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Abstract _

Apmblemufadiamﬁamamnwhumumwsuuﬂnswﬁhingimm
tionlcvalAﬁ:rthaShmmndphumtmlumlved. The security of this system is
meuundbythnupacbodnumbuoimquind;usmu!thewhﬂ;pparnuded&u
the reconstruction of the source messages on the base of cryptograms. In addition to
thapm‘blamutudindbyMuhsvwdArlhnwdammdthntfora;imguming]in,
distortion level A > 0 and reliability & > 0 the probability that distortions between
blocklength N gource messages and each of all first L(N) guessing vectors will be larger
than A, does not exceed 2~V

For given key rate R’ the minimum (over all guessing lists) of the maximal (over
all encryption functions) L(N) and of the expected number of required guesses, with
respect to distortion and reliability criteria, are found.

1 Introduction

We investigate the wiretapper guessing problem with respect to fidelity and reliability condi-
tions for the Shannon cipher system (see Fig.). Encrypted messages of a discrete memoryless
stationary source must be communicated as securely as possible to a legitimate receiver,
which has access to & common key-vector which is independent of source messages.

(Wiretapper )

-
P I - I w = x Laaumm.m

@ u

Fig. The Shannon cipher system with a guessing wiretapper.

The key-vector is transmitted by the special secure channel protected against wiretappers.
The transmitter encodes the source message and key-vector and sends a cryptogram over &

*The work of the suthor was supported by INTAS YSF Grant 00-4163.
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public channel to & legitimate receiver which based on the cryptogram and key-vector recovers
the original message by the inverse, decryption function. The wiretapper that eavesdrop
a public channel aims to decrypt the original source message in the framework of given
distortion and reliability on the base of cryptogram, source statistic and encryption function.
The wiretapper has & testing mechanism by which he can know whether the estimate is
successful (is within given distortion level). The problem is to determine the minimum of
the meximal (over all possible encryption functions) expected numbers of sequential guesses
until the satisfactory message will be found.

The guessing problem was first considered by Massey [20] and later was investigated in
[3]-17], [9], [21]. The guessing problem subject to fidelity criterion was considered by Arikan
and Merhav in [5]~{7], for reliability criterion — in [14], for the Shannon cipher system with
exact reconstruction — in [21]. The Shannon cipher system with wiretapper reconstructing
source messages subject to fidelity criterion were studied by Yamamoto in [23]. We study a
combination of these problems with additional reliability criterion: a generalization proposed
by E. Haroutunian and B. Mekoush [18] of the usual Shannon rate-distortion concept as
a rate-reliability-distortion dependence. The idea is that the minimum of the maximal
(over all possible encryption functions) expected number of required guesses is considered in
relation to demands of guesser not only to distortion level but also to the error probability
exponent (reliability). This approach was investigated for various multiterminal systems (see
for example [13]-[19], [22]).

Now we pass to more detailed definitions. The source {X} is defined as a sequence
{X:}%Z, of discrete, independent, identically distributed (d. i. i. d.) random variables (RV)
taking values in the finite set X of messages of the source. Let

P*={P'(z), z € &}
be the given probability distribution (PD) of source messages. Since we study the memoryless
source,

N
PH(ox) = I',[lP‘” (Zn).

The key {U} is a sequence {U;}3Z; of d. i. i. d. RV taking values in the set & = {0,1}.
Let X = (X1, X3,...,Xy) be a random sequence of N messages, U = (U3, Uy, ..., Ux) be a
sequence of K purely random bits independent of the source messages vector X. Denote by
Xthemomtrucﬁmbythewhetappadthemurmmwwlthvaluﬂinﬁnﬂem;,
which in general is different from X and is wiretapper reproduction alphabet. X~ and ¥V
denote the N-th order Cartesian powers of the sets X and &, respectively, 4¥ - the K-th
order Cartesian power of the set /. We consider a single-letter distortion measure between
source and wiretapper reproduction messages:

d: X x 2 —[0;00).
The distortion measure between a source vector X = (z;, Z3,...,Zn) € X" and a wiretapper
reproduction vector % = (&;,%s,...,£y) € XV is defined as average of the components’.
distortions: . W
d(x,%) = NS dlzn, 2,).

: n=1
Distribution P{ = {1/2, 1/2} is the PD of the key bits. The key-vector u = (u;,us,...,ux)
is a sequence of these bits and P{¥(u) = 77"
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™ S 2N X UK > W(N,K)

cryption functi and W(NV, behhnaatofaﬂcmondingayptog&ms.l?is
bty % e | invgrh'bffa)givanthekey,thstiuthmmdatsthedmypnon

e 7t W, K) x UK - x~.

Foraayptosramw=fu(x.u).them~du‘edlistofsaqueuﬁalgum

gn(w) = {*1(”)!*!(‘”)! i} (ﬁ(w} € -i'”,l =1,2..- |‘il'N)

. called the guessing strategy of the wiretapper. mﬁmmmantw),we
:’(N,K) wenamesguessinsﬁmcﬁonmdnoteGn(xlw)theﬁmcmnhhaxmpsmh

vector x € XV into a positive integer:
. Gn: xN x W(N, K) = {Ilzial"‘lL(N)}!

which is the index [ of the first such guessing vector &i(w) € On(w) that d(x, (w)) < A
In other words, { is the number ofsequenﬂalgum&!ofthawiretnpporfmammm
x € XN until the successful estimate %(w) € Gn(w) will be found. Let L(N) is prescribed
limitation of the number of guesses. &
Foremidistorhion_level&zO,poaitivanumberL(McW[degmstmtw
Gn(w}conﬁderthefouowinsaetofsuwesﬁﬂlydeciphmedwctmufmm

A(L(N), Gn(w), 8) = {x: Fu,3L LS LN) = flxu) =w, d(x, % (w)) < A},

and the probability of error
e(L(N), On(w), &) = 1= PN (A(L(N), Gn(w), B)) -

Belowlog-sandexp-smt.akenwthebmefa. ;

Let R’ be the key rate:

- R =N1log2®=K.

A pair of guessing rates (R",R) is called (R', E, A)-achievable for E>0,A > 0and
R‘,'l[forevery£>[},enmpﬁonfunctiunfandnuiﬁcieutlylargeNthaeeﬁstsaguessing
strategy Gn(w) such that ;

N1tlog L(N) < R' +¢,

N7t long-‘p;{GN(x |W)}<R+e,

and

8(L{N)I GN(‘")I A) < QCP{—NE}

Let us denote by Re(P*, R, E, A) and call the key-distortion-reliability guessing rates region
the set of all (R, E, A)-achievable pairs of guessing rates. When E — oo, & = X and
R" =log|X|, Re(P", R, E,A) becomes the key guessing rate function Rg(P*, R'), studied
by Merhav and Arikan in [21]. : ' :

In the next section we specify the region of key-distortion-reliability guessing rates. The
proof is presented in the section 3.
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2 Formulation of Result

Let P={P(z),z€ X} bea PD on X and Q = {Q(2 | z), z € X, £ € X} be a conditional
PD on X for given z.
Consider for given E > 0 the following set of PD P:

a(E) = {P:D(P | P < E}
with divergence 5
D(P | P") = L Pl og .

Denote by $(P, A) = Qp a function, which puts into the correspondence to PD P some such
conditional PD @Qp that for given A the following condition is fulfilled:

Epg,d(X,X) =3 P(z)Qp(% | z)d(z, %) < A.

Denote by M(P,A) the set of all such functions (P, A) for given A and P. Below for
brevity we shall just write ®(P).
We use the following notations for entropy and information:

Hp(X) = - ¥ P(2) log P(a),
Qr(z | 2)
§:P (z)Qp(2 | 2)
We denote by R(P,A) the rate-distortion function for given PD P (see [11]):

R(P,A) = GIF}?jﬁ}P.AJ Ipsipy(X A X),

and by R(P’, E, A) the rate-reliability-distortion function for PD of source messages P* (sce

[18]):
R(P'E,A) = mex . min. . Tnse)(X A X).

Ipg(X A X) = §P(=)QP(£ | z) log

Let us introduce the following region:
Ro(P*,R,E,A) = {(R",R) :
R' > min(R', R(P*, E, A)), (1)
R> j,,;m;‘:;}[min(P-“, R(P,A)) - D(P || P)]}. (2)

Theorem: For given PD P* on X, key rate R’ > 0 and every E > 0, A > 0,
. Ra(P',R,E,A) = Rg(P*, R, E, ).

Corollary: When E — oo, wiretapper requires exact reconstruction of the source mes-
sages and R" = log|X|, we arrive to the result of Merhav and Arikan from [21]:

B, all;.}nmwyﬂau)" R, B, ) = max{min(R', Hp(X)) - D(P || P*)].
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3 Proof of the theorem .
In the theorem proof we apply the method of types (see (10]-{12]). We begin with the

ion of base notions and relations.
h?l‘ﬁt;.:e Pofavectorxe XV isaPD P = {P(z) = N(z|x)/N, = € X}, where N(z|x)
£ among %, - - - ,Zn. Theset of all PD Pon &, which

: number of repetitions of symbol
E:t;mﬂfmtypuofmtoﬂinxnindenotedby?(x.m. The set of vectors x of type

is denoted by 7p(X) and also called type. o
P e aonal type of & for given x I8 PD @p = {Qp(8l2), = € ,8 € ) if
Nz, &x,%) = N(z|x)Qp(&|z) for all z € X, £ € A. The set of all vectors X € &™ of
conditional type @p for given x € Tp(X) is denoted by Zpg, (R]x). The set of all possible

Tras(X for x of type P is denoted by @p(%, P, N).
mﬁgwip;l) use the following useful properties of types ([10]-{12]):

[Pn(X)] < (N + 1), 3)
|@»(%, P, N)| < (N +1)*¥I21, @
for any type P € P(X,N)
(N + 1) exp{NHp(X)} < |Tr(X)| < exp{NHp(X)}, (5)
for any conditionsl type Qp and x € Zp(X)
(N + 1)~ ¥I® exp{NHp g, (R1X)} < [Tras(X[%)] < exp{NHpg,(X1X)},  (6)
if x € 7p(X), then for any PD Q on &
Q¥ (x) = exp{-N (#p(X) +D(P || )}, (7
(N + 1) exp{—~ND(P || Q)} < @"(7p(X)) < exp{~ND(P || Q)}. (8)

The proof of the inequality .
Ro(P*,R,E,A) C R(P*, R, E, A) ©)

is based on the following random coding lemma about covering of types t-:fvectom, which is
a modification of the covering lemmas from [1], [2], [11], [19]: ;
Lemma: Let for £ > 0,

L(P,Q) = exp{N(Ipg(X A X) +€)}.
Then for every type P and conditional distribution @ for N large emough there exist the
collections of vectors
{& € TroX), 1 =T, L(F,Q)},
such that the family of conditional types
{Tpa(X | &), 1=T,L(P,Q)¥
cover 7p(X).
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The proof of lemma is similar to the proof of lemmas in 1], [2], [11), [13], [19].
Let us represenc X as & family of disjoint types
= U ).
PeP(XN)
In the sequel without mention we consider only PD P which are types P for N, that is
PeP(X,N).

Let some & > 0 be given. Then for N large enough the probability of appearance of the
gonrce sequences of types beyond a(E + 4) can be estimated as follows:

P U TeX)= Y P¥Tp(X)<
PealE+4) PealE+)

+ 1) ==
< (N +1)*exp{ N o D(P| P} <

< exp{~NE - Né + |¥|log(N + 1)} < exp{~N(E + §/2)} < exp{—NE}.

Here the first inequality follows from (upper estimate in (5)) and the second inequality holds
due to the definition of the set a(E). Consequently, in order to obtain the desired level of
probability e(L(N), Gn(w), A), it is sufficient to construct the guessing strategy only for the
vectors with types P from a(E + §).

First we construct a guessing strategy that ignores the cryptogram. It is possible to order
the types P from a(E + 6) as {P,, P,,...} according to increasing value of corresponding
rate-distortion functions R(F;, A) = R(i, A). (for simplicity of formulae writing instead of P;
we shall write only )

R(,A) < R(i+1,A), 1<i< |a(E+46).
For fixed i let the set {%i1 € 7, guin (X), 1 = 1, L(3, QF™)}, with
L, Q") = exp{N(, min
be a collection of vectors such that according to the lemma for N large enough the set
{7, qin(X | %44), 1 = 1, LG, QF™)},

Liso(X A X) +€)} = exp{N(R(i, A) + )}

covers Ti(X).
Consider the following guessing strategy:

Gn(w) = {{%1, 1 =1, L(QE™)}, {%as, 1 =1, L(QE™)},...}.

The number of required guesses G (x | w) for x € T(X), P € o(E + ) and any w is
upperbounded by = .

Gy(x|w) < Ef"’" Q}“’“\) < L(i, Q™) exp{Ne} = exp{N(R(i, A) + 22)}.
Consider now a guessing strategy that using cryptogram w carries out an key-search
attack:
g;;(w) e {fa;l(wlul)v fil{wt 113), . '}u
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possible key-vectors of lengh K. This sequence contains
w}]r:nem l:;. u-,zt.h H;ﬂ;ﬁugmg;uwym w the number of required guesses Gy (x | w) for
2% vectors,

x € Tp(X), PEo(E +4), i8 upperbounded by
Gy (x | w) < exp{K}.

Finally, letuseonuiderthefo]luwinswmbimdguaasing]ist:
1=1,L(1, a?ﬁi)}rfil(wl w), (%o 1= 1,L(2, QE W} (w, ), .. .}
For the given w the number of sequential wiretapper guesses for the source vector

x € Ti(X), € a(E+0)is upperbounded by
G (x | w) < 2- min{exp{K}, exp{N(R(i, &) +20)} = exp{N(min (R, R(3, A)) + 3¢)}.

Gae(w) = {{Fu

iy L(N) = exp{N(ain (R, R(P", E +8,A)) + 36)}.
Taking i ccaint § dence of key-vectors and source message vectors and using
upper estjmn;::s (6) furt p;iuf::fﬂniﬁm ofthewsets Ti(X), 1 < i < [a(E +0)|, we obtain that
Ep-p:{GN (X | W)} = m);mﬁgi,‘mu);‘ PN (x) P (u)GR* (x| fu(x,w)) <
< ¥ 3 PY(x)exp{N(mn(R,R(,A)+32)} 3 P¥(u)=
i:P,€a(B+6) xETi(X) ek
= Y exp{N(mn(R,RGA)+3)} ¥ PNx) =
i:AEa(B+) xeTi(X)
= Y exp{N(min(R,R(,A))+8)}PN(%(X)) <
#:F€a(E+)
< Y exp{N(-D(P| P*)+min (R, R(P,A)) +3¢)} <
Pea(E+d)

< pmex exp{N(-D(P| P°) + min (R, R(P, A)) + 4€)} =

= axp{N(, oo (~D(P || P + min (R, R(P, ) +40))).
Therefore a pair of guessing rates (R”, R') such that
R'> -}\;m{m — &> min (R, R(P", B +6,A)) + 2,

Rape%( D(P || P*) + min (R, R(P,A)) +4e) — ¢
is (R, E, A)-achievable.

Taking into account the arbitrariness of £ and 4, the continuity of all functions with
respect to £, we obtain (9).

Now we shall prove the inclusion

Re(P",R,E,A) C %5(P', R, B, A). (10)
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To obtain lower bounds on L(N) and Ep- p{G},(X | W)} we may assume that the
guesser is informed of the type Tp(X) of the source message x. Any lower bounds on L(N)
and Ep p;{G}(X | W)} for this informed guesser are also lower bounds for the original.
uninformed guesser because the class of guessing strategies with side information is a superset
of the class of guessing strategies without it. We shall consider a specific encryption function
from [21]. Let Gy(w) be an arbitrary guessing strategy for this encryption function and
¢(L(N), Gn(w), A) < exp{~NE} for some L(N).

The encryption function is constructed as follows. A given source vector x is represented
a5 a sequence (uy,,wsy,) of (b + b;) bits: the first b; = [log [P(X, N)|] bits of the sequence
describe the index of the type P of the set 7p(X) that contains x, the last b; = [log |7p(X)|]
bits identify the index of x within 7p(X). The encryption function is constructed by different
ways for the cases exp{K} < |7p(X)| and exp{K} 2 [7p(X)|.

1) Consider the case exp{K} < log |7p(X)|. -

The set TP{;‘Q is partitioned into M = [|Tp(X)|/exp{K}] disjoint subsets 75 (X),
T5(X), ..., Tp(X), each of size exp{K} and if [Tp(X)| / exp{K} is not integer an addi-
tional subset 7:¥*")(X). Then the index of the subset 7™ (X) (1 < m < M + 1) which
contains x is identified by a sequence w,, of ¢; = log(M + 1) = [log [Tp(X)|] — K bits, and
the index of x within 7™ (X) - by a sequence of ¢ = K bits. Let the encryption function
[ is following: f(x,u) = (ws,,w,,,w,,), where the sequence w,, of last ¢, bits is obtained
after using simple bit-by-bit XOR operation on the ¢; bits describing the index of x within

7™ (X) and on the bits of u.

Let W(x) be the set of all cryptograms w of the fixed vector x. Then the conditional

probability of w given x € Tp(X) is equal - _

Pr(w|x) = Pr(u|x) = P{*(u) = { exp{-K}, vam

Using Bayes rule and (7) the conditional probahﬂntr of x € Tp(X) given w = f (x, u) (that
isxe Wl (w)) is
Pr(x | x € 7p(X)) P(w | x)

S Pr(x % € Tp(X))Pw| x) -
x'€Tp(X)

o exp{-NHp(X) - ND(P | P") =K} - A =1
= ap_NE-(X) - ND@P P) =K} ~ "~ @INTe(X)I™.
X ETp(X) W= (w)
Let A;(L(N),Gn(w), A) be the set of those x € A(L(N),Gn(w), A) which can be guessed
successfully only by one vector from the guessing strategy Gn(w):

Ai(L(N),Gn(w),A) =

= {x € A(L(N),Gn(w), ) : ¥y € A(L(N),On(w), A), Gx(x | w) # Cn(y | w)}.

For brevity instead of A(L(N), Gn(w), A) we shall just write A, instead of A; (L(N), GN(w), A)
- just A,
We (:an write:

Pr(x|x € Tp(X), w) =

(11)

|4 N 72(X)| = 176(X)] - [A N 7e(X)|-



20 Guessing Subject to Distortion and Reliability Criteria in the Shannon Cipher System
u

(X)) (1< m< M), then from (11)
Pr(x| xe TE(X)0) = 0| = expl =K}

a)fx€

Therefore from (8) we obtain
N7e(X)) PN (Tp(X)) K — ND(P I P}
|:rn'r,(x1| = (}:I (ﬁ 7(:1 ) ST RT < exp{ (Pl P)} (12

HenoefurP;éP'anleargeanoush
[ANTe(X)| 2 exp{K} — exp{K — ND(P | P} =

= exp{K}(1 — exp{-ND(P | P*)}) 2 exp{K - 1}-
maximum of Gy (x | w) forx € A;N7Tp(X) we can write as for

(13)

To find low estimate of

arithmetical progression _
AN 72(X)| .
5 Gaxlw) o > d= l’iﬁl—g‘z’-’g—ﬂ-lmnrp()q| (14)
xeAi[17p(X) | o
aiid Y Gulx|w) <[4 NT(X)|- 2l T oy V(X | 0). (15)

xeA; [ Tp(X)
Therefore from (13), (14) and (15) we obtain that for P # P*

14+ |ANTp(X)|  1+exp{K—1} >
12 222> 2 >exp{K—-2}. (16)

G >
e w(x | w)
b) For x € T4+ (X) from (1) we receive that the conditional probability
(M+1) M+1) 5[ s
Pr(x | x € T (X), w) = |‘J" x| 2 m{K} T

Then from (8) the following estimates take place:

___ Pr(AiNTe(X)) o
BT = e o ay S T P (e (K} - 1) <

< exp{—ND(P || P*)} - (exp{K} - 1).
Therefore for P # P* and N large enough ;
|41 N7p(X)| 2 exp{K} — exp{—ND(P || P*)} - (exp{K} - 1) >
2> exp{K}(1 — exp{—NB(P || P*)} +exp{—K — ND(P || P*)}) 2 exp{K — 1}.
From (14), (15) and (17) we receive that (16) holds. Remark that from definition of A; it

follows that
weAnT(X} N( =l )— E-‘ln'r[.ﬂ N( x | w). (18)

(17
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Hence it must be

L(N) =z meﬂ?]%mc"(x | w) = exp{K — 2},

from where we can receive one of the estimates for R in (1).
Now for bounding of R we estimate

Epp{Gu(X|w)}= 3 3 PMx)P¥(u)Gu(x|w)2
xeXN ueliX

2 Y Y Y PYx)PEu)Gn(x|w)2
PéalE) x€Tp(X) ullX

> ’%ﬁ;,%x; “);K PN (x)P% (u) Gy (x | w).

Using (5) we continue the estimates (12)

[AiNTp(X)| < exp{K — ND(P i P*)} < |Tp(X)| exp{ND(P || P*)} <

< exp{N(Hp(X) — D(P || P7))}.
Therefore from (5) for N large enough

[ 41N Te(X)| = [To(X)]| - [AINT(X)| 2
2 exp{NHp(X)} (N +1)¥ ~exp{~ND(P || P)}) =
= (N + 1) exp{NHp(X)} (1~ (N + 1)* exp{~ND(P || P)}) >
> 5(N +1) M exp(NHp(X)} > exp{N(Hp(X) ~£)}.

Taking into account (7), (17), (20) and (22) and definition of the set .A; we obtain

|4 (1 7p(20)|

21

(19)

(20)

(21)

(22)

Ep-p{Gn(X | w)} 2 max exp{-N(D(P|| P*)+Hp(X))} 3 i} P(u).

Pea(E) =1 welk
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Using the properties of arithmetic progression and (13)
Epo e (Gh(X | 0)} 2
LHANTG. 4y 075012

we can continue estimation

> mex exp{-N(D(P |l P*) + Hp(X))}

max ' X))
> max exp{-N(DE 1.P°) +Hp(x))}!ﬁm__'12'ﬂl 5
= Peal

(23)

> max exp{-N(D(P | P*) +Hp(X))} exp{K — 2} exp{N(Hp(X) - €)} =
= PealE)

= Prg:xmmrp{—Nﬂ(P | P*)} exp{X — 2} exp{—Ne} 2

> mex exp{N(-D(P| P*)+ R —2%)}.

Thus i of the estimates for R in (2). '
2) ;Bu;ﬁ;:;ethe case exp{K} > |Tp(X)|. In this case it is natural to use the following

cryption function: w) = (wsy, Ws,), Where the first b = [log |[P(&, N)[] bits (the bits
311:.';,} describe the L{S;: gfthe set 7p(X) containing X, the last by = ['logi"fp(X)ﬂ bits
(the bits of w;,) are obtained after encryption by simple bit-by-bit XOR operation on the b;
bits identifying the index of x within 7p(X) and on the bits of u.

Then the conditional probability of w given x € Tp(X) is equal

Priw| x)& { ;:cp{— Nog | T (X1}, € W),

By analogy with (11) and using (5) we have
Pr(x| x € To(X), ) = W @) NTo(X)|” = [7p(X)|™ 2 exp{~NHp(X)}.
Then for P € o(E) :

ANT00| = g e DD < axp{N(HP(X) - E)), L

therefore for sufficiently large N and 0 < £ < E we can have the following lower estimate
IANTR(X)}2 (N +1)"¥ exp{NHp(X)} - exp{N(Hp(X) - E)} =
= exp{N(Hp(X) - €)}{exp{Ne} - (N + 1) ¥! - exp{N(e - E)}) > (24)
> exp{N(Hp(X) - €)}(2 - exp{N(e - E)}) > exp{N(Hp(X) - £)}.
Now we shall obtain upper estimate for | AN 7p(X)|. To each x € AN7p(X) an unique

guessing vector %;(w) € Gy (w) corresponds, such that Gy (x | w) = i. This vector determines
a conditional type Q = Qp(2(w) | z), for which %(w) € Tpg(X(w) | x). Remark that for
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the case K > log |Tp(X)| (according to the definition of the constructed encryption function
" J) the wiretapper is informed only about the type Tp(X) of the source message x. Therefore

Q = Qpla(w) | z) = Qp(% | z) = Qp and Tpg(X(w) | x) = Tpg, (X | x).
Sinee x € A, then Epg,d(X, X(w)) = d(x,%(w)) < A. So, Qp € M(P,A). The set of

and is the union of all such Qp - shells. Let us select Qp = ®(P) - shell having maximal
cardinality for given P and denote it by (AN 7p(X)) ($(P)). Using (4) we have for N large
enough

IANTR(X)] < (N + )X (AN TR(X)) (8(P))] <

< exp{Ne} [(ANTp(X)) (B(P))|.

Let C(P, ®(P), A) be the set of all guessing vectors ¥;(w) € Gy(w), which satisfy Gn(x |
w) = i for some x € ANTp(X), x € Tpsm(X | Xi(w)). In accordance with the definition

of the guessing strategy Gy(w)

(25)

[c(P, ®(P), A)| < S X,GN{K | w).

Then
[((AN7e(x)) (8(P))| < m [Trom (X | %(w))| <
< exp{NHpop)(X | X)} - mex  Gi(x|uw).
From the last inequality, (24) and (25) we ob_ta.in that for P € a(E)

Hence the estimate of the number of guesses L(/N) must be
L(N) 2 exp{N(R(P", E, A) — 2¢)}. (27)
Using (8) we receive (21):

C PGNTRX) . PMIHX)
ENTX)| = prxx e 3000, w) < Sp{=NER(OT

< exp{N(Hz(X) - D(P | P)},
hence (22) too. Remark that

[4NTo(X)| < |7p(X)| < exp{NHp(X)}. (28)
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(22), (26), (28) and definition of the set A; we obtain

Using (7), (18), (20), |
: . y
Ep-p; {Cn(X [w)} 2 %Mﬁpm PN (x) ‘Ex Py (u)Gn(x | w) >

| A N Te(X)|-1
>

> P%HP{—N(D{PHP‘)+HP(X))} ( o ONE Tk,

> max (exp{~N(D(P || P) + He(X))} -

(exp{N(Ipa(r)(X A X) ~ 26)}+ (|41 NT(X)f - A NTR(X)))/2)) =
> mex axp{—N(D(P || P*) + Hp(X))} -

{(exp{N(Ipaer) (X A X) - 2)} + exp{2N(Hp(X) - §) = 1} = exp{NHp(X) —1})) 2

> max (ap{N(-D(P || P*) + Ipae)(X AX) - 2)}-

(exp{~NHp(X)} + exp{N(Hpa(»)(X | %) - )} - ep{-NIpay(X A X) - )}) 2

> e ep(N(-D(P | P") +Ipair(X A R) = 2)} e
Therefore uniting the both cases, from (19) and (27) we receive
L(N) > exp{min(K - 2, N(R(P", E, A) - 22))},
from (23) and (29) we obtain :
B2 (Gn(X | 0)} 2 o axp{N(~D(P | P*) + min(R - 26, Ipece(X A X) - 20)}.

Hence for IV large enough
R > L log L(N) - & 2 min(R — &, R(P", B, &) - %), i

1
R2 5logEp-p{Gn(X |w)} —€2

2 F%[—D(P [| P*) + min(R' — 2, R(P, A) — 2¢)) — €.
Taking into account arbitrariness of €, continuity by E of all functions in above expressions,
we obtain (1) and (2), therefore the proof of the inclusion (10) is completed.
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