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Abstract
Random coding and expurgated bounds obtaining by method of graph decomposi-
tion for E-capacity of discrete memoryless channel (DMC) is presented. Three decoding
rules are considered, the random coding bound is attainable by each of three rules, but
the expurgated bound is achievable only by maximum-likelihood decoding.
1 Introduction
Let X, be finite sets and W = {W(y|z),z € &, y € Y} be a stochastic matrix.

Definition 1: A discrete channel W with input alphabet X and output alphabet Y is defined
by stochastic matriz of transition probabilities

W:x—).

An element W (y|z) of the matriz is a conditional probability of receiving the symbol y € Y
on the channel’s output if the symbol z € X was transmitied from the input.

The model for N actions of the channel W is described by the stochastic. matrix
WA 2N N,

the element of which W (y|x) is a conditional probability of receiving vector y € ¥, when
x € XY was transmitted. Here we consider memoryless channels, which operates in each
moment of time independently of the previous or next transmitted or received symbols, so
forall x € X¥ and y € YN ¥
W (ylx) = I'[IW(vnlsn}- (1)
[
Let M denotes the set of messages to be transmitted and M — the number of messages.

Definition 2: A code (f,g) for the channel W is a pair of mappings, where f : M — XN
is encoding and g : YN — M is decoding. N is called code length, and M is called code
volume.
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Derivation

ili jssion of the message m € M by the
i 8: The probability of erroneous transmission O,
ie?lnnf::ﬂg code (f, g) is defined as
e(m, £,9,N,W) £ WN" — g7 (m)|f(m)) = @
=1-W¥ (g™ (m)|f(m))-

We shall consider the maximal probability of error of the code (f,9):
e(f, 9, N, W) & max e(m, f, 0, N, W), L

B(M,N.W] g ﬁ:‘}}e(fsg:Nst!

where minimum is taken among codes (f,9) of volume M.
Definition 4: The transmission rate of a code (f,g) of volume M 1is

R(f.0,N) & S 1o M. (4)

Ntethstinthispa.paal]acp-uand]og-aamtot:hebmtwo._ Ry
OWe consider the codes, error probability of which exponentially decrease with given ex-

ki ef,0,N, W) < exp{~NE}. )

Denote the best volume of the code of length N for channel W satisfying the condition
(5) for given reliability E > 0 by M(E, N, W).

Definition 5: The rate-reliability function, which by analogy with the capacity we call
E-capacity, is A 1
R(E,W) =C(E,W) =;}§1—\, log M(E, N w). (6)

The concept of E-capacity was first considered by author in [1], there was presented .
derivation of the upper bound R,,(E,W). The simple combinatorial proof of R,,(E, W)
was obtained in [2].

Alternative methods for existence part of coding theorems demonstration are Shannon’s
random coding and Wolfowitz's maximal code methods. In [3] Csiszér and Kérner introduced
& new original method, based on the lemma of Lovész on graph decomposition. Different
methods of error exponent investigation were presented in [4]-{9] and in many other works.
Here we shall derive upper bounds for R(E, W) using method of graph decomposition.

2 Formulation of results
For beginning we remind our riotations for necessary characteristics of Shannon’s entropy
and mutual information and Kullback-Leibler's divergence.

The size of the set X is denoted by |¥|. Let P be a PD of RV X

P={P(z). z € X},
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;V be a conditional PDnIRVY!orgimvdue_zo{RVY
: V= {Viyiz),z € X,y € ¥}.
The joint PDof RV X and Y is
PoV = {PoV(z,y) = Plz)Vlylz).z € X.y € ¥},

and PDof RV Y is
PV = {PV(y)=Y_ Plz)V(yiz),y € V}.
22X

Let V: X — X is stocastic matrix of conditional probabilities V = {V(z|%),z € X, Z € X}.
We use the following notations: for entropy of RV X with PD P:

Hp(X) & - ):pfz)logp(z}

for joint entropy of RV X and Y:
Hpy(X,Y)2 - Y P(z)Viylz)log P(z)V (y|z),
ZEX,yEY

for conditional entropy of RV Y relative to RV X:
Hey(Y|X)E = 3 P)V(ylz)logV(ylz),
X yEY
for mutual information of RV X and Y:
V(vla'»)
Ipy(X AY] a_ P(z)V(y|z)]
for informational divergence of PD P and PD Q on X:
P
D(PIG) £ T P(s)log -
and for informational conditional divergence of PD Po V and PD Po W on & = J:

A V(ylz)
D(V|W|P) = m)__;y!’(#)"(vix) log W)

The following identities are often useful
D(PoV||Q o W) = D(P||Q) + D(V||W|P),
Hpy(X.Y)= Hp(X) + Hpy(Y|X) = Hpu(Y) + Hpy(X|Y),

Ipy(X AY) = Hev(Y) — Hex(Y1X) = He(X) + Hpy(Y) — Hpy(X,Y).

The proofs in this paper will be based on the method of types [8], [10]. The type P of
a sequence (or vector) X = (21,...,2n) € XY is a PD P = {P(z) = N(z|x)/N, z € X}.
where N(z|x) is the number of repetitions of symbol z among =z, ..., Zx.
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iof d Ey"hthePDP={P(ziy)stzn:y!x)y)ﬂY-SE&"yE

¥} Tﬁ:;::n;gp:l;f ;r:)!: tl{e pumber of occurrences of symbols pair (z,y) in the pair of

Wes(:;ﬁ;attheconditionaltypeofyformxispn V={V(lz), z€ X,y e ¥} if

= |4 zfor&ll:cex.l\'ey- y

N b 3) = N enoted by () and the subse of P(X) consistin of the
poasib]stypesufsequsnosxex"isdmotedbypﬂ(x]. -

The set of vectors x of type P i8 denoted by T2'(X), Tp. (X)=0 f:.r PD'P ¢ Py(X).

Thesetofallsequenoesyey"ofwndiﬁmalwe"forslmxe‘Tp (X) is denoted by

7% (Y]x) and called V-shell of x. The set of all possible V-shells for x of type P is denoted

Vx(g:nt*:i'fo ing lemmas very useful properties of types are formulated, for proofs see (8],
[10].
Lemma 1: (Type counting) "
[P ()| < (N +1)¥, (7
Vn(, P) € (V +1)7P. ®

Lemma 2: For any type P € Pn(X)
(N +1)~¥ exp{NHp(X)} < |77 (X)| < exp{NHp(X)}, ©)
and for any conditional type V and x € T3'(X)
(N + 1)~ exp(NHpy (Y1X)} < |73y (Y1X)| < exp{NHpy (Y|X)}. (10)

Lemma 3: If x € T2'(X), then for every PDQ on X
N
Q¥ (x) = Hl Q(zn) = exp{~N(Hp(X) + D(P|IQ))} (1)

Ify € T8, (Y|x), then for every conditional PDV on Y for given x
W (ylx) = exp{—N(Hpy(Y|X) + D(V||W|P))}. - (12

Consider the random coding exponent function R,.(E, W), which is an inner estimate for
C(E,W) = R(E,W)

R.(P,E,W)% pv(X AY) + D(V||W|P) - E|*, (13)

min
V:D(VIW|P)<E
R.(E, W) £ mgx R, (P, E, W). ;

Consider the expurgated exponent function R.(E, i i i
et R.(E,W), wm?h is another inner estimate

R:(P,E,W) = min{Ipp(X A X) + |Bppds(X, X) - B[*},
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rl:hcre dglz, %) is the Bhattacharyya distance
dp(z, %) £ ~1og 3 /Wlylz)W (y[3),
vey
and 2
R.(E, W)= mﬁxﬂ,{f’, E,W).
As an upper bound of R(E, W) serves sphere packing exponent function

Rp(P.EW)= v:nw?iuﬁpyssfp"'{x AY), (14)

R’P(EI W] = mﬂxﬂilfpl E, W}
It was first considered in [1].
Theorem 4: For DMC W and for any E > 0 the following bound holds

R(E,W) > max(R.(E,W), R.(E, W)).
Theorem 5: For 0 < E < E_(P,W), where

o) = min {5 ZolBER) )

R(E,W) = R.,(E, W)= R.(E,W).
Remark: For E — 0
E_%RIP(PI 0,W)= ER!'(P: 0,W) = IP.W(X AY).

3 Proof of theorem 1

Lemma 6: Consider a finite set A and a nonnegative valued function v on A x A such that

Jor every a,b e A
v(a,b) = v(b,a), v(a,a)=0.

If for some t, for each a € A
S vlab) <t,
beA
and 1y, la, . .., Lg are nonnegative numbers such that
s
YLt
=l
then A can be partitioned into S disjoint subsets Ay, ..., Ag such that for everya € A,
3 v(a,b) £1t,.

bEA,
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lemma see [3]- 5
o B vt bounds for relisblity function E(R, W) of DMC and of sources with side
ined using this lemma 4. We now present similar derivation of random

i i obtained
:f;i?;a :ln?in;::}gated bounds for E-capacity R(E, W) of DMC.
Theorem 1 fomulatedabovaisaoonaequmcaofthefouawmg

Theorem 7: For DMCW : X = ¥, any E>0,6>0 and type P € Py(X) for sufficiently

large N codes (f,g) exist such that . :
exp{~N(E + )} < elf, 9, N, W) < exp{-N(E - 6)} (15)

d
& R(f,0,N) > max(R.(P, E +6,W), Rs(P, E + 6, W)).
The proof of the theorem 3 consists of several steps. First we shall prove

Lemma 8: For given type P € Py(X), for any 0 <7 < |‘J}"(X)]la.mc ezists, such that
¢ c T¥(X), || > r and for any X € C and matriz V : X — X different from the identity

matriz the following inequality holds
1T (X1 NCl < rITRy(XIX)| exp{—N(Hp(X) - 6n)}, (16)

where
an = N7Y(|1 %[ + | X]) log(N + 1) + 1].

Proof: Using lemma 4 let us take A 2 7¥(X) and
o & [ ITRH(XIR)™, if x # % and x € TH(X[%),
¥x) { 0, fx=%
Because x and X are of the same type P, when X € T.5(X|X), then X € T (X|x) (where
V' is the matrix transposed to V) and therefore v(x, X) = 1(%, x). We have also from (8)

Y ovxx=Y Y y(xx) < (N+1)RP
xeTN(X) V xeT)(X)

Ifwetalmt—é-(N+1}|"‘|’ t.ét}'S s = 1,5, then according to Lemma 4 there exists
A " 1 ] 14y a
partition of 74'(X) into subsets A,, s =T, 3, such that for each & from A,

T XIR) A < SITAAXBI(N + 1), 5= T3, (17
Taking C equal to greatest A, and S equal to integer f |7 (X ;
€l 2 S~ TH(X)| 2 r, and inequality (16), which follows ﬁfr (1?-) Lﬁ({g)},lﬁ;ﬁ wl:e receive

o L. A
S UTFX/r] = XN ~ [TF X

Lemma 5 is proved. W
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For existence theorems demonstration it is possible to consider various "good” decoding

' rules. For definition of those rules following [3] apply different real-valued functions o defined

on X¥ » Y¥. One says that g, decoding is used if to each y from Y™ on the output of the

channel the message m is accepted when codeword x(m) minimizes a(x(m),y). One uses

such functions & which depend only on type P of x and conditional type V of y for given
% Such functions « can be written in the form a(P, V) and at respective decoding

Ga* y" — M,
the message m corresponds to the vector y, if
a(P,V) = mina(P, V), y € T, (Y |x(m)) N T25 (Y |%(m)).
(7 :
Previously the following two rules were used [3]: maximum-likelihood decoding, when ac-
cepted codeword x(m) maximizes transition probability W (x(m)|y), in this case according

to (12)
a(P,V) = D(V||W|P) + Hpy(Y|X), (18)

and the second decoding rule, called minimum-entropy decoding, according to which the
codeword x(m) minimizing Hpy(Y|X) is accepted, that is

a(P,V) = Hpy(Y|X). (19)
In [11] and [12] it was proposed another decoding rule by minimization of
a(P,V) = D(V|W|P), (20)

which can be called minimum - divergence decoding.
Let V = {V(ylz,%),z € X,% € X,y € ¥}, be conditional distribution of Y’ given values
of X and X such, that

3 PEV(22)¥ (4iz,Z) = P(z)V (ylz), (21)

Y. P(2)V(3z)V (yl=, Z) = P(2)V (1) (22)

Following [3] we write V <, V if a(P,V) < a(P,V) and PV = PV.
Let us denote

Ro(P,B,W) & o {fpv(XAX}+lfpw(Yf\XIX)+D(VHWIP) - El*},

(23)
where RV X, X, Y have values, cormpondmglyn on &, X, Y such that the following is valid:
both X and X have distribution P and PV = P, V7 i conditional distribution of X for
given value of X,
¥/ is the conditional distribution of RV Y given X and X satisfying (21) and (22).
The main stage of the theorem demonstration is

Proposition 1: For any DMC W, any type P € Py(X), any E > 0,6y > 0, 6} > 0, for
all sufficiently large N codes ([, g.) exist such, that

exp{—=N(E + 6y/2)} < e(f, ga, N, W) < exp{—N(E - 8y/2)}, (24)

min
LE D(VIWIP)SB Vv

and

R(f,9ayN) = Ra(P, E + &}, W). (25)
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Vi
inequality
iyt Ru(P,E,W) 2 Rax(P,E,W)
follows from definitions (23) and (33). For the proof of the inequality
Rd(Pl Er W} 2 Rﬂ,r(Pl E| W}

remark that
Lo(X A ) + I AXIX) = L g (XY AX) 2 Lpg(Y A X)

and then compare (23) and (32). ®

Lemma 10: A point BL(P,W) egists, such that
+(P,E,W), when E < E}(P,W
m[R""(P' st T { g:zEP. E,W), when E 2> E;(P, wﬁ.

Proof: Note that functions R,.(P,E,W) and R, (P, E,W) are nonnegatwe and de-
LetmﬁmtpmvematforanyE>E'>0

RQ.S{RE.'.“;JERu.x(PnE:W)‘I'E_E- (3:[}

In accordance with (33), taking into account that for any a and b the inequality |a + bj* <

lal* + |b|* holds, we receive

Ras(RE, W) = 1 Npy(XA X)+pyo(Y AX|X)+D(V|W|P)— E'+ E— E|*} <
Vil'<a |

creasing by E.

€ Ro:(P,E,W)+E~E'
Denote by E2,(P, W) the least value of E, for which R, . (E, P,W) = 0. Let us show that
for any E and E’, such that

0<EZ<E q,,(P W),
the inequality
Roz(P,E\W)+E - E' € Ry /(P E'\W) e REs)
holds. Really in the interval (0, ES (P, W)] function Ra,(E, P, W) is strictly positive, then

Ror(F, B'\W) = (ngX AP) £ DVIW|P) - E) + E- E' >

Vi D(!-’lemsxf b "

2 o iRegspBm Upp(X AY) + D(VIW|P) - E) + E- E' =

=Ro (P,E,W)+E-E
Denote E}(P, W) the smallest E, for which

Ror(P,E,W) < Roe(P,E,W). .
Let us show that this inequality holds for all £ greater than E5(P, W). Consider two cases.
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If0 < E}(P,W) < EL_(P,W), then it follows from (32) and (33) that for all E from
interval (E5(P,W). E2 (P,W))

R..(P,E,W)+E - EL(P,W) < Ra,(P,E;(PW), W) <

€ Rox(P,E}(P,W),W) < Rax(P,E,W) + E — E;(P,W).
If E2 ,(P.W) < E3(P,W), then for all E greater than E;(P, W) we have

Rax(P,E,W)=0= Ra,(P,E,W).
In this case E5(P,W) = E2 (P,W). B
Lemma 11: For each a-decoding
Rox(P,E,W) < R(P,E,W), (36)
moreover for mazimum likelihood decoding the equality holds.

Proof: First we prove the inequality (36). As

DIVIWIP) + Ippo¥ A1) = X PV IV ats 3iog T2, ()
=5V
and
Fote 21100 VOIBD)
DIVIWIP) + Ippl¥ A XIT) = 3 PV @)V iz D log s, ()
zZy
then

Ros(P,E,W) = p in [p(X AX) + Ipp (Y A X|X) + D(V|W|P) - EI* <
WiV g

< vam [Ip(X A X)+

F1/2(,7 (Y A X1X) + DVIWIP)) +1/2Lpy ¢ (Y A X1X) + D(VIW|P)) - EI*.
From (37) and (38) denoting

Tyl ) & expda(e, D WEAWGE (39)

we have

RoslP, E,W) < minllp(X A X) + D(VIVEIP) + Epyds(X: X) - BI* =

= min /57 (X A X) + Eppda(X, X) - E|* = Ru(P, E,W).
Let us now prove that in the case of maximum likelihood decoding
Ry(P, E,W) = Rys(P, E.W). (40)
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ition 7 <o V we have

From the cond
D(7|W|P) + Hpy(YX) € D(V|W|P)+ Hpy(Y|X).

In accordance with (32), (33) and (37) we obtain

iy (X A D) + Tppp(¥ AXIX) + DVIWIP) - EI* 2
' > IppX AX) + Epyds(X, X) - BI*,
and then (40) holds. M

Lemma 12: For each a-decoding
Rﬂ.l‘(Pl El WJ S Rf(PiEl W}, (41)

-minimum entropy dwdiﬂg:
-minimum divergence decoding
the equality holds.
Proof: The inequality (41) is valid because

i in |Iz(Y A X)+D(V|W|P) - E[* = R.(P,E,W).
R, (PEW) < v-DVIWIPI<E ﬁfwl e )
The inverce inequality is not difficult to receive for all three noted a-decodings using condition
V<. V. m

Thus the proof of the theorem 3 is completed. L |
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E-mbwlmpywl wumwhwlwb Yopudnpiwl b wpnwpuiwb gfwhumwiwiGaph
wpmwdnuwip gpuplbtph dwubunniunip

&. U. wpnipmlpul

Wiihnthaus

Uz fuwmwipmd Ghpljuwjwgyoud b pighwn wambg hhzannipyui Juwnngoe E-mGuinpjwi hw-
twp wwmwhwljwb ogunpiwi b wpnwpuiuf vwhiwGibph gpupiph dwubwndnb bnuiuyh
dhgngny unwgnnip: “unwplplous bG wywynnupiwG bpbp YuinGp: Munwhulul Gogw-
Unpiwh uwhiwlp hwowbh & win ponp uinGbph Ghpundudp, pujg wpnwpuiwl uwhiwip
hunnuGbih )6 wnwdbiugnyl 6zdwnumuGiwinpyul wywipgunpiudp:



