out10, w6, ws);

nand (outll, w8, w9);
edmodule

A table is used to describe the process of obtaining linear description algorithmically
from the Verilog model, using the above-mentioned method. The first column of the table
includes the index of the element (n), the second one includes the implemented logic function

88 The Presentation of Logic Circuit’s Verilog Description through Linear Description

of the element (f,), and the third column is a vector (ina[]), where the indices of elements

inputs of given element. :] e 8
are ;ohtutic;]e:iswe;:;y mg%:mredg;m ' the description of Verilog model of the circuit. For the

Circuit17 it will be the following: ‘._E_ ;
Two additional columns are assigned to the table .E Togic foput |2

in order to acquire the linear description. 2 | function gg
Each subsequent input number (j) of the first Vo zg_
additional column shows the index of t.hF cu-rrent

element for the vector inn[], that is which input e ing | ju | Mn

n
shall we proceed at a given time (towards up
and left), Initially its value is 0, and then it mleUTI o lglgl
is increased by 1 each time it meets an element.
This process is continued until it is less than or EIINPUTI o lolol
equal to the number of input elements |ina| (size
of the vectar). . [3Imeut] 9 Jo[1]
The second additional column is a no;lI nee;at ;
number and shows the number ou pu INPUT ol
branches for the given element (my,). Ifbit is ::;:. l 4 I I) I | |
then the output of the element is not branched. 2
Thianumberca.nbeeasilyaoquire:nhj_(ﬁﬂnstha [5 | INPUT [1¢2| o]
repetitions of the given index in all in, vectors
of the table. it rslNAND|1|3|0|o|
The algorithm uses stack LIFO) to ensure
the return. The queue @ (FIFO) is also used |7|NAND|3[4J0|1]
in the algorithm, which is given beforehand and 12
contains all the indices of output elements of the [al NAND |2|7|0|1J
circuit. 4 g
When the algorithm meets the subsequent ele- IglNANDI7I5|0|°|
ment for the first time (when j, = 0), it ret_:ords T
the element index in the stack if the number of Iﬁl NAND [6 | 8 I 0 | 0 |
inputs is greater than 1. This is done to ensure P
the return process by reading the index of that ololo
particular element from the stack. |11| NAND l 6 l I] I
Initially, the algorithm acquires the first index of the output element from the queue Q,
deletes it from the queue, and observes the whole sub-circuit based on that output element.
The algorithm concludes when all the outputs are observed and the queue Q is empty.
Hereby, the block-scheme of the algorithm is presented, where the following procedures

have been used:
n « top(Q),n — top(S) Assign to n the vertex value of the queue or stack,

push(S,n) Add the element n on the top of the stack S,
pop(S) Delete the top value of the stack S,
Degueue(Q) Delete the top element of the queue Q,
record(A) Record A at the end of the Linear Description.

Let’s describe the algorithm through a block-scheme.

In Step 1 the algorithm checks the set @ of indices of output elements. If it is empty,
then the algorithm concludes.

In Step 2 the algorithm acquires the index of subsequent output element from the set @

P. Yo Vasilyan 89

and removes it from the set.

In Step 3 the algorithm checks whether the given element occurs the first time or not. If
not, it records the mark M of that element in the Linear Description (Step 5), moving to
Step 13. If it occurs the first time, then in Step 4 the algorithm checks the number of inputs
to that element, and if that number is greater than 1, then the element is recorded in stack
(Step 6), to ensure that the other inputs will be ohserved while returning.

e |

g z

at ip(5) @»

In Step 7 the algorithm checks whether the output of a given element is branched or not.
If not, then only that element is recorded in the Linear Description (Step 9). Otherwise, it
records also the mark M of that element (Step 8).

In Step 10 the algorithm checks the size of inpuis of the current element. If it is zero.

90 The Presentation of Logic Circuit's Verilog Description through Linear Description

then the given element is an input of the circuit and it is necessary to return. Otherwise,
in Step 11, jn i8 increased by 1 to observe the subsequent input of the element. Then the
algorithm assigns to n the index of element connected to ja-th input (Step 12), and returns
to Step 3 (that is, moves up and left through the subsequent input).

In Step 13, the algorithm checks whether the stack is empty or not. If so, then the
sub-circuit based on that output is already recorded, and it returns to Step 1. Otherwise,

the algorithm takes the already recorded subsequent element (Step 14), and if that element
contains unobserved input (Step 15), it jumps to Step 11. Finally, if all the inputs of the
element are already observed, then that element is removed from the stack (Step 16).

References
[1] Sh. Bozoyan, »Functional circuits’ description language”, (in Russian), Academy of
Sciences of the USSR, Engineering Cybernetics, N 6, pp. 158-166, 1978.
[2] Sh. Bozoyan, » Adaptation of the Lukasiewicz’s notation to the description of functional
circuits”, (in Russian), Reports of Academy of Sciences of the Armenian SSR, vol. 63,
N 4, 1979.

SpuiwpwGwljwl uubdwgh Verilog 1hqum] gpumiwi Gbplpujugnuip
wnnqujhl Gyupwopnipjuip

. Sm. wufiyjwl
Wihmpnid

Spuiwpwiwlwl ufubiuibph woquyhG Gywpugpmpyniln pwlwalbph (Hhw G gpuniw
pighwpwgnif £ Snqwjhl Glwnugpmpyud oguuqnpdmuin hwpiwp m wgmmﬂmqhm l:
:bll:dmﬁhpb thbnﬁm]_ Jwppwgdh L hmuwhmpyul mumifwuppdwi hudwp: Uwipwd
wignphpd, opp Yudwpuiul wpwpmGulw ufutniugh Veril Glpupugpn
pupqimbnus & wonuijhl Gwmuopmpwa: i v e o

