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Abstract
channel with random parameter and the arbitrarily varying channel in the
T the sender, are considered. The upper and the

! hen states sequence is known to
m:oundl of E-capacity are constructed. When E — 0 the random coding bounds
coincide with known capacities of corresponding channels.

1 Introduction

Let X,, S be finite sets and the transition probabilitites of & discrete memoryless channel
with input alphabet X and output alphabet J/ depend on a parameter s with values in S,
In other words we have a set of conditional probabilities

W, = {W(ylz,s),z € X,y € YV}, 5 € S.

Values of the parameter s can be changed by different rules, depending on which different
definitions of channels can be considered.

The channel Wy with random parameter is a family of discrete memoryless channels
W, : X — Y, where s is the channel state, varying independently in each moment with the
same probability distribution @(s) on S. : :

Let Q(S) is the set of all probability distributions on S and Q is its some subset, We
shall consider also the generalized channel with random parameter Wy, where the
probability distribution of the random parameter s is fixed during the transmission of length
N, but can be arbitrarily changed for the next transmission within the sgt Q.

The discrete arbitrarily varying channel W is a channel, where s is varying arbitrarily.

The considered channels are memoryless and stationar, that is for N-length sequences:
input word x = (%1, 23,...,ox) € A, output word ¥ = (v1,,...,un) € V¥, and states
sequence § = (8, 83, ..., 8y) € SV, the transition probabilities are

N N
WN(YIxI 8) - H W(y'llxmsnj! QN(S} = H Q("n}-
n=1 n=1
As in [1] and [2] we shall suppose that the choice of the channel states does not depend

on the input or output signals; the states sequence s is known at the encoder and unknown
at the decoder. ;
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et M be the message set and M be its cardinality.

The code for the channels is defined by encoding f : M x 8¥ — X" and decoding
g: Y¥ — M. The number R = 1/Nlog M is called code rate. Here and later we use the
jogarithmical and exponential functions to the base 2.

Denote

e(m,s) = e(f,g, N, m,s) £ W¥(Y¥ — g7'(m)|f(m,s),s). ()

Then the maximal eq and average g error probabilities of the channel Wy ere

eq = eqlf,9,N, Wo) £ max 3 Q"(s)e(m.s), 2)
seSN

2 =20 N Wo) 21 T ¥ Q¥(s)elms) @
meM seSN
For the channel W the maximal and average error probabilities are, correspondingly,

e =el(f,g, N, W) £ max maxe(m,s),

z=2%(f,q,N,W) 2 %&gggem 5).

We call E-capacity of the channel the function

C(E,W) & }E% log M(N, E), (4)

where

M(N,E) & sup{M : (£,,N, W) S exp(~NE)}.

E-capacity of the channel W for average error probability we denote by C(E, W). Analog-
ically, we define E-capacities of the channels Wgq and Wq for average and maximal error
probabilities and denote correspondingly by C(E, Wa), C(E, Wa), C(E, Wg) end C(E, Wg).

The channel with random parameter Wy was investigated by Gelfand and Pinsker [1].
They found the capacity C(Wg) of this channel for the average error probability in the
situation, when during the choice of the codeword x the sequence s is known. Ahlswede [2]
proved that the capacity C(Wg) of this channel for the maximal error probability is equal
to C(Wg). He also considered the generalized channel with random parameter Wo and
arbitrarily varying channel W with states sequence known at the encoder, he obtained the
corresponding capacities C(Wg) = C(Wg), C(W) = C(W) of this channels.

Some versions of upper and lower bounds for E-capacity were obtained in (3], [4], [5]. In
9000 professor Shlomo Shamai (Shitz) proposed a conterexample and professor Neri Merhav
found the mistake in the proof of the upper bound in [5], about which the author informed
by the letter [6].

In this paper new upper and improved lower bounds for all this channels are constructed.
For E — 0 the limits of random coding bounds coincide with the capacities of corresponding
channels.



46 New Bounds for E-capecities of Arbitzarily Varying Chanuel snd Channel with Random Parameter

9 Formulation of results
Y be random variables with values in finite alphabets U, 8, X, ), "
\L\::hb;;rfl':gﬂity distributions Q(s), P(nz!s} and I:’(y|z, s), s €S, uel,z€ X, ;sljeecy-"elx
For our notations of entropies, mutual informations and divergences as well as for notions
of types, conditional types we refer to [7], [8], [9], [10]. We remind here some notations and
relations, that we use in our proofs. i
Thesuheton(S)wnsiaﬁnxofthepwblatypesoIsequenMSE Sﬂhdmotedby
2n(S). Thesetofvectmaoftyptesd?noted byfd"(.sz, the set of all sequences x € ¥V
of conditional type P for given s € 74'(S) is denoted by 73 Vo(X]s). The following properties

are now well known
|Qn(8) < (N +1)F, (5)
[Pr(%, Q)] < (N + 1)1, (6)
[Vn (Y, Q, P)| < (N + 1)HRISINL, )
(N + 1)~ exp{NHo(5)} < |74 ()| < exp{NHg(8)}, (8)

for any conditional type V and a pair of vectors (x,s) from T3(XS)
(N + 1)~ exp{ NHq py (Y 1X, S)} < |Tgpv(Yx,8)| < exp{NHg py(Y|X, 5)}. (9)

If s € 7J/(S), then

@"(s) = exp{—N(Hg(S5) '_"-D(Q'"Q}J}- (10)
if s € 7'(S), x € T4'p(X[8), ¥ € Tfpy (Y |x,8), then
W (y|x,s) = exp{—N(Hqrv(Y|X,S) + D(V|W|Q, P))}. (11)
Becides
D(Q'PV||QPW) = D(Q'|Q) + D(V||W|Q', P). (12)
To formulate the outer and the inner bounds of the E-capacity let us denote
Ry(Q P,V) & Igpy(Y A X|S),

R(Q,PV) S Iopy(Y AU)—Igp(SAT) = .
= Igpv(Y A X|S) - Iqpv(SAUIY) - Igpy(Y A X|U, SJ.-
Consider the fol]owing functions:

BB, W) £ o, e, o Bl s R @ PLV),
BT, min . R(Q,P.V) + D@PVIQPW) - BT,
Rup(E, Wo) £ inf Ruy(E, W),
Rr(E,Wo) £ jof B, (E, Wo),

R.(E,Wg) & min
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it d
R(E,W) = min max v-mv%ms""@- P V),

B i i — EI*
RAE,W)S min mex ~ min  IR(Q.PV)+D(VIWIQP)—EI".
The following statements will be proved.
Theorem 1. For all E > 0, for channel with random parameter with states sequence
known to the sender the following inequalities are valid

R,(E,Wq) < C(E,Wg) < C(E,Wg) < Ry(E.Wy).

Corollary. For all E > 0, for generalized channel with random parameter with states
sequence known to the sender the following inequalities are valid

R.(E,Wq) < C(E,Wq) < C(E,Wa) < Ry(E, Wo).

Theorem 2. For all E > 0, for arbitrarily varying channel with states sequence known
to the sender the following inequalities are valid

R,(E,W) < C(E,W) < T(E,W) < Rp(E.W).

The upper bounds are proved by the combinatorial method proposed by Haroutunian
[11] and the lower bounds are obtained by Shannon random coding method [12], some ideas
of constructing the random matrix are adopted from [1]. It must be noted that the problem
statement is closely related to the case of broadcast channels [8], (13], [14], [15].

Note that when E — 0 we obtain the upper and the lower bounds for capacities of the
corresponding channels Wg and W:

Ryp(Wa) = max Igpw(Y A XS),
R.(Wq) & max{Iq.ew(Y AU) - Igr(SAU)},

Ruy(W) £ min Rup(Wa),

Aagter
R(W)< min R(Wa).

R,(Wg) coincides with the capacity C(Wg) of the channel with random parameter, obtained
by Gelfand and Pinsker [1], who also stated that || < |X| +|S|. R.(W) coincides with the
capacity C(W) of the arbitrarily varying channel with states sequence known to the sender,
obtained by Ahlswede [2]. The upper bounds R,,(Wg) and R,,(W) are not tite, they coincide
with the capacities of corresponding channels in the case, when stales sequence is known
also at the decoder. The introduction of auxiliary random variable U does not improve the
obtained upper bounds.
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3 Proof of the upper bounds

the upper bound in the theorem 1.

T of
We begin with the proof with rate R = (1/N)log M and error probability

Igt6>ﬂandacode(f.g)183iveu.
!qﬂﬁp{—N(E—J)}sE—5>0-

According to (1) and (3) it means that
L s 5 QUeWM (YN - g7 (m)lx(ms),8} < ep{-N(E - §)}.
M meM sesSV

The left side of this inequality can only

decrease if we take the sum by vectors s of some
fixed type Q": :

T QVEWNY" —g 7 (m)Ix(m,s),s} < Mexp{~N(E - §)},
seT2(5) x(ms)€S (M)

where f(M,s) is the set of all codewords used with the states vector s,
Let us fix the conditional type P of the sequence x for given s. For each s € 7J/(S) we

consider the vectors x(m, 8) from 7§/ p(X|s). As for each s
S lMs) N7 p(XIs)| = M
and hence i
= . N
Mo N g O IV el

then it follows from (6) that

M<(N+ 1)*8'131'@‘@“2”‘”@U(M.s)nfé‘.p(ms».
(-4

from where we conclude that for each @’ there exists at least one type P’ such that

MIZZSIN + 1) < 5™ [5(M,8) (VT2 (X]s)]. (13)
seTH(S)

hWe shall remember that the choice of P' depends on @', Now for any conditional type V we
ave
23 Q" (s)x

€T (S) x(m,s)ef (Ma) (T4 o (Xls)
xWN I oy (Y Ix(m, 8),8) - g7 (m)|x(m, 8), 8} < M exp{~N(E  §)}.
Let then type Q' and conditional type V be such that :
D(QPV|QPW) < E. (14)
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As the conditional probability Q" (s)W”(yix,s) is constant for different s € 7§(S), x €
T4 p(X|8) and y € T p (Y [x,8), we can write

QY ()W (ylx,s)x
sETS) x(ma)e] (M8) [\ T 5. (Xls)
2 {1TY g (Y 1x(m, s),8)| = lg7 (m) (T p v (Y |x(m,s),8)[} < Mexp{—N(E - §)},
or

{172 oy (Y [x(m, s),8)| — |97 (m) T3 p v (Y Ix(m,5).8)]} <
ne T () x(m.s)E (M) \TZ) L. (Xls)

Mexp{—N(E - 8)}
= QN(s)W¥(ylx,s)
From (10), (11) and (12) we obtain

1T pey (Y |x(mn, 5), 8)|—
ST 20(5) x(ma)ef (M) T pu(Xis)

Mexp{-N(E -8)}
~ exp{—N(Hg/(8) + Hgpy(Y|X,5) + D(QPV|QP'W))} =

<HY > |97 (m) T pey (¥ [x(mm;8), 5)|.
s€TH(8) x(ms)e /(M=) T p(X]s)
The sets g~'(m), m € M, are disjoint so the right part of the last inequality is upper
bounded by
Z |TQ'Y,F.V(Y Is)l.
sT3(5)
Taking into account (8), (9) we receive

> M, 8) T p(X[S)|(N + 1) ¥ exp{ NHgy o (Y | X, S)} -
ne‘!g( 5)

~M exp{N(Hg(5) + Ho.pv(Y X, S) + D(QPV|QPW) - E+6)} <

< Y exp{NHgryv(Y|S)}.
s€T(5)

Now [rom (13) we obtain
M exp{N(Hq (5) + Ho pv(Y|X, 5))} x
X[V + 1) BV _ exp{N(D(@PVIQPW) ~ E+8)}] <
< exp{N(Hg/(S) + Hg v (Y|S))},

s exp{N(Ho pv(Y15) - Hopy (Y1X, 8))}
= IV + 1) FIATOD — exp(N(D(QPVIQPW) - B + 5}
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be minimized by the choice of conditional type V,
account the continuity of all expressions we o
minimize not only by types but also by any eondmoml probabl]ity distributions V. Then it
can be maximized by conditional probability distribution P for given Q' and minimized by
probability distribution @'. It is Jeft to note that

Hopv(Y1S) — Harv(Y1X,8) = Igpv(Y AX]|S).

The right side of this inequality can
meeting the condition (14)- Taking into

The upper bound of the theorem 1 is proved.
The upper bounds in the corollary and the theorem 2 follows from the upper bound for

the channel with random parameter, because
OB, Wa) < jaf,C(5:Wa) < jaf Ra(E, Wa),

C(E,W) < Qgﬂg(}}s}c(ﬁ'- Wa) < Qleﬂgfls,ﬂm(ﬂ- Wa).

4 Proof of the lower bounds

The proofs of lower bounds are based on the random coding arguments.
Let us fix positive integers N, M, type @, conditional type P, & > 0. For brevity we
shall denote u[m.;:_)x(m, s) = ux(m,s). Denote by £p(74'(S)) the family of all matrices
TN (8,
L = {ux(m,8)}"“%, such that the rows L(s) = (wx(1,8),ux(2,8),...,ux(M,8)) are
collections of not necessarily distinct vector pairs, majority of which are from Té\:p(les),

Let us denote by Ag,p(m, s) for any m € M and 8 € 7J'(S) the random event
Aq,p(m,s) £ {ux(m,s) € T3p(UX]s)}-

Let us now consider the sets

5(m,Q,P) 2 {s € T4'(5) : Ag,p(m,s)}, m.e M,

M(s,Q,P) & {m € M: Agp(m,8)}, s € T3(S),

(M, 5)(@ P) 2 {(m,5), m € M, s € TJ'(S) : Ag,p(m,8)}.

We shall prove the following modification of the packing lemma from [9]
Lemma 1. Forall E > 26 > i i 5
e > 25 > 0, types @, P, there exists a matrix L = {ux(m, s)}fgg)
|gev(Y AU) = Igp(UAS)+ D(V|W|Q,P) — E - 24]* ),
15)

such that for each o i
o s € T3'(S) vectors ux(m, s) for different m from M(s, @, P) are distinct

M =exp {N min
V:D(V|W|Q,P)SE

Pr{Aq,p(m,s)} < en{—exp{Né/4}}, (16)
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sand for any pair (m,s) € (M, 8)(Q, P), conditional types V : X xS — YV and V:XxS—=Y
Hor sufficiently large N the following inequality holds

T Waxim e N Y U Ty Fhuxied ).5) <
mm' ¥ €5(m’ Q. P)

< [Tpy (Y Iux(m;s),s)| exp{—N|E - D(V|W|Q, P)i*}. (17)

The proof of lemma 1 is given in the appendix.
The next lemma follows from the first one.
Lemma 2. For all E > 25 2 0, there exists a matrix L = {ux(m,s)}2 with

{Hopv(Y AU)- (18)

M=o {Na'e'#(ss TP voviwa.r<e

~Igp(UAS)+D(VIW|Q,P) - E— 25"} =

ohis {Na'e'g(nm v-owi8.r<s V. (Y A V)~
~lary(U A 8) + DIVIW|Q, Pg) - E-24] },
such that for each Q and s € TJ'(S) vectors ux(m, s) for different m € M(s, Q, Py) are
distinct and
Pr{Zqp;(m,s)} < exp{— exp{Né/4}}, (19)

and for any (m,s) € (M, 8)(Q, P), Vq:k’xS-oJ)andf/:;t‘xS—ry.typesandP
for sufficiently large N the following inequality holds

N HrwVxtme N U U Tfpo¥luxm,s),#)f <
QeQn(S) mim’ g'eS(m',G,P)

v (¥ Jux(m,s), s)| exp{~N|E - D(V|W|Q, P)|*}. (20)

0Py
< ol 7ok

The next lemma can be proved similarly to the lemma 1.
Lemma 3. For all E > 26 > 0, typeQ’suchthat D(@'||Q) < E, conditional type P,

there exists a matrix L = {ux(m, s)} T‘A(?m with

M =exp {an(q-wmpw;ssi Igpv(Y AU)- (21)

~ Igp(U A 5)+ D(QPV|QPW) - E - 2|*},

such that for each s € 74/ (S) vectors ux(m,s) for different m € M(s, @', P) are distinct -
and (16) holds and for any (m,s) € (M,S)(@,P),V:X¥ xS —Yand V:X¥ x5 — Y, for
sufficiently large N the following inequality holds

T oy Yx(me) )\ U U T pp(Ylux(m',s),s)) <
m#m’ o'eS(m’,Q' )
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< T2y (¥ Iux(m, ), exp{~N|E — D@PVIQPW)I'}. (22)
To formulate the next two lemmas, which follow from the lemma 3, let us denote
75(5) = 2(5).
Q:D(QIQ=E
seTE
Lemma 4. Forall E>262 0, there exists a matrix L = {ux(m,,)}m_%g} with

M =exp {N "gnm}xv:nwp"‘}iﬂms Marpy (¥ AU)- o

—Igp(UAS)+D(@QPV|QPW) - E ~ 25|+} —

= i in I YAU)-
= W{N%"’v:mcrra%?amssl @y (¥ AU)

—I.p;(UAS) + DQPSVIQPGW) - E - z.s|*} :

such that for each @ : D(Q|Q) < E and s € Tg/(S) vectors ux(m,s), m € M(s, @', Fy)
are distinct and (19) is true and for any (m,s) € (M,8)(@,Pg), Vg : X xS = Y and
17:Xx-5—'y,f-YPeledlMD(QHQJSE.P.fOTﬂ“ﬁGimﬂylargeNthefollowing

inequality holds

7y Y |ux(m,s), s) Tpp (Y Iux(m',),8)| <
Q’th}mss @Ryt I : nmyv"'-'es{g.é.h A gai

< ol 5 T8 5y, vy (V1uX(r,8),8)| @xp{~N|E ~ DQPVIQPW)I*}. (24
Lemma 5. For all E > 24 > 0, @ € Q(5), there exists a matrix
s | TE(S)

.QeQ

L = {ux(m,s)}, %,
with
M=exp {N dofminmex  min  Howy(Y AU)-. (25)
~Ig,p(UAS)+D(QPV|QPW)— E~ 25"} = =
2l {N&‘;n&n vw(wan#i’épamsx ferr (¥ AU)-
~Ia.7;(U A S) + D@PVIQPaW) - E- 2]},

such that for each s € aléjq 74 (S) vectors ux(m,s) for m € M(s,Q', Pg) are distinct and

(19) takes place and forany m € M, Vg : X xS =Y and V: X x § —
i 1 . by . Y, es e,
Q such that D(Q]|Q) < E, 2, for sufficiently large N the following inequalitytlrtsdsq .

<

[t
|qu 3Py, Y (Y [ux(m, 8), 8) N ,H,,. ; ESIH.Q.P) T3's.0(Yux(m',&), &)
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< pig |74 5, v,, (Y 1ux(m, s),s)| exp{~NIE - DIQPV|QEW)7), (26)

awhere Q' = {Q': D(Q'||Q) < E,Q € Q}.
Proof of the lower bound of theorem 2. The existence of a matrix

L = {ux(m,s)}:=y

satisfying (18), (19) and (20) is guaranteed by Lemmm 2.
Let us denote by P and V the corresponding sets of conditional types Fg and Vg, where

i@ € Qu(S) and
s¥m,P)= |J S(mQ Pg), meM.
Qeln(S)
Let us apply the following decoding rule for decoder g: each y is decoded to such m for
which y € i gl 'szd’,alvq(Ylux(m, s),s) and

o D(Vg||W|Q, Fg)
is minimal.

The decoder g can make an error during the transmission of message m, ifzq_pa{m,s]
takes place or if s € SN (m, P7) , but there exist m’ # m, types Q, P, V, somes’ € S(m’,Q, P)
such that

ve (Tl v (Yiux(ms),s)Tgp (Y Iux(m',s),s)
QeQN(S)
and

D(V|W|Q, P) < o&in  D(VolW1Q, Fg). (27)
Denote ) -
D={Q,P,v,V:(27) is valid} .

Then the error probability of the message m is upper bounded by the following way:

-rgg’:e(m, 8) < ol Pr{Ag p;(m,s)}+

N N
* e {gwgqu"é-"a(ylu(’“‘s)'s]n

U U Tg:#.ﬁ'(ylu(m'! Bt)s s’)lx(m, B), 5} .
mi#m' g eS(m',Q.P)
Taking into account that the probability distribution W™ (y|x(m, s), s) is constant for
fixed @, P,V the second item can be upper bounded by

1N T"‘_'pélvg[Y|ux(m,s),s)r] U U mpelYIux(m,s)s)|x (28

D |QeQn(S) m#m’ yeS(m' Q,P)

X ﬂg}(ﬁp_)W‘* (ylx(m,s),s).
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(20) for sufficiently large N we obtain

From (11), (19) and
mag e(m, s) < exp{— exp{N&/4}}+

+3 n%exp{NH%,VQMXS)}eucp'{—N(E-DWuwm,ﬁn}x
Qe
5 x _max_exp{~N (Harzva(¥Y1XS) + D(VallWIQ, F3)) } <
en(5) .
< exp{— exp{Né/4}}+

QeQN(S.
+(N + 1}I.$I(1+Ml¢"i+ﬂ"llr“1|)’l) exp { Ncen!l.i:ﬁsl Hg Py Va (04 xg)} %

s { -N(E- min, D(VLIWIQ, Pé)))} X

oo [N in (Farg Y VXS) + DIWIQ Pa))} <
< ep{-N(E-9)}.

The lower bound of theorem 2 is proved.
Proof of the lower bound in the theorem 1. We shall construct the code only

for s € TZ(S), because for sufficiently large N Pr{s ¢ 74(5)} < exp{~N(E - &1)}. The

existence of a matrix L = {ux(m, 8)} 0y satisfying (19), (23) and (24) is guaranteed by

Lemma 4.
Now we denote by P and V the corresponding sets of conditional types Pg and Ve,

where @ satisfies the condition D(Q']|Q) < E and -
S§(m,P) = U &8(m@,Py), meM.
Q:D(QIQ<E
Let us apply the following decoding rule for decoder g: each y is decoded to such m for
which y € n P (Y |ux(m,s),5) and :

@:D(QIQSE
D(Q'FaVer|QFGW)

min
Q:D(Q|IQ)<E
is minimal, ' 2

The decoder g can make an error when the message m is transmitted and Iql'pa’ (m,s)
takes place or 55(m, P*) takes place, but there exist m’ # m, types Q (such that D(Q|Q) <

E),P,V, vector & € 5(m’, @, P) such that

> Q':B(an)ss 7.y (Y fux(rm, ), ")_ NT3lp.0 (Y lux(m', &), &)

and

DQPYIGPW) <, i, D@ PaVe QW) (29)

Denote
D= {Q,P,v.i’:(zg) isvalid}.
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Then the error probability of the message m is upper bounded by the following way:

Y. QY(s)elm,s) +exp{-N(E - )} <
s<T£(5)

s T QWP ma

weT£(5)-SE(m,P")

+ 32 Q”(S'JW"{U N T4 e, YIux(ms).s)()
se55(m.P") D @ DQIQISE

n U U Ta"}'?(Y‘“x(m,u B,}: B’)Ixfm’ 8}, B} + Q'-'P{—N(E e El]} <
mipm’ e S(m',G.P)

- RCE 1 Y Q"(s)exp{—exp{Nd/4} +exp{—N(E — &1)}+
QDQIQ<E TV (S)
+3 ] TQ'?,pa,,v, (Y|ux(m,s),s)(] U U oY iux(m,s),5)) x
D |QD(QIQE mgm’ g eS(m’ Q.F)

x Y QV(eW¥(ylx,s).
s TE(S)

[aking into account (10), (11), (12) and (24) the error probability can be upper bounded by

(N + 1) exp{~N(,, min _, D(@IQ)} exp{~ exp{NG/4}) + exp{~N(E - &)}+

+ T 0oBinea ™ WHerg ve VXS @i =NE - D(QPV|QPW))}x
[exp{~ND(Q1Q)} exp{~N(Ha, vy (Y|XS) + D(Var IW|Q', P))}] =

" = exp{~ exp{N5/4} + Né} + exp{—N(E - &1)}+
+ gexp{N Hg pz, v, (Y1XS)} exp{~NE} x

% max
QDQUE

min
Q:D(QIQSE
-N ¢
ok { (Q' ’D%Jnm)sslﬂq'-?&-vqn (Y|XS)+

+ D@, Py, Vel QPyW)| - DQPVIIQPW))} <
< exp{- exp{N6/4} + Ny} + exp{~N(E = &1)} + (N + 1) +RHHIND exp{ —NE} <
< exp{~N(E - ¢€)}.

The lower bound of theorem 1 is proved.
The lower bound in the Corollary can be proved similarly based on the Lemma 5.
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Appendix i .
Proof of the lemma 1. Notice that if some matrix L € Ly (73’ (S)) satisfies (17) for any

and V, th 8) # ux(m',s) for m # ra’ from M(s,Q,P), s € T(S). To prove
:’hat, it is en::ghm:g"cl;:oose v =V and D(V||W|Q, P) < E.
If  is such that D(V[|W|Q, P) = E then

awp{-N|E-DOIWIQ, P) '} =1

and (17) is valid for any M. It remains to prove inequality (17) for
V(Q, P, E) = {V : D(V|WI|Q, P) < E}.

For any matrix L denote
An(L) = (N+ DM 5> exp{N(E~D(VIWIQ, P) - Hory(Y|X5)} x
V Vev(Q,P.E)

N '
X  Jmex T8y (Y lux(m, s).s}ﬂwym’ .‘E’[Hqﬂ?‘q‘np(ym,;(m'sr),s:) .

Itisglmr:hatifAm(L}slforaJlmeM,thaanﬁaﬁes(lT}EoraHaeS(m,Q,P}’y

and V.
Notice that if for some L € L (72'(S)) the following inequality holds

1 5 L ~<I
‘ﬁmg%( )—Er (30)

then An(L) < 1 fot at least M2 indices i, Further, if L/ is subcollection of L with such
indices then A (L’) < Am(L) < 1 for every such index m. Hence, the lemma will be proved

if for an M with
2exp {Nmrvﬁ"ir.ﬂﬂss lIgpv(Y AU) - Igp(UA S) + D(V||W|Q, P) -E- 25}+} <
sMs< = (31)
= W{N?:D[V%,P}ss Iopyv(Y AU) ~ Iqp(UA S)+D(V|W|Q,P) - E - 6|+} 3

we find a matrix L € L (74(S)) satisfying (30) and (16).
We shall construct a random matrix I = {ux(m, a)}::i%m in the following way. We

choose at random from 7¢)'s(U), according to uniform distribution, M collections .7 (m) each

of
J = exp{N(Iq,p(U A 5) +6/2)}

vect;rs ui(m), j=T1,J,m=TM. |
or eachm = 1, M and s € TJ'(S) we choose such a u;(m) fro
L} g J t
T4'p(Uls). We denote this vector by u(m, s). If there is no mfc(h \)"ecto: ]et(:.ln(ln,h;;t:{l(;?nf
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Next, for each m and s we choose at random a vector x{m, s) framT*p(X{u m,s),s) il
a(m,s) & T)'p(Uls) and from T'»(X|s) if ulm,s) ¢ T4'(Uls).
First wshalluhawthatforﬁlargemughmdsnymands{lﬂ}ta.buplase, Really,

Pr{Agp(m,s)} = Pr{ ﬁ uy(m) # Té",p(UJSJ} <
J=1

J J
i Ut U]
< H [1-Pr{u,(m) e TpUIs)}] < [1 T%;m] <

< [1 — exp{—N(Igp(U A 8) + 6/4)}| ">V arUASY/2)}
Using the inequality (1 — )* < exp{—at}, which s true for any a and t € (0,1), we can see

that
Pr{Aqr(m,s)} < exp{— exp{Nb/4}}.
To prove that (30) holds for some L it sufficies to show that
EAn(L) <1/2, m=T,M. (32)
To this end we observe that

E (T3py (Y ux(m,s),s)(] U U T ,o(l’lm‘(m.#),ﬂ
mz#m' s'ES(;

Z Pr {y € T3y (YIux(m, s).s)} xPriye U T3pp(YIux(m,s),s)},
mﬁm’ yeWN ‘ s'€5(m",Q,P)

because the events in the brackets are independent.
Let us note that the first probability is different from zero if and only if y € ‘Ja'nvﬂ’ls).

in this case we have for N large enough

TN (UXly,
Pr{y € T3lpy(Yux(m,s),8)} = i I;?:((U x] ;Jr)l 3

< (N + 1)MIX18l exp{—NIg py(Y AUX|S)} =
= (N +1)M¥l exp{—NIg py (Y A X|S)}.
The second probability can be estimated in the following way

Pr {y € U TQN,PP{““J‘(‘“'-S’LB')} <
vesm'QP)

'sPr'{ye U Té"mmu{m*,a’),ﬂ} <
" #eS(m'Q.P)

. W(m')eT(m') weTY p(Sluy(m))

< Pr {y & U U _P_‘-,{Y|u,(m’),s']} <
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Ny (UIY)l

Py
C 5 mye Rt} I S

T uy(mhET(m)
< (N -+ )Mexp {-Nlgrs(¥ A U) - Iap(UAS) - 6/2)}.

At last we obtain

T (Y [ux(m, =J-””,9,....m£.4§ 3

< (N +1)PA0RISED (M — DTy (Y 8)1%
x exp{~N(Iapv (Y A X18) +Igpp(¥ A U) - Igp(UAS) — 6/2)}.
From (31) it follows that for any V e V(Q,P,E)
M—1< exp{NUgpp(Y AU) - Iap(UA 5)+D(V|W|Q, P) - E — 6},

R e Chien E:‘Ln(fa) < (N+ 1)WI(|¢\'H3|D’I+I1I|5|+1),¢
xY ¥ ep{Ngep( AU)-Tap(UAS)+ D(V|WI|Q,P) - E — 6} x
V. vel(Q.P.E)

x exp{NHo.py(¥19)}  exp{-NUapv(Y AX|S) +Igpp(Y AU) = Iq.p(UAS) = §)}x
x exp{N(E — D(V|W|Q, P) — Hq,ry(Y1X5))} <

<(N+ 1)MIG-¥IISIIJ¢I+I-¥II-SI+1) 2 exp{—N&/2}.
VA

Taking into account (7) we obtain
EAn(L) < (N + 1)MORISIPHAISHD exp{—N§/2},

which for N large enough proves (32) and hence lemma.
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Guiiw julwinpbl thnhnfugon b yunwhwlwl wwpudibnpny juwmnhGbph
E-mGwlmpywui Gnp qGwhwmwljwGGbp '

U. G. <wpnipymiGrul

sl

‘Hunwplpjwd b6 wunhwlwl yupudnpny b juiwwlwinpbG hmbohaan quwnimpGbpp
i nbwpoud, bpp YhGwlGbph hwenprulwinipmbp hupnGh & woupnnhG: Ywoniggud b6 E-
mGuwlnipywb JbphG L wnnphl qGwhwnwlmGibpp: bpp £ — 0, wuwnwhwiwl Yogujnpiwb
qliwhwunuiwibpp b hodwyuenwefowl uwmnhibph hopnth mGwympmGibpp hudpilGoud
hi:



